# Water Resources Data lowa Water Year 1989 U.S. GEOLOGICAL SURVEY WATER-DATA REPORT IA-89-1 Prepared in cooperation with the Iowa Department of Natural Resources (Geological Survey Bureau), Iowa Department of Transportation and with Federal agencies # CALENDAR FOR WATER YEAR 1989 | | | | | | | | CALENI | DAR | FOF | R WA | TER | YEA | AR 19 | 89 | | | | | | | |----------------|----------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|---------|----------|----------|----------|----------|----------|----------|----------| | | | | | | | *** | | | | 198 | В | | | | | | | | | | | | OCTOBER | | | | | NOVEMBER | | | | : X- | | DEC | CEM | BER | | | | | | | | S | M | Т | W | Т | F | S | S | М | Т | W | T | F | S | S | М | T | W | Т | F | S | | 2 | 3 | 4 | 5 | 6 | 7 | 1 8 | 6 | 7 | 1 8 | 9 | 3 | 4 | 5<br>12 | 4 | 5 | 6 | 7 | 1 8 | 9 | 3<br>10 | | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | | 16<br>23<br>30 | 17<br>24<br>31 | 18<br>25 | 19<br>26 | 20<br>27 | 21<br>28 | 22<br>29 | 20<br>27 | 21<br>28 | 22<br>29 | 23<br>30 | 24 | 25 | 26 | 18<br>25 | 19<br>26 | 20<br>27 | 21<br>28 | 22<br>29 | 23<br>30 | 31 | | | | | | | | | | | | 198 | 9 | | | | | | | | | | | | | J | ANU | ARY | | | | | FE | BRU | ARY | | | | | N | IARC | Н | | | | S | М | Т | W | T | F | S | S | M | Т | W | Т | F | S | S | M | T | W | Т | F | S | | 1 | 9 | 3 | 11 | 5 | 6 | 7<br>14 | 5 | 6 | 7 | 1 8 | 9 | 3 | 4 | 5 | 6 | 7 | 1 8 | 9 | 3 | 4 | | 15<br>22 | 16<br>23 | 17<br>24 | 18<br>25 | 19<br>26 | 20<br>27 | 21<br>28 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 12 | 13 | 14 | 15 | 16 | 17 | 18<br>25 | | 29 | 30 | 31 | 25 | 20 | 21 | 20 | 19<br>26 | 20<br>27 | 21<br>28 | 22 | 23 | 24 | 25 | 19<br>26 | 20<br>27 | 21<br>28 | 22<br>29 | 23<br>30 | 24<br>31 | 25 | | | | | APRI | IL | | | | | | MAY | , | | | | | | JUNI | E | | | | S | М | T | W | T | F | S | S | M | T | W | T | F | S | S | M | T | W | T | F | S | | 2 | 3 | 4 | 5 | 6 | 7 | 1 | 7 | 1 | 9 | 3 | 4 | 5<br>12 | 6<br>13 | 4 | 5 | 6 | 7 | 1 | 9 | 3<br>10 | | 9 | 10<br>17 | 11<br>18 | 12<br>19 | 13<br>20 | 14<br>21 | 15<br>22 | 14<br>21 | 15<br>22 | 16<br>23 | 17<br>24 | 18 | 19<br>26 | 20 | 11<br>18 | 12<br>19 | 13<br>20 | 14<br>21 | 15<br>22 | 16<br>23 | 17<br>24 | | 23<br>30 | 24 | 25 | 26 | 27 | 28 | 29 | 28 | 29 | 30 | 31 | | | | 25 | 26 | 27 | | 29 | 30 | | | | | | JULY | Y | | | | | Αl | JGU | ST | | | | | SEP | ТЕМ | BER | | | | S | М | T | W | Т | F | S | S | М | Т | W | Т | F | S | S | М | Т | W | Т | F | S | | 2 | 3 | 4 | 5 | 6 | 7 | 1 8 | 6 | 7 | 1 8 | 9 | 3 | 4 | 5<br>12 | 3 | 4 | 5 | 6 | 7 | 1 8 | 9 | | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | | 16<br>23<br>30 | 17<br>24<br>31 | 18<br>25 | 19<br>26 | 20<br>27 | 21<br>28 | 22<br>29 | 20<br>27 | 21<br>28 | 22<br>29 | 23<br>30 | 24<br>31 | 25 | 26 | 17<br>24 | 18<br>25 | 19<br>26 | 20<br>27 | 21<br>28 | 22<br>29 | 23<br>30 | # Water Resources Data lowa # Water Year 1989 by D.J. O'Connell, M.J. Liszewski, R.B. Lambert, and W.J. Matthes U.S. GEOLOGICAL SURVEY WATER-DATA REPORT IA-89-1 Prepared in cooperation with the lowa Department of Natural Resources (Geological Survey Bureau), lowa Department of Transportation and with Federal agencies DEPARTMENT OF THE INTERIOR MANUEL LUJAN, JR., Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director For information on the water program in Iowa write to: District Chief, Water Resources Division U.S. Geological Survey P.O. Box 1230 Iowa City, Iowa 52244 #### PREFACE This report of Iowa is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface-water and ground-water data-collection networks in each State, Puerto Rico and, the Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by State, local, and Federal agencies, and the private sector for developing and managing our Nation's land and water resources. This report is the culmination of a concerted effort by dedicated personnel of the U.S. Geological Survey who collected, compiled, analyzed, verified, and organized the data, and who typed, edited, and assembled the report. The authors had primary responsibility for assuring that the information contained herein is accurate, complete, and adheres to Geological Survey policy and established guidelines. Most of the data were collected, computed, and processed from area field offices. Personnel in charge of the field offices are: Joseph G. Gorman, Council Bluffs Field Headquarters Von E. Miller, Iowa City Field Headquarters Alvin R. Conkling, Fort Dodge Field Headquarters The data were collected, computed and processed by the following personnel: | C.J. | Anderson | R.W. | Baebenroth | D.T. | Conell | |------|-----------|------|------------|------|----------| | D.A. | Eash | N.V. | Fish | R.D. | Goodrich | | S.M. | Jorgenson | A.S. | Jensen | R.A. | Karsten | | R.L. | Kopish | R.L. | Kuzniar | J.M. | Melichar | | V.E. | Miller | D.S. | Ott | V.D. | Sanford | | P.J. | Soenksen | J.R. | Sondag | J.J. | Wellman | | D.W. | Wolf | | _ | | | This report was prepared in cooperation with the State of Iowa and with other agencies under the general supervision of N.B. Melcher, District Chief, Iowa. | REPORT | DOCUMENTATION | 1. REPORT NO. | | 2. | | 3. Recipient's Accession No. | |--------------|-------------------------|------------------------|-----------|---------|----------|--------------------------------------| | | PAGE | USGS/WRD/HD-90/256 | | | | | | 4. Title and | Subtitle | | | | | S. Report Dete | | | | | | | | March 23, 1990 | | War | ter Resources | Data, Iowa Water Year | 1989 | | | 6 | | 7. Author(s | ) | | · | | | 8. Performing Organization Rept. No. | | D. | J. O'Connell, | M. J. Liszewski, R. | B. Lambe | rt, W.J | . Matthe | USGS-WRD IA 89-1 | | 9. Perform | ing Organization Name | and Address | | | | 10. Project/Tesk/Work Unit No. | | <b>U.</b> | S. Geological | Survey, Water Resource | es Divis | ion | | | | | 0. Box 1230 | • | | | | 11. Contract(C) or Grant(G) No. | | Io | wa City, Iowa | 52244-1230 | | | | (C) | | | | | | | | ശ | | 12. Sponso | oring Organization Name | and Address | | | | 13. Type of Report & Period Covered | | | 0 1 1 1 | | <b>.</b> | | | Annual - Oct. 1, 1988 | | | _ | Survey, Water Reource | s Divisio | n | | to Sept. 30, 1989 | | P.0 | . Box 1230 | | | | | 14. | ## 15. Supplementary Notes 50272-101 Prepared in cooperation with the Iowa Department of Natural Resources (Geological Survey Bureau) and other agencies. #### 16. Abstract (Limit: 200 words) Iowa City, IA 52244-1230 Water resources data for the 1989 water year for Iowa consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; ground water levels and water quality of ground-water wells. This report contains records of water discharge for 117 stream-gaging stations; stage or contents for 8 lakes and reservoirs; water quality for 6 stream-gaging stations; sediment records for 10 stream-gaging stations; water levels for 185 observation wells; and chemical analyses for the 135 municipal wells. Also included are 113 crest-stage partial-record stations. Additional water data were collected at various sites, not part of of the systematic data-collection program, and are published as miscellaneous discharge measurements and miscellaneous water-quality analyses. # 17. Document Analysis a. Descriptors \*Iowa, \*Hydrologic data, \*Surface water, \*Ground water, \*Water quality, Flow rates, Streamflow, Stream-gaging stations, Lakes, Reservoirs, Chemical analyses, Sediment, Water, Temperature, Sampling sites, Water levels, Water analyses, Data collections, Ground water levels. ## b. Identifiers/Open-Ended Terms # c. COSATI Field/Group | 18. Availability Statemen: No restriction on distribution | 19. Security Class (This Report) | 21. No. of Pages | |-----------------------------------------------------------|----------------------------------|------------------| | This report may be purchased from: | Unclassified | 400 | | National Technical Service | 20. Security Class (This Page) | 22. Price | | Springfield, VA 22161 | Unclassified | | # CONTENTS | Preface | which records | |----------------------------------------------------|-----------------------------------------| | are published | | | List of ground water wells, by county, for which r | ecords are | | published | | | Introduction | | | Cooperation | | | Summary of hydrologic conditions | | | Precipitation and surface water | | | Suspended sediment | | | Surface water-quality | • • • • • • • • • • • • • • • • • • • • | | Ground water | | | Ground water-quality | | | Special networks and programs | | | Explanation of the records | | | Station identification numbers | | | | | | Downstream order system | | | Latitude-longitude system | | | Numbering system for wells | | | Records of stage and water discharge | | | Data collection and computation | | | Data presentation | | | Identifying estimated daily discharge | | | Accuracy of the records | | | Other records available | | | Records of surface-water quality | | | Classification of records | | | Arrangement of records | | | On-site measurements and sample collecti | | | Water temperature and specific conductan | | | Sediment | | | Laboratory measurements | | | Data Presentation | | | Remark Codes | | | Records of ground-water levels | | | Data collection and computation | | | Data presentation | | | Records of ground-water quality | | | Data Presentation | | | Explanation of descriptive headings | | | Access to WATSTORE data | | | Definition of terms | | | Publications on Techniques of Water-Resources Inve | | | Discontinued gaging stations | | | Discontinued water-quality stations | | | Station records, surface water | | | Discharge at partial-record stations and misc | | # CONTENTS - - Continued | | Page | |---------------------------------------|------| | Crest-stage partial-record stations | 234 | | Special study and miscellaneous sites | 242 | | Miscellaneous water-quality data | 247 | | Station records, ground water | 263 | | Ground-water level records | 263 | | Ground-water-quality data | 354 | | Precipitation water-quality data | 393 | | Index | 397 | # ILLUSTRATIONS | | | | Page | |--------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------| | Figure | 1. | Map of precipitation record in the National Weather Service's designated climatological districts for water year 1989 | 4 | | Figure | 2. | Graph showing daily mean discharge for water year 1989 compared with monthly median discharges for water years 1951-80 for three index stations | 8 | | Figure | 3. | Graph showing a comparison of total annual sediment discharge for water year 1989 with average annual sediment discharge and the lowest annual sediment discharge for period of record, for the five long term daily sediment stations in Iowa | 10 | | Figure | 4. | Map showing location of active and discontinued water-quality stations | 11 | | Figure | 5. | Graph showing comparison of dissolved-solids and nitrate concentration for water year 1989 with historical data summarized by monthly box plots at the NASQAN station on the Iowa River at Wapello | 14 | | Figure | 6. | Graph showing comparison of dissolved-solids and nitrate concentration for water year 1989 with historical data summarized by monthly box plots at the NASQAN station on the Skunk River at Augusta | 15 | | Figure | 7. | Graph showing comparison of dissolved-solids and nitrate concentration for water year 1989 with historical data summarized by monthly box plots at the NASQAN station on the Nishnabotna River above Hamburg | 16 | | Figure | 8. | Map showing location of recording and nonrecording observation wells | 18 | | Figure | 9. | Graph showing monthly water levels during water year 1989 compared to the average monthly level for the period of record | 19 | | Figure | 10. | Map showing location of wells where water samples were collected during water year 1989 | 24 | # ILLUSTRATIONS - - Continued | Figure | 11. | Map showing location of active, continuous-record gaging stations | 28 | |--------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------| | Figure | 12. | Map showing location of active crest-stage gaging stations | 29 | | Figure | 13. | Latitude-longitude well number | 30 | | Figure | 14. | Local well-numbering system for well 96-20-3CDBD1 | 31 | | | | TABLES | | | | | <del></del> | Page | | Table | 1. | Monthly and annual precipitation during water year 1989 as a percentage of normal precipatation (1951-80) | 3 | | Table | 2. | Minimum discharge for water year 1989 compared with the 7-day, 2-year low flow discharge; the 7-day, 10 year low flow discharge; and the minimum discharge for period of record for gaging stations on unregulated streams in Iowa with more than 20 years of record | 9 | | Table | 3. | Historical low water levels measured during water year 1989 in wells completed into unconsolidated aquifers | 20 | | Table | 4. | Historical low water levels measured during water year 1989 in wells completed in bedrock aquifers | 22 | [Letter after station name designates type of data: (d) discharge, (c) chemical, (m) microbiological, (t) water temperature, (s) sediment] | | Page | |---------------------------------------------|----------| | UPPER MISSISSIPPI RIVER BASIN | | | Mississippi River: | | | UPPER IOWA RIVER BASIN | | | Upper Iowa River near Dorchester (d) | 61 | | Mississippi River at McGregor (dcts) | 62 | | TURKEY RIVER BASIN | | | Turkey River at Spillville (d) | 66 | | Roberts Creek: | | | Silver Creek: | | | Silver Creek near Luana (d) | 67 | | Unnamed Creek near Luana (d) | 68 | | Roberts Creek above Saint Olaf (d) | 69 | | Turkey River at Garber (d) | 70 | | MAQUOKETA RIVER BASIN | | | Maquoketa River: | | | North Fork Maquoketa River at Fulton (d) | 71 | | Maquoketa River near Maquoketa (d) | 72 | | Mississippi River at Clinton (d) | 73 | | WAPSIPINICON RIVER BASIN | /3 | | | 74 | | Wapsipinicon River near Elma (d) | 75 | | Wapsipinicon River at Independence (d) | 75<br>76 | | Wapsipinicon River near De Witt (d) | 76 | | CROW CREEK BASIN | | | Crow Creek at Bettendorf (d) | 77 | | IOWA RIVER BASIN | | | Iowa River: | | | East Branch Iowa River near Klemme (d) | 78 | | Iowa River near Rowan (d) | 79 | | Iowa River at Marshalltown (dcts) | 80 | | Timber Creek near Marshalltown (d) | 86 | | Richland Creek near Haven (d) | 87 | | Salt Creek near Elberon (d) | 88 | | Walnut Creek near Hartwick (d) | 89 | | Big Bear Creek at Ladora (d) | 90 | | Iowa River at Marengo (d) | 91 | | Coralville Lake near Coralville | 92 | | Iowa River: | | | Rapid Creek near Iowa City (d) | 93 | | Clear Creek near Coralville (d) | 94 | | Iowa River at Iowa City (d) | 95 | | South Branch Ralston Creek at Iowa City (d) | 96 | | Old Mans Creek near Iowa City (d) | 97 | | English River at Kalona (d) | 98 | | Iowa River near Lone Tree (d) | 99 | | Cedar River at Charles City (d) | 100 | | | 101 | | Little Cedar River near Ionia (d) | TOT | | | Page | |-------------------------------------------------------|------| | UPPER MISSISSIPPI RIVER BASINContinued | | | IOWA RIVER BASINContinued | | | Cedar River at Janesville (d) | 102 | | West Fork Cedar River at Finchford (d) | 103 | | Winnebago River at Mason City (d) | 104 | | Willow Creek: | | | Clear Creek: | | | Clear Lake at Clear Lake | 105 | | Cedar River: | | | Shell Rock River at Shell Rock (d) | 106 | | Beaver Creek at New Hartford (d) | 107 | | Cedar River at Cedar Falls (c) | 108 | | Black Hawk Creek at Hudson (d) | 110 | | Cedar River at Waterloo (d) | 111 | | Cedar River at Cedar Rapids (d) | 112 | | Cedar River near Conesville (d) | 113 | | Iowa River at Wapello (dcts) | 114 | | SKUNK RIVER BASIN | | | South Skunk River (head of Skunk River) near Ames (d) | 120 | | Squaw Creek at Ames (d) | 121 | | South Skunk River at Colfax (dcts) | 122 | | Indian Creek near Mingo (d) | 126 | | South Skunk River near Oskaloosa (d) | 127 | | North Skunk River near Sigourney (d) | 128 | | Cedar Creek near Oakland Mills (d) | 129 | | Skunk River at Augusta (dcts) | 130 | | Mississippi River at Keokuk (d) | 136 | | DES MOINES RIVER BASIN | | | Des Moines River at Estherville (d) | 137 | | Des Moines River at Humboldt (d) | 138 | | East Fork Des Moines River at Dakota City (d) | 139 | | Des Moines River at Fort Dodge (d) | 140 | | Boone River near Webster City (d) | 141 | | Des Moines River near Stratford (d) | 142 | | Saylorville Lake near Saylorville | 143 | | Des Moines River near Saylorville (dcts) | 144 | | Beaver Creek near Grimes (d) | 148 | | North Raccoon River (head of Raccoon River): | | | North Raccoon River near Newell (d) | 149 | | Cedar Creek: | | | Big Cedar Creek near Varina (d) | 150 | | North Raccoon River near Sac City (d) | 151 | | Indian Creek: | | | Wall Lake outlet: | | | Black Hawk Lake at Lake View | 152 | | GAGING STATIONS, IN DOWNSTREAM ORDERContinued | хi | |----------------------------------------------------------------|------| | | Page | | UPPER MISSISSIPPI RIVER BASINContinued | U | | DES MOINES RIVER BASINContinued | | | North Raccoon River near Jefferson (d) | 153 | | Hardin Creek: | | | East Fork Hardin Creek near Churdan (d) | 154 | | South Raccoon River: | | | Middle Raccoon River near Bayard (d) | 155 | | Lake Panorama at Panora | 156 | | Middle Raccoon River at Panora (d) | 157 | | South Raccoon River at Redfield (d) | 158 | | Raccoon River at Van Meter (dc) | 159 | | Walnut Creek at Des Moines (d) | 162 | | Des Moines River below Raccoon River at Des Moines (d) | 163 | | Fourmile Creek at Des Moines (d) | 164 | | North River near Norwalk (d) | 165 | | Middle River near Indianola (d) | 166 | | South River near Ackworth (d) | 167 | | Des Moines River near Runnells(d) | 168 | | White Breast Creek near Dallas (d) | 169 | | Lake Red Rock near Pella | 170 | | English Creek near Knoxville (d) | 171 | | Des Moines River near Tracy (d) | 172 | | Cedar Creek near Bussey (d) | 173 | | Des Moines River at Ottumwa (d) | 174 | | Des Moines River at Keosauqua (d) | 175 | | MISSOURI RIVER BASIN | | | Missouri River: | | | BIG SIOUX RIVER BASIN | | | Big Sioux River: | | | Rock River near Rock Valley (d) | 176 | | Big Sioux River at Akron (d) | 177 | | Missouri River at Sioux City (ds) | 178 | | PERRY CREEK BASIN | | | Perry Creek at 38th Street, Sioux City (d) | 183 | | FLOYD RIVER BASIN | | | Floyd River at Alton (d) | 184 | | West Branch Floyd River near Struble (d) | 185 | | Floyd River at James (d) | 186 | | Missouri River at Decatur, Nebraska (d) | 187 | | MONONA-HARRISON DITCH BASIN | | | West Fork ditch (head of Monana-Harrison ditch) at Hornick (d) | 188 | | Monona-Harrison ditch near Turin (d) | 189 | | LITTLE SIOUX RIVER BASIN | | | Little Sioux River: | | | Milford Creek: | | | West Okoboji Lake at Lakeside Laboratory near Milford | 190 | | Ocheyedan River near Spencer (d) | 191 | | Little Sioux River at Linn Grove (d) | 192 | Little Sioux River near Turin (d)..... SOLDIER RIVER BASIN 193 194 195 | | Page | |------------------------------------------------------|------| | MISSOURI RIVER BASINContinued | | | BOYER RIVER BASIN | | | Boyer River at Logan (d) | 197 | | Missouri River at Omaha, Nebraska (ds) | 198 | | Missouri River at Nebraska City, Nebraska (ds) | 203 | | NISHNABOTNA RIVER BASIN | | | West Nishnabotna River at Hancock (d) | 208 | | West Nishnabotna River at Randolph (d) | 209 | | East Nishnabotna River near Atlantic (d) | 210 | | East Nishnabotna River at Red Oak (d) | 211 | | Nishnabotna River above Hamburg (dcts) | 212 | | TARKIO RIVER BASIN | | | Tarkio River at Stanton (d) | 215 | | Missouri River at Rulo, Nebraska (d) | 216 | | NODAWAY RIVER BASIN | | | Nodaway River at Clarinda (dcts) | 217 | | PLATTE RIVER BASIN (Iowa-Missouri) | | | Platte River near Diagonal (d) | 222 | | One Hundred and Two River: | | | East Fork One Hundred and Two River near Bedford (d) | 223 | | GRAND RIVER BASIN | | | Grand River: | | | Thompson River: | | | Elk Creek near Decatur City (dcts) | 224 | | Thompson River at Davis City (d) | 227 | | Weldon River near Leon (d) | 228 | | CHARITON RIVER BASIN | | | Chariton River near Chariton (d) | 229 | | South Fork Chariton River near Promise City (d) | 230 | | Rathbun Lake near Rathbun | 231 | | Chariton River near Rathbun (d) | 232 | | Chariton River near Moulton (d) | 233 | | GROUN | ID-WATER | WELLS, B | Y COUNT | Y, FOR | WHICH | RECOR | DS ARE | PUBLISHED | xiii | |-----------|-----------|-----------------------------------------|---------|--------|-------|---------|--------|-----------------------------------------|-------| | | | | | | | | | | Page | | ATTRITUON | COLINITAL | | | | | | | | - | | AUDUBON | | 0,565601 | T 1 | | 70 1 | 26 25 | ADCC1 | | . 263 | | | 41304409 | | | number | | | | | | | | 4139580 | | | number | | | | | | | | | 94541701 | | number | | | | | | | | | 94593801 | Local | number | 81 | 36-12 | CBCAI. | | . 264 | | BENTON C | | 00164101 | | | 00 - | | DAADI | | 265 | | | | 92164101 | | number | | | | • • • • • • • • • • • • • | | | | | 92164102 | | number | | | | • • • • • • • • • • • • • • • • • • • • | | | | | 91500201 | | number | | | | | | | | | 91540102 | | number | | | | | | | | | 92083801 | | number | _ | | | | | | | | 92083803 | | number | | | | | | | | | 91522701 | Local | number | 86-0 | 09 - 34 | AAAD1. | | . 268 | | | STA COU | | | | | | | | 2.5 | | | | 95194511 | | number | | | | | | | | | 95571401 | | number | | | | | | | Well | 4252330 | 94545001 | Local | number | 93- | 35-13 | ADAA1. | | . 269 | | CARROLL | | | | | | | | | | | | | 94394501 | | number | | | | | | | | | 94403701 | Local | number | | | | | | | | | 94475901 | Local | number | 83-1 | 35-34 | BCDC1. | | | | Well | 4203350 | 94521501 | Local | number | | | | | | | Well | 4210580 | 94582701 | Local | number | 85-3 | 35-07 | CCCC1. | | . 272 | | CASS COT | JNTY | | | | | | | | | | Well | 4111170 | 95091902 | Local | number | 74- | 37-30 | BBBB2. | | . 272 | | CERRO GO | ORDO COU | NTY | | | | | | | | | Well | 4307570 | 93131801 | Local | number | 96- | 20-17 | DAAD1. | | . 273 | | Well | 4308060 | 93164501 | Local | number | 96- | 21-13 | BCCB1. | | . 273 | | Well | 4306580 | 93281001 | Local | number | 96- | 22-20 | CADC1. | | . 274 | | Well | 4311230 | 93124301 | Loca1 | number | 97- | 20-28 | CAAC1. | | . 274 | | CHEROKE | E COUNTY | | | | | | | | | | | | 95365701 | Local | number | 90- | 40-06 | BDCD1. | | . 275 | | | | 95231601 | Local | number | 91- | 39-01 | ADAD1. | | 275 | | | | 95231602 | | number | | | | | | | | | 95480211 | | number | | | | | | | | | 95331201 | | number | | | | | | | | | 95322411 | | number | | | | | | | CLAYTON | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | | | | | | | | | 91291201 | Local | number | 91 - | 05 - 30 | BBBB1 | | 278 | | | | 91320001 | | number | | | | | | | | | 91182901 | | number | | | | | | | | | 91194701 | | number | | | | | | | | D COUNTY | | Local | Hamber | ,,,- | J-7 J4 | ~~~~. | | | | | | 95312001 | Local | number | 82_ | 40-17 | AARR1 | | 280 | | | | 95312001 | | number | | | | | | | | | 95111701 | | number | | | | | | | | | 95125501 | | number | | | | | | | | | 95225601 | | number | | | | | | | | | 95225602 | | number | | | | | | | well | 42T03T0 | ランととうのひと | Local | number | 65- | 72-TQ | אטטטע. | • • • • • • • • • • | 202 | Well 421005095342801 Local number 85-41-13 CCCC1...... 283 | | | | | Page | |----------------------------------------------|--------------|----------------------|--------|------| | DELAWARE COUNTY | | | | | | Well 422029091144302 | Local number | r 87-03-18 | CBCD2 | 283 | | DES MOINES COUNTY | | | | | | Well 404844091142701 | Local number | | AABA1 | 284 | | Well 404753091142501 | Local number | r 69-03-06 | DDCD1 | 284 | | EMMET COUNTY | | | | | | Well 432927094345501 | Local number | r 100-32-11 | DDDD1 | 285 | | GREENE COUNTY | | | | | | Well 415449094161501 | Local number | r 82-29-18 | CAAA1 | 285 | | Well 415448094163401 | Local number | | CBAA1 | 286 | | Well 415449094155601 | Local number | | DBAA1 | 286 | | Well 415449094173201 | Local number | r 82-30-13 | CABA1 | 287 | | Well 415608094260701 | Local number | r 82-31-10 | AAAA1 | 287 | | Well 420149094344701 | Local number | r 83-32-04 | ACCC1 | 288 | | Well 420116094363001 | Local number | r 83-32-08 | BBBC1 | 288 | | Well 420507094141901 | Local number | r 84-29-16 | CBAB1 | 289 | | Well 420603094355101 | Local number | r 84-32-08 | ACDB1 | 289 | | Well 420723094143201 | Local number | r 85-29-32 | DDDD1 | 290 | | GRUNDY COUNTY | | | | | | Well 422605092560001 | Local number | r 88-18-15 | DBBB1 | 290 | | GUTHRIE COUNTY | | | | | | Well 413223094150801 | Local number | r 78-30-24 | CAAB1 | 291 | | Well 413248094314301 | Local number | | AAAA1 | 291 | | Well 413837094194601 | Local number | | BAAC1 | 292 | | Well 414110094260501 | Local number | | BBBB1 | 292 | | Well 414514094381601 | Local number | | ACCC1 | 293 | | Well 414821094271301 | Local number | | CCCC1 | 293 | | Well 414652094293301 | Local number | | CBCC1 | 294 | | Well 414728094385301 | Local number | | DDDD1 | 294 | | Well 414728094392401 | Local number | _ | ABBC1 | 295 | | HARRISON COUNTY | LOGGE HOLLOG | | | | | Well 413024095353901 | Local number | r 78-41-31 | DDDD1 | 295 | | Well 413523095483101 | Local number | _ | ACDD1 | 296 | | Well 413524095490601 | Local number | | BCDD1 | 296 | | Well 413838095462001 | Local number | | AADB1 | 297 | | Well 413836095465502 | Local number | | BADC2 | 297 | | Well 414226095435002 | Local number | | CCBA2 | 298 | | Well 414228095442301 | Local number | | DBCD1 | 298 | | Well 414213095431602 | Local number | _ | ABBB2 | 299 | | Well 414149095422401 | Local numbe | | BDCC1 | 299 | | Well 415124095361501 | Local number | | ACCC1 | 300 | | Well 415124095361301<br>Well 415109095363201 | Local numbe | | CDBB1 | 300 | | Well 415103095382301 | Local numbe | | ABAA1 | 301 | | Well 414702095395101 | Local numbe | | BDDD1 | 301 | | Well 414702095395101<br>Well 414700095373001 | Local numbe | - | CAAA1 | 302 | | Well 415148095545001 | Local numbe | _ | ABAB1 | 302 | | Well 413148095343001<br>Well 414955096000601 | Local numbe | | AADA1 | 303 | | | rocar numbe | 1 01-44-10 | NAUAI | 203 | | HENRY COUNTY Well 405741091334501 | Local numbe | <b></b> 71 - Ω6 - Ω0 | CBCA1 | 303 | | Well 405/41091334501<br>Well 405810091330502 | Local numbe | _ | ABAC2 | 304 | | | Local numbe | | AABD1 | 304 | | Well 410852091394301 | rocar nambe | I /3-0/-09 | UUDDIT | 204 | | GR | OUND-WATER WELL | S Continued | xv | |----------------------------------------------|------------------------------|-----------------|------| | | | | Page | | HUMBOLDT COUNTY | | | _ | | Well 424039094103601 | Local number | 91-28-20 CAAA1 | 305 | | IDA COUNTY | | | | | Well 422215095390811 | Local number | 87-41-05 CCCC11 | | | Well 423107095383201 | Local number | 89-41-13 CCCC1 | 306 | | IOWA COUNTY | | | | | Well 414709091515801 | Local number | 81-09-35 BCAA1 | 306 | | Well 414930092093801 | Local number | 81-11-17 CBBC1 | 307 | | Well 414816092053401 | Local number | 81-11-23 DCCC1 | 307 | | Well 415125092164201 | Local number | 81-12-06 ADDA1 | 308 | | JACKSON COUNTY | | | | | Well 420842090165701 | Local number | 85-6E-29 ACAD1 | 308 | | Well 420842090165703 | Local number | 85-6E-29 ACAD3 | 309 | | Well 420842090165704 | Local number | 85-6E-29 ACAD4 | 309 | | JASPER COUNTY | | | | | Well 414210092592001 | Local number | 80-18-31 ABBB1 | 310 | | Well 414147093035401 | Local number | 80-19-33 ACAC1 | 310 | | JOHNSON COUNTY | | | | | Well 414107091322901 | Local number | 79-06-04 AAAA1 | 311 | | Well 413940091344701 | Local number | 79-06-07 DAAC1 | | | Well 413925091324001 | Local number | 79-06-09 DDBC1 | | | Well 413955091320303 | Local number | 79-06-10 BDBC3 | | | Well 413844091323201 | Local number | 79-06-16 DDAD1 | | | Well 414458091260201 | Local number | 80-05-09 DBBC1 | | | Well 414315091252001 | Local number | 80-05-22 CBCB1 | | | Well 414315091252002 | Local number | 80-05-22 CBCB2 | | | Well 414149091331501 | Local number | 80-06-33 BDBB1 | | | Well 414853091425101 | Local number | 81-07-19 BCBB1 | | | Well 415052091483801 | Local number | 81-08-05 CCCD1 | | | JONES COUNTY | Bocar Hamber | 01 00 03 00001 | 520 | | Well 415808091160501 | Local number | 83-04-25 CBBB1 | 316 | | LEE COUNTY | nocar namber | 03 04 23 ODDD1 | 310 | | Well 403630091240801 | Local number | 67-05-14 BAAD1 | 317 | | LINN COUNTY | Local Humber | 0/-03-14 DANDI | 31/ | | Well 415534091251502 | Local number | 82-05-10 CBAA2 | 317 | | Well 415556091313001 | Local number | 82-06-10 AABB1 | | | Well 415442091343001 | Local number | 82-06-17 CBAB1 | | | Well 415442091343001<br>Well 415422091422601 | Local number | 82-07-18 CDCD1 | | | Well 415343091360101 | Local number | 82-07-18 CDCD1 | | | Well 415543091360101<br>Well 415509091461801 | Local number Local number | 82-07-23 AAABI | | | Well 415834091351601 | Local number | 83-06-30 ABBA1 | | | Well 415816091393401 | Local number Local number | 83-07-28 ADDA1 | | | | | | | | Well 415725091410101<br>Well 420126091484801 | Local number | 83-07-32 ACDC1 | | | | Local number<br>Local number | 83-08-06 DDAD1 | | | Well 420300091325801 | | 84-06-33 ABBB1 | | | Well 420526091370701 | Local number | | | | Well 420508091395811 | Local number | 84-07-16 DBBB1 | | | Well 420338091431601 | Local number | 84-08-25 ACAD1 | | | Well 420320091472201 | Local number | 84-08-28 CBDD1 | | | Well 421149091403301 | Local number | 85-07-04 CCCC1 | | | Well 420954091480801 | Local number | 85-08-20 ABCD1 | 325 | | | | | | | Page | |----------------------------------------------|-----------|--------|-----------|---------|------| | Well 420730091490401 | Loca1 | number | 85-08-31 | DDCD1 | 326 | | LYON COUNTY | | | | | | | Well 431812096302701 | | number | | DDAD1 | 326 | | Well 432140095595301 | Loca1 | number | | DDDD1 | 327 | | Well 432553096105701 | Loca1 | number | | ABAC1 | 327 | | Well 432601096335511 | Local | number | 100-48-31 | CCCC11 | 328 | | MADISON COUNTY | | | | | | | Well 411727093483001 | Local | number | 75-26-23 | AAAC1 | 328 | | MARION COUNTY | | | | | | | Well 411323093142601 | Local | number | 74-21-11 | DBCC1 | 329 | | Well 411329093142902 | Loca1 | number | 74-21-11 | DBBB2 | 329 | | Well 411328093143503 | Local | number | 74-21-11 | CAAD3 | 330 | | MARSHALL COUNTY | | | | | | | Well 420355092534701 | Loca1 | number | 84-18-24 | CDCA1 | 330 | | MONONA COUNTY | | | | | | | Well 415456095414101 | Local | number | 82-42-14 | ADCA1 | 331 | | Well 420004095451501 | _ | number | | ACDD1 | 331 | | Well 420139095155701 | | number | | CBCB1 | 332 | | Well 420730095510701 | | number | | ABAA1 | 332 | | Well 420406095543301 | | number | | DCAD1 | 333 | | Well 421018095582001 | | number | | CDAA1 | 333 | | Well 421006095580301 | | number | | DCDD1 | 334 | | Well 421018095591301 | | number | | DCAA1 | 334 | | MONTGOMERY COUNTY | Locur | Hamber | 05 2, | | | | Well 410057095075101 | Local | number | 72-37-29 | BABA1 | 335 | | MUSCATINE COUNTY | Doour | | , | | | | Well 412120091080401 | Local | number | 76-02-30 | CBAA1 | 335 | | O'BRIEN COUNTY | Local | Hambel | 70 02 30 | 02:2:2: | | | Well 425610095250611 | Local | number | 94-39-26 | BADB11 | 336 | | Well 425808095480311 | | number | | DDDD11 | 336 | | Well 430930095350401 | | number | | DDDA1 | 337 | | OSCEOLA COUNTY | Local | Hambel | 70 40 03 | | | | Well 431620095250501 | Local | number | 98-39-26 | CDAD1 | 337 | | Well 431620095250511 | | number | | CDAD11 | 338 | | Well 431613095251801 | | number | | CDCC1 | 338 | | Well 431620095482402 | | number | | AABB2 | 338 | | Well 431020095402402<br>Well 432828095283611 | | number | | DCCB11 | 339 | | PAGE COUNTY | Local | number | 100 37 17 | DOODLE | 337 | | Well 404257095150801 | Tooo1 | number | 68-38-07 | CCAA1 | 339 | | PLYMOUTH COUNTY | LUCAI | Humber | 00-30-07 | COLUMN | 337 | | Well 424850096074801 | Toool | number | 92-45-02 | CBCB1 | 340 | | Well 424830096074801<br>Well 424833096324701 | | number | | DDDA1 | 340 | | Well 424833096324701<br>Well 425249096125001 | | number | | DDDD1 | 340 | | POTTAWATTAMIE COUNTY | Local | number | 93-40-12 | 00001 | 340 | | Well 411024095095502 | T a a a 1 | number | 7/- 39-36 | BAAA2 | 341 | | Well 411359095171901 | | number | | CCCC1 | 341 | | Well 4113590951/1901<br>Well 411246095502001 | | number | | BCCC1 | 342 | | | Local | number | /4-43-10 | BOOOT | 342 | | SAC COUNTY | T a = = 1 | L | 00 27 00 | cccc1 | 342 | | Well 422500095084801 | | number | | | 343 | | Well 422850095171501 | Local | number | 89-38-36 | CBCC1 | 343 | | | GRO | inued | xvii | | | | |--------------|-----------------|-------|--------|----------|--------|-------------| | | | | | | | Page | | SCOTT CO | OUNTY | | | | | | | Well | 413544090212901 | Loca1 | number | 78-5E-3 | AADA1 | 343 | | SHELBY C | COUNTY | | | | | | | Well | 413255095070401 | Loca1 | number | | DDDD1 | 344 | | Well | 413442095193101 | Local | number | 78-39-10 | BBBA1 | 344 | | We11 | 413359095182701 | Loca1 | number | 78-39-11 | CCBC1 | 345 | | Well | 413031095204901 | Loca1 | number | 78-39-32 | DDAA1 | 345 | | We11 | 414624095252301 | Loca1 | number | 80-39-06 | AADC1 | 346 | | We11 | 414856095160101 | Loca1 | number | 81-38-21 | ADAD1 | 346 | | SIOUX CO | DUNTY | | | | | | | We11 | 430140095573101 | Loca1 | number | 95-43-07 | AAAA1 | 347 | | Well | 430913096033201 | Loca1 | number | 96-44-08 | ADAA1 | 347 | | STORY CO | OUNTY | | | | | | | Well | 420137093361501 | Local | number | 83-24-02 | DBAD1 | 347 | | WASHINGT | TON COUNTY | | | | | | | Well | 411300091320701 | Loca1 | number | 74-06-15 | BDAC1 | 348 | | Well | 411244091323501 | Loca1 | number | 74-06-15 | CBDD1 | 348 | | Well | 421829091304701 | Local | number | 75-06-14 | ABBB1 | 349 | | ${\tt Well}$ | 412037091564701 | Local | number | 76-09-31 | CBBC1 | 349 | | Well | 412750091495201 | Local | number | 77-09-24 | AADA1 | 350 | | WEBSTER | COUNTY | | | | | | | Well | 421550094041001 | Local | number | 86-28-14 | ADAB1 | 350 | | Well | 421837094083601 | Local | number | 87-28-29 | CCCD1 | <b>3</b> 51 | | ${\tt Well}$ | 423018094214701 | Loca1 | number | 89-30-23 | CCBB1 | 351 | | WOODBURY | Y COUNTY | | | | | | | Well | 422058095573701 | Local | number | 87-44-15 | CBBB1 | 352 | | Well | 422830096000511 | Local | number | 88-44-06 | BAAB11 | 352 | | Well | 423015096034601 | Local | number | 89-44-20 | DCDC1 | 353 | | Well | 422910096135811 | Local | number | | BBDC11 | | | | | | | | | | ## WATER RESOURCES DATA - IOWA, 1989 ### INTRODUCTION The Water Resources Division of the U.S. Geological Survey, in cooperation with State agencies, obtains a large amount of data pertaining to the water resources of Iowa each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside of the Geological Survey, the data are published annually in this report series entitled "Water Resources Data - Iowa." This report contains records for water discharge at 117 gaging stations, stage or contents for 8 lakes and reservoirs, water quality records for 6 gaging stations, sediment records for 10 gaging stations, and water levels for 185 observation wells. Also included are data for 113 crest-stage partial-record stations and water-quality data from 135 municipal wells. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State, local, and Federal agencies in Iowa. Records of discharge and stage of streams, and contents or stage of lakes and reservoirs were first published in a series of U.S. Geological Survey water-supply papers entitled, "Surface Water Supply of the United States." Through September 30, 1960, these water-supply papers were in an annual series and then in a 5-year series for 1961-65 and 1966-70. Records of chemical quality, water temperatures, and suspended sediment were published from 1941 to 1970 in an annual series of water-supply papers entitled, "Quality of Surface Waters of the United States." Records of ground-water levels were published from 1935 to 1974 in a series of water-supply papers entitled, "Ground-Water Levels in the United States." Water-supply papers may be consulted in the libraries of the principal cities in the United States or may be purchased from Branch of Distribution, U.S. Geological Survey, 604 South Pickett Street, Alexandria, Virginia, 22304. For water years 1961 through 1970, streamflow data were released by the Geological Survey in annual reports on a State-boundary basis. Water-quality records for water years 1964 through 1970 were similarly released either in separate reports of in conjunction with streamflow records. Beginning with the 1971 water year, water data for streamflow, water quality, and ground water are published in official Survey reports on a State-boundary basis. These official Survey reports carry an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this report is identified as "U.S. Geological Survey Water-Data Report IA-89-1." These water-data reports are for sale, in paper copy or in microfiche, by the National Technical Information Service, U.S. Department of Commerce, Springfield, Virginia 22161. Additional information, including current prices, for ordering specific reports may be obtained from the District Chief at the address given on the back of the title page or by telephone, (319) 337-4191. #### COOPERATION The U.S. Geological Survey and organizations in the State of Iowa have had cooperative agreements for the systematic collection of streamflow records since 1914, for ground water levels since 1935, and for water-quality records since 1943. Organizations that assisted in collecting data through cooperative agreement with the Survey in water year 1989 are: Iowa Department of Natural Resources (Geological Survey Bureau), Donald L. Koch, Bureau Chief and State Geologist University of Iowa, Institute of Hydraulic Research, Robert G. Hering, Dean of College of Engineering and John F. Kennedy, Director University of Iowa, Hygenics Laboratory, W.J. Hausler, Jr., Director Iowa Department of Transportation, Highway Division, Robert Humphrey, Director, and Vernon J. Marks, Research Engineer Iowa State University, Richard E. Hasbrook, Contracts and Grants Officer, and Iowa State Water Resources Research Institute, T. Al Austin, Director City of Cedar Rapids, Donald Canney, Mayor City of Des Moines, John Dorrian, Mayor City of Fort Dodge, Micheal D. McCarville, Mayor Assistance in the form of funds or services was given by the Corps of Engineers, U.S. Army, in collecting flow records for 77 gaging stations. Assistance was also furnished by NOAA-National Weather Service, U.S.Department of Commerce. The following organizations aided in collecting records: Union Electric Co; Des Moines Water Works; Waterloo Sewage Treatment Plant; University of Iowa; West Central Iowa Rural Water Association; and cities of, Charles City, Clear Lake, Denison, Iowa City, Marshalltown, Sioux City and Waterloo. Organizations that supplied data are acknowledged in station descriptions. # SUMMARY OF HYDROLOGIC CONDITIONS ## Precipitation and Surface Water The less-than-normal precipitation and streamflow pattern set during water year 1988 (October 1, 1987, to September 30, 1988) continued into water year 1989 (October 1, 1988, to September 30, 1989). Statewide precipitation for water year 1989 was 26.08 inches or 81 percent of the normal annual statewide precipitation of 32.09 inches during 1951-80 (table 1 and fig. 1). Water year 1989 ranked as the 11th driest on record (1873-1989) (Harry Hillaker, State Climatologist, Iowa Department of Agriculture and Land Stewardship, oral and written commun., 1989). Table 1.--Monthly and annual precipitation during water year 1989 as a percentage of normal precipitation (1951-80). [Source: Harry Hillaker, State Climatologist, Iowa Department of Agriculture and Land Stewardship, written commun., 1989] | Climatological District | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | Annual | |-------------------------|------|------|------|------|------|------|------|-----|------|------|------|-------|--------| | Northwest | 15 | 206 | 45 | 80 | 27 | 63 | 78 | 47 | 59 | 112 | 65 | 104 | 74 | | North Central | 21 | 209 | 92 | 67 | 27 | 55 | 81 | 45 | 51 | 74 | 52 | 84 | 66 | | Northeast | 43 | 164 | 74 | 87 | 44 | 62 | 91 | 57 | 41 | 50 | 95 | 126 | 75 | | West Central | 7 | 207 | 101 | 153 | 44 | 35 | 40 | 61 | 89 | 104 | 61 | 167 | 83 | | Central | 27 | 190 | 64 | 135 | 51 | 35 | 60 | 75 | 69 | 80 | 84 | 137 | 80 | | East Central | 73 | 147 | 75 | 82 | 59 | 56 | 84 | 59 | 77 | 74 | 114 | 136 | 87 | | Southwest | 17 | 151 | 67 | 130 | 83 | 22 | 37 | 41 | 138 | 94 | 98 | 223 | 96 | | South Central | 15 | 151 | 57 | 99 | 78 | 19 | 32 | 114 | 65 | 105 | 119 | 149 | 87 | | Southeast | 34 | 166 | 71 | 74 | 86 | 36 | 76 | 84 | 90 | 72 | 111 | 123 | 85 | | Statewide | 29 | 176 | 72 | 99 | 54 | 43 | 65 | 65 | 74 | 84 | 87 | 139 | 81 | Statewide average precipitation during October was 0.66 inches or 29 percent of the normal statewide precipitation of 2.30 inches. Precipitation in October ranged from 7 percent of normal in west-central Iowa to 73 percent of normal in east-central Iowa. Most of the precipitation in the State occurred on October 22. Streamflows in the State had been in recession until this time. Some streamflows did recover slightly due to the October 22 rains but then receded so that at the end of the month streamflows were less than at the beginning of the month. 29.60 PRECIPITATION, IN INCHES, DURING WATER YEAR 1989 -4.48 DEVIATION FROM LONG-TERM AVERAGE (1951-80), IN INCHES Figure 1.—Precipitation record in the National Weather Service's designated climatological districts for water year 1989. (Source: Harry Hillaker, State Climatologist, lowa Department of Agriculture and Land Stewardship, written commun, 1989.) Statewide average precipitation during November was 2.66 inches or 176 percent of normal statewide precipitation. Precipitation in November ranged from 147 percent of normal in east-central Iowa to 209 percent of normal in north-central Iowa. On November 15, rainfall exceeding 1 1/2 inches fell in the northwest and south-central parts of the State. Snow fell in the northern one-half of the State on November 29 and 30. Streamflows generally increased during November 16-27 due to the rainfall on November 15. Occasional light snow fell during December in the northern one-half of the State and a mixture of precipitation occurred statewide on December 26. Statewide average precipitation was 0.79 inches or 72 percent of the normal statewide precipitation of 1.09 inches for December. Precipitation in December ranged from 45 percent of normal in northwest Iowa to 101 percent of normal in the west-central part of the State. Streamflows were generally affected by ice and decreased through the month. Above-average temperatures and near-normal amounts of precipitation were recorded in January. Statewide average precipitation for January was 0.91 inches or 99 percent of normal statewide precipitation of 0.92 inches for the month. Precipitation in January ranged from 67 percent of normal in north-central Iowa to 153 percent of normal in west-central Iowa. Most of the precipitation occurred in the form of rain. Rain in the southern one-half and snow in the northern one-half of the State occurred on January 5, 25, and 28. Streamflows increased statewide by the end of the month. Ice affected most streams in the northern part of the State, whereas many streams in the southern part of the State were ice free. Below-normal temperature and precipitation were recorded in February. It was the coldest February since 1979 with temperatures 9.1 degrees Fahrenheit below average. Statewide average precipitation was 0.55 inches or 54 percent of the normal statewide precipitation of 1.02 inches. Precipitation during February ranged from 27 percent of normal in north-central and northwest Iowa to 86 percent of normal in the southeast part of the State. Streamflows generally decreased during the month and ice covered the streams throughout the State. March was deficient in precipitation, receiving 0.92 inches of statewide average precipitation or 43 percent of the normal statewide precipitation of 2.15 inches. The period January through March was the fifteenth driest in 116 years of record. Precipitation in March ranged from 19 percent of normal in south-central Iowa to 63 percent of normal in the northwest part of the State. Streamflows were generally highest during March 10-13 due to warming temperatures and snowmelt, but was less than normal for the State. Mississippi River flow increased throughout the month due to snowmelt in Minnesota and Wisconsin. Statewide average precipitation for April was 2.07 inches or 65 percent of normal statewide precipitation. Precipitation in April ranged from 32 percent of normal in south-central Iowa to 91 percent of normal in the northeast part of the State. Severe thunderstorms and tornadoes occurred on April 22 and 26. Northeast, north-central, east-central, and northeast Iowa received the majority of the precipitation on April 22. The central, south-central, and southwest parts of the State received the most rainfall from the storms on April 26. Streamflows were not significantly affected by the rainfall due to the antecedent dry conditions. By the end of the month, streamflows were same or less than at the beginning of the month. Statewide average precipitation for May was 2.57 inches or 65 percent of normal statewide precipitation. The period January through May was the seventh driest in the 116 years of record. Precipitation in May ranged from 41 percent of normal in southwest Iowa to 114 percent of normal in the south-central part of the State. Streamflows generally receded from May 1 through May 21. On May 22, severe thunderstorms and tornadoes occurred in north-central, central, and northeast Iowa. Rainfall amounts varied from trace amounts to 2 1/2 inches. On May 26 storms occurred statewide; north-central, central, south-central, and northeast Iowa received most of Streamflows in the areas receiving the most rain the precipitation. responded with moderate to substantial increases in flow. At the end of the month, streamflows of the streams in the eastern one-third of the State were generally lower than earlier in the month but the remainder of the streams in the State had higher flows due to the precipitation that occurred on May 22 and 26. The statewide average precipitation for June was 3.31 inches or 74 percent of the normal statewide precipitation of 4.48 inches. The January through June period ranked as the seventh driest for the period of record. Precipitation ranged from 41 percent of normal in northeast Iowa to 138 percent of normal in the southwest part of the State. Streamflows in the southwest, west-central, and central parts of the State varied significantly during the month due to isolated storms; rainfall amounts ranged from 1 1/2 to 7 inches. Streams in the remainder of the State generally receded due to the light, scattered showers that occurred during the month. Statewide average precipitation during July was 3.32 inches or 84 percent of the normal statewide precipitation of 3.95 inches. Precipitation ranged from 50 percent of normal in northeast Iowa to 112 percent of normal in the northwest. Streamflows were steady or declined slightly except for northwest Iowa where part of the Perry Creek basin had a significant increase in flow due to an isolated storm cell that produced about 4 inches of rain on July 17. Streamflow at the index station on the Cedar River at Cedar Rapids set a new low mean monthly discharge of 533 ft /s (cubic feet per second). The previous low mean monthly discharge for July at this station (538 ft /s) occurred in 1911. Statewide average precipitation for August was 3.58 inches or 87 percent of the normal statewide precipitation of 4.10 inches. The precipitation ranged from 52 percent of normal in the north-central to 119 percent of normal in south-central Iowa. The period of January through August was the ninth driest on record. Streamflows generally declined slightly during August except for some fluctuations due to isolated rainfall across the State. Storms occurred on August 22 and 23 in southeast Iowa and again on August 25 and 26 in the central part of the State. Southeast Iowa received 2 to 5 inch rains on August 22 and 23 that caused significant increases in streamflows. Storms on August 25 and 26 in central Iowa caused moderate increases in streamflows. The statewide average precipitation for September was 4.74 inches or 139 of the normal statewide precipitation of 3.42 inches. precipitation ranged from 84 percent of normal in north-central Iowa to percent of normal in southwest Iowa. The period of January through September was the sixteenth driest on record. Significant precipitation occurred in Iowa in early September. As much as 10 inches of rain fell in parts of south-central, southwest, and west-central Iowa and 2 to 5 inches of rain fell in the remainder of the State. Significant increases in streamflows were caused by the early September rainfall except in the northeast and parts of east-central Iowa. A new peak stage for the period of record of 28.27 feet was recorded on September 10 at the index station on the Nishnabotna River above Hamburg. This stage surpassed the previous record peak stage of 28.14 feet set in 1987. The monthly mean discharge for the index station on the Cedar River at Cedar Rapids (fig. 2) was in the deficient flow range (25-percent quartile of the median of the monthly mean discharges during water years 1951-80 for the specified month) during water year 1989 except for January and March when the mean discharge was in the normal flow range (25- to 75-percent quartile of the median of the monthly mean discharges during water years 1951-80 for the specified month). Streamflow at the index station on the Des Moines River at Fort Dodge was in the deficient flow range during November and from April through September, and in the normal flow range for the remaining months. Streamflow at the index station on the Nishnabotna River above Hamburg was in the deficient flow range during October, December, February, April, May, July, and August, in the excessive flow range (75-percent quartile of the median of the monthly mean discharges during water years 1951-80 for the specified month) during September, and in the normal flow range for the four remaining months. A comparison of the minimum discharge for water year 1989 with the 7-day, 2-year low-flow discharge; the 7-day, 10-year low-flow discharge; and the minimum discharge for the period of record for gaging stations on unregulated streams in Iowa with more than 20 years of record is presented in table 2. ### Suspended-Sediment Less-than-normal streamflows during water year 1989 produced below average suspended-sediment discharge at four of the five long-term daily sediment stations in Iowa (fig. 3). The suspended-sediment discharge was the lowest for the period of record in the Iowa River at Wapello and in the Des Moines River near Saylorville. The annual suspended-sediment discharge in the Skunk River at Augusta and in the Mississippi River at McGregor was the second lowest for the period of record. Streamflow of the Des Moines River near Saylorville is regulated by the Saylorville Reservoir. Minor flow regulation by navigation dams affects the discharge of the Mississippi River at McGregor. Location of the sediment stations and other active and discontinued water-quality stations are shown on figure 4. The maximum daily suspended-sediment discharge for water year 1989 in the Mississippi River at McGregor, located in the the Northeast Climatological District (fig. 1), was measured on May 17 during a period of receding high flow and was caused by localized rains. The minimum daily suspended-sediment discharge at this station was measured January 9 to 11. Figure 2.--Daily mean discharge for water year 1989 compared with the monthly median of the monthly mean discharges for water years 1951-80 for three index stations. Table 2.--Minimum discharge for water year 1989 compared with the 7-day, 2-year low flow discharge; the 7-day, 10-year low flow discharge; and the minimum discharge for period of record for gaging stations on unregulated streams in Iowa with more than 20 years of record. [ft<sup>3</sup>/s, cubic feet per second; R, River; Cr, Creek; nr, near] | Station number and name | Minimum<br>discharge<br>for Water<br>Year 1989<br>(ft <sup>3</sup> /s) | Date | 7-day,<br>2-year<br>low-<br>flow1<br>(ft <sup>3</sup> /s) | 7-day,<br>10-year<br>low-<br>flow1<br>(ft <sup>3</sup> /s) | Minimum<br>for<br>period of<br>record<br>(ft <sup>3</sup> /s) | Water<br>year | |-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------|---------------| | 05411600 Turkey R at Spillville | 6.4 | Aug. 18,19 | 17 | 7.4 | 4.4 (2) | 1959 | | 05412500 Turkey R at Garber | 105 | Aug. (5) | 161 | 80 | 49 (2) | 1940 | | 05418500 Maquoketa R nr Maquoketa | 199 | July 7 | 287 | 158 | 105 (2) | 1936 | | 05420560 Wapsipinicon R nr Elma<br>05421000 Wapsipinicon R at Independence<br>05422000 Wapsipinicon R nr Do Witt | 2.8 (2)<br>17 | Sept. 19 | 7.4<br>48 | 4.6 | 1.9 (2)<br>7.0 (2) | 1959<br>(3) | | 05422000 Wapsipinicon R nr De Witt | | Aug. (5)<br>(4) | 214 | 17<br>103 | 46 (2) | 1977 | | 05449000 East Branch Iowa R nr Klemme | 1.3 (2) | Jan. 19,20 | 3.1 | .75 | .2 (2) | 1959 | | 05449500 Iowa R nr Rowan | 7.5 | Sept. 29,30 | 14 | 5.5 | 2.9 (2) | 1959 | | 05451500 Iowa R nr Marshalltown | 31 | Sept. 2,3 | 65 | 23 | 4.7 (2)<br>No flow | 1977<br>(3) | | 05422000 Wapsipinicon R nr De Witt 05449000 East Branch Iowa R nr Klemme 05449500 Iowa R nr Rowan 05451500 Iowa R nr Marshalltown 05451700 Timber Cr nr Marshalltown 05451900 Richland Cr nr Haven 05452000 Salt Cr nr Elberon 05452200 Walnut Cr nr Hartwick 05453000 Big Bear Cr at Ladora 05453100 Iowa R at Marengo 05454000 Rapid Cr nr Iowa City 05454300 Clear Cr nr Coralville | No flow | Aug. 12<br>July 9,10<br>July 11<br>Aug. 17,18<br>Aug. 9,10<br>Aug. 12,13 | 1 4 | 17<br>103<br>.75<br>5.5<br>23<br>.40<br>.23<br>3.1<br>No flow<br>.56 | No flow | (3) | | 05452000 Salt Cr nr Elberon | 2.6 | July 11 | 8.7 | 3.1 | .85 (2) | 1977 | | 05452200 Walnut Cr nr Hartwick | .34(2) | Aug. 17,18 | 1.4 | No flow | No flow | (3) | | 05453000 Big Bear Cr at Ladora | .90 | Aug. 9,10 | 5.3 | . 36 | No flow<br>24 (2) | (3)<br>1977 | | 05454000 Rapid Cr nr Towa City | 74<br>No flow | Aug. 12,13 | .04 | No flow | No flow | (3) | | 05454300 Clear Cr nr Coralville | 1.1 | Oct. 15.16 | 2.6 | . 44 | No flow | 1977 | | 03433010 Boden Branch Raiscon Cr ac 10wa Crcy | NO TIOM | (4) | 2.6<br>.04 | No flow | No flow | (3) | | 05455500 English R at Kalona | 3.0 | | 11 | 2.7<br>113 | .66 (2)<br>60 (2) | 1977<br>(3) | | 05457700 Cedar R at Charles City<br>05458000 Little Cedar R nr Ionia | 86<br>4.9 | Aug. 22<br>Aug. 30 | 169<br>18 | 63 | 3.0 (2) | 1959 | | 05458500 Cedar R at Janesville | 109 | Aug. (5) | 136 | 68 | 28 (2) | 1922 | | 05458900 West Fork Cedar R at Finchford | 12 (2) | Sept. (5) | 44 | 14 | 5.9 (2) | 1959 | | 05459500 Winnebago R at Mason City | No flow | Aug. (5) | 20 | 7.1<br>69 | No flow<br>38 (2) | 1989<br>1977 | | 05463000 Beaver Cr at New Hartford | 2.0 (2) | Sept. 30 | 15 | 4.9 | 1.3 | 1989 | | 05463500 Black Hawk Cr at Hudson | 1.3 | Apr. 19 | 136<br>44<br>20<br>151<br>15<br>14<br>535<br>2.1<br>2.1 | 4.0 | .12 (2) | 1977 | | 05464000 Cedar R at Waterloo | 288 | Aug. 18,19 | 535 | 278 | 152 (2) | 1959 | | 05470000 South Skunk R nr Ames | .37 | Aug. 18,19 | 2.1 | .10<br>.08 | No flow<br>No flow | (3)<br>(3) | | 05470500 Squaw Cr at Ames<br>05471200 Indian Cr nr Mingo | No flow | (4)<br>Aug. (5) | 5.0 | .73 | No flow | 1989 | | 05458500 Cedar R at Janesville 05458900 West Fork Cedar R at Finchford 05459500 Winnebago R at Mason City 05462000 Shell Rock R at Shell Rock 05463000 Beaver Cr at New Hartford 05463500 Black Hawk Cr at Hudson 05464000 Cedar R at Waterloo 05470000 South Skunk R nr Ames 05470500 Squaw Cr at Ames 05471200 Indian Cr nr Mingo 05471500 South Skunk R nr Oskaloosa 05472500 North Skunk R nr Sigourney 054740000 Skunk R at Augusta 05476500 Des Moines R at Estherville | 12 (2) | Dec. 17 | 2.1<br>5.0<br>58<br>22<br>135<br>8.7 | 10 | 1.8 (2) | 1956 | | 05472500 North Skunk R nr Sigourney | 6.7 | Dec. 17<br>Oct. 11,18<br>Dec. 11<br>Sept. 30 | 22 | 2.1 | .1 (2) | 1956 | | 05474000 Skunk R at Augusta | 35 | Dec. 11 | 135 | 30<br>1.4 | 7 (2)<br>No flow | 1934<br>1977 | | 05476500 Des Moines R at Estherville<br>05479000 East Fork Des Moines R at Dakota City | 2.7 | Sept. 2,3 | 8.7<br>23<br>12<br>1.8 | 10 | 4.8 (2) | 1977 | | 05479000 East Fork Des Moines R at Dakota City<br>05481000 Boone R nr Webster City | 7.0 | Oct. (5) | 12 | 4.3 | No flow | 1977 | | 05481950 Beaver Cr nr Grimes | .02 | Nov. 6 | 1.8 | .07 | No flow | (3) | | 05481950 Beaver Cr nr Grimes<br>05482170 Big Cedar Cr nr Varina<br>05482300 North Raccoon R nr Sac City<br>05482500 North Raccoon R nr Jefferson | 7.11 | Sept. 23 | . 43<br>12 | No flow<br>4.5 | No flow<br>No flow | (3)<br>1977 | | 05482500 North Raccoon R nr Jefferson | 7.5<br>10 | Sept. 1<br>Sept. 3 | 39 | 8.9 | .6 (2) | 1956 | | 05483000 East Fork Hardin Cr nr Churdan<br>05484000 South Raccoon R at Redfield | No flow | (4) | No flow | No flow | No flow | (3) | | 05484000 South Raccoon R at Redfield | 70 | June 21 | 44 | 25 | 17 (2) | 1977 | | 05484500 Raccoon River at Van Meter | 105 | Sept. 3 | 1.7 | No flow | 10 (2)<br>No flow | 1940<br>(3) | | 05486490 Middle R nr Indianola | 2.2 | Oct. 30 | 7.8 | 1.6 | .11 (2) | 1977 | | 05487470 South R nr Ackworth | .99(2) | ) Aug. 18 | 3.2 | . 89 | No flow | 1956 | | 05487980 White Breast Cr nr Dallas | .03(2) | Oct. 30<br>) Aug. 18<br>) Aug. 13<br>Aug. 12,13<br>) Feb. 3 | 1.4 | .24 | .03 (2) | 1989 | | 05489000 Cedar Cr nr Bussey | No Ilow | Aug. 12,13 | 1.9 | 17 | No flow<br>No flow | (3)<br>(3) | | 05484500 Raccoon River at Redield<br>05486500 Roccoon River at Van Meter<br>05486490 Middle R nr Indianola<br>05487470 South R nr Ackworth<br>05487980 White Breast Cr nr Dallas<br>05489000 Cedar Cr nr Bussey<br>06483500 Rock R nr Rock Valley<br>06600000 Perry Cr at 38th St, Sioux City<br>06600100 Floyd R at Alton | 2.0 | Hug. 12,13<br>) Feb. 3<br>July (5) | .41 | 33<br>No flow<br>1.6<br>.89<br>.24<br>.25<br>1.7<br>.03<br>No flow | No flow | (3) | | 06600100 Floyd R at Alton | 1.1 | Sept. (5) | . 52 | No flow | No flow | (3) | | 06600300 West Branch Floyd R nr Struble | 3.1 | Sept. 26 | . 10 | 110 11011 | No flow<br>.90 (2) | (3)<br>1977 | | 06600500 Floyd River at James<br>06602400 Monona-Harrison Ditch nr Turin | 24<br>14 | Sept. 30<br>Jan. 20 | 10<br>33 | 3.2<br>16 | 8.5 (2) | 1959 | | 06607500 Little Sioux R nr Turin | 88 | Aug. 18,19 | 118 | 40 | 17 (2) | 1977 | | 06608500 Soldier R at Pisgah | 14 | July (5) | 14 | 3.9 | 2.0 (2) | 1945 | | 06609500 Boyer R at Logan | 15 | Sept. 3 | 29 | 6.8 | 1.5 (2)<br>2.2 (2) | 1938<br>1971 | | 06807410 West Nishnabotna R at Hancock<br>06808500 West Nishnabotna R at Randolph | | ) Feb. 5<br>) Feb. 5 | 28<br>75 | 6.4<br>23 | 10 (2) | 1955 | | 06809210 East Nishnabotha R nr Atlantic | 12 | June 21,22 | 21 | 7.4 | 2.5 (2) | 1977 | | 06809500 East Nishnabotna R at Red Oak | 34 | Dec. 9 | 35 | 14 | 6 (2) | 1936 | | 06810000 Nishnabotna R above Hamburg | 128 | Aug. 24,25 | 111 | 26 | 4.5 (2) | 1934 | | 06811840 Tarkio R at Stanton | No flow<br>13 | Oct. (5)<br>Nov. 28 | .50<br>16 | No flow<br>5.3 | No flow<br>1.0 (2) | (3)<br>(3) | | 06817000 Nodaway R at Clarinda<br>06897950 Elk Cr nr Decatur City | No flow | (4) | .20 | No flow | No flow | (3) | | 06898000 Thompson R at Davis City | .41(2 | ) Aug. (5) | 9.9 | 1.8 | .1 (2) | 1956 | | 06898400 Weldon R nr Leon | No flow | (4) | . 26 | No flow | No flow | (3)<br>(3) | | 06903400 Chariton R nr Chariton | No flow | (4) | . 55 | .18 | No flow | (3) | <sup>1</sup> Lara, O.G., 1979, Annual and seasonal low-flow characteristics of Iowa streams, U.S. Geological Survey, Open-File Report 79-555, 506 p. 2 Minimum daily discharge. 3 Occurred in more than one year. 4 Occurred in more than one month. 5 Occurred more than twice during month. Figure 3.--Comparison of total annual suspended-sediment discharge for water year 1989 with average annual suspended-sediment discharge and the lowest annual sediment discharge for period of record, for the five long term daily sediment stations in Iowa. The maximum daily suspended-sediment discharge for water year 1989 in the Iowa River at Wapello, located in the Southeast Climatological District, was measured on June 2 and the minimum on February 5. The maximum daily suspended-sediment discharge was due to rainfall that occurred in late May and early June. The Skunk River at Augusta is located in the Southeast Climatological District. The maximum daily suspended-sediment discharge for water year 1989 was measured on September 10 and the minimum on December 11. The maximum suspended-sediment discharge was the result of rains that occurred September 7 to 10. The rainfall was greatest in the west-central, southwest and south-central parts of the State, but all parts of the State received substantial rainfall during this period. Figure 4. —— Location of active and discontinued water—quality stations. The maximum daily suspended-sediment discharge for water year 1989 in the Des Moines River near Saylorville, located in the Central Climatological District, was measured on May 24 and the minimum on January 10, 11. The maximum daily suspended-sediment discharge for water year 1989 in the Nodaway River at Clarinda, located in the Southwest Climatological District, was measured on September 8 and the minimum on October 29, 30. The maximum suspended-sediment discharge was the result of as much as 10 inches of rainfall during early September. This is the only sediment station for which the 1989 suspended load exceeded the average annual suspended-sediment discharge. Runoff from the early September rains contributed 66 percent of the annual suspended-sediment discharge. The rainstorms during water year 1989 produced the highest precipitation in the southwest part of the State and generally lessened in intensity to the north and east. The suspended-sediment discharge values at the daily sediment stations reflected the general storm paths during water year 1989. # Surface-Water Quality Surface-water-quality data were collected in Iowa during water year 1989 at five National Stream-Quality Accounting Network (NASQAN) sites and one Hydrologic Benchmark Network (HBMN) site. The NASQAN sites are (fig. 4): (1) Nishnabotna River above Hamburg, (2) Raccoon River at Van Meter, (3) Iowa River at Wapello, (4) Skunk River at Augusta, and (5) Cedar River at Cedar Falls. The benchmark site is Elk Creek near Decatur City. The combined sites represent approximately 28,000 square miles of drainage area with generally uniform land use. Samples were collected at each site six times throughout the water year, except Elk Creek, which was only sampled once during the year due to lack of flow. Samples collected at these stations indicate that water in the major streams generally is suitable for public water supply and most industrial purposes when properly treated. For the constituents analyzed, none of the samples had concentrations that exceeded Federal primary drinking-water-quality However, water from all stations contained detectable concentrations of agricultural chemicals. Samples collected in May, June, and July from some stations contained concentrations of some herbicides above the U.S. Environmental Protection Agency (USEPA) proposed maximum contaminant level (PMCL) (USEPA, 1989, Proposed rule, National primary and secondary drinking water regulations; U.S. Federal Registar, Volume 54, Number 97, May 22, 1989 p. 22,064). During May, the samples from the Skunk at Augusta contained concentrations of atrazine of 22 $\mu$ g/L (micrograms per liter), cyanazine of 29 $\mu g/L$ , and alachlor of 3.9 $\mu g/L$ and in July the concentration of atrazine was 7.3 $\mu$ . During June, samples from the Nishnabotna River above Hamburg contained concentrations of atrazine of 5 $\mu$ g/L. A comparison between selected water-quality data for water year 1989 and data for the period of record are shown in figures 5, 6, and 7 for the Iowa River at Wapello, Skunk River at Augusta, and Nishnabotna River above Hamburg. Boxplots are used to compare the nitrate plus nitrite as nitrogen (hereafter referred to as nitrate in this report) and dissolved-solids concentrations of water year 1989 with historical statistics. Daily mean discharges for water year 1989 are also included to illustrate the general relation between flow conditions and water-quality data. Concentrations of dissolved solids during water year 1989 were variable compared to historical monthly means for the period of record. Three of six samples from the Iowa River at Wapello (fig. 5) and four of six samples from the Skunk River at Augusta (fig. 6) were within the interquartile range (25th to 75th percentile). The July 1989 sample from the Iowa River had a concentration above the 75th percentile but below the 90th percentile, and the December 1988 and August 1989 samples had concentrations above the 90th percentile. The October 1988 sample from the Skunk River had a concentration near the 90th percentile and the December 1988 sample had a concentration above the 75th percentile but below the 90th percentile. Three of six samples from the Nishnabotna River above Hamburg (fig. 7) had concentrations within the interquartile range. Two samples, March and June 1989, had concentrations below the 10th percentile, and another, August 1989, was below the 25th percentile but above the 10th percentile. Nitrate concentrations were all below historical means and below the interquartile range in most cases. All samples from the Iowa River at Wapello (fig. 5) contained nitrate concentrations below the 10th percentile, except the August sample for which the 25th percentile coincided with the detection level. Four of six samples from the Skunk River at Augusta (fig 6) had nitrate concentrations near the 25th percentile. One sample (December 1988) had a concentration below the 10th percentile and one sample (July 1989) had a concentration below the 25th percentile but above the 10th percentile. Four of six samples from the Nishnabotna River above Hamburg (fig. 7) had nitrate concentrations below the 10th percentile. Two samples, (December 1988 and March 1989) had concentrations at or below the 25th percentile but above the 10th percentile. Generally, periods of high nitrate concentrations, greater than 1 mg/L (milligrams per liter), occurred just after periods of increased discharge. Below normal precipitation is thought responsible for the general decrease in nitrate concentrations because nitrate derived from overland runoff and from nitrate-enriched ground-water seepage into streams was less than normal during this period. Figure 5.--Comparison of dissolved-solids and nitrate concentrations for water year 1989 with historical data summarized by monthly boxplots at the NASQAN station on the Iowa River at Wapello (station 05465500; period of record, water years 1978-89). Figure 6.--Comparison of dissolved-solids and nitrate concentrations for water year 1989 with historical data summarized by monthly boxplots at the NASQAN station on the Skunk River at Augusta (station 05474000; period of record, water years 1978-89). Figure 7.--Comparison of dissolved-solids and nitrate concentrations for water year 1989 with historical data summarized by monthly boxplots at the NASQAN station on the Nishnabotna River above Hamburg (station 05465500; period of record, water years 1978-89). ### **Ground Water** Monitoring the water-level changes in wells completed in the major aquifers in Iowa provides valuable information on the effects of climatic conditions and man-made stresses on the ground-water resources in Iowa. As the result of less-than-normal amounts of precipitation during water years 1988 and 1989, low water levels were measured in observation wells penetrating the major aquifers in the State during water year 1989. The ground-water-level observation network in Iowa consists of approximately 240 observation wells in which water levels are measured on a quarterly, monthly, daily, or intermittent basis (fig. 8). Ground-water supplies in Iowa are withdrawn from both unconsolidated aquifers and, in most areas, deeper bedrock aquifers. The unconsolidated aquifers consist of alluvial sand and gravel, glacial drift, and sand and gravel overlain by glacial drift. Buried-channel aquifers exist where coarse sand and gravel was deposited in bedrock valleys and overlain by glacial drift. The major bedrock aquifers are: (1) Dakota aquifer, in sandstone of Cretaceous age, (2) Mississippian aquifer, in limestone and dolomite of Mississippian age, (3) Silurian-Devonian aquifer, in dolomite of Silurian and limestone of Devonian age, (4) Cambrian-Ordovician aquifer, in dolomite and sandstone of Late Cambrian and Early Ordovician age, and (5) Dresbach aquifer, in sandstone of Cambrian age. Recharge to the unconsolidated aquifers occurs mainly by infiltration of precipitation and is dependent on the amount of precipitation received in the area. Water levels in alluvial and glacial-drift aquifers commonly exhibit a moderate rise in level during the fall, then a gradual decline In the spring, precipitation and runoff from snowmelt during the winter. produce an observable rise in the water levels followed by a gradual decline throughout the summer growing season. In water year 1989 however, precipitation was below the 1951-80 statewide monthly normal except for rains in November 1988 and September 1989 (table 1). This lack of precipitation, in conjunction with the low water levels measured during water year 1988, resulted in water levels in shallow, water-table wells at or below the historical average throughout the State until September 1989 The water level in a well penetrating glacial drift of Pleistocene age in Linn County was near or below the historical average from December 1988 through the remainder of 1989. With the exception of July 1989, the water level in the Harcourt well penetrating glacial drift in Webster County was below the historical average until the end of water year 1989, when the area received 137 percent of normal rainfall. were consistently near or slightly below average until the end of water year 1989 for a Marion County well penetrating glacial drift. Figure 8. —— Location of recording and nonrecording observation wells. Figure 9.--Monthly water levels during water year 1989 compared to the average monthly levels for the period of record. Thirty historical low water levels were measured in alluvial, glacial-drift, and buried-channel wells across the State in water year 1989 (table 3). Prior to water year 1989, many of the record low water levels for these wells were measured during water year 1988. In a shallow, water-table alluvial well in Shelby County penetrating the West Nishnabotna alluvial aquifer, a historical low of 18.17 feet below land-surface datum was measured on July 5, 1989, 1.62 feet lower than the previous historical low measured in July 1988. A well penetrating glacial drift in Humboldt County had a historical low water level of 16.72 feet below land-surface datum, 2.37 feet below the previous historical low of 14.35 feet measured in August 1988. Table 3.--Historical low water levels measured during water year 1989 in wells completed into unconsolidated aquifers. Water-level measurements are in feet below land-surface datum. | | | | | | Previous | | |---------------|-----------------|---------------------------|------------|----------|------------|----------| | | | | Historical | Date | Historical | Date | | County | Well Number | Aquifer | Low | Measured | Low | Measured | | Audubon | 413843094541701 | East Nishnabotna alluvial | 18.81 | 10/19/88 | 18.34 | 07/20/88 | | Benton | 415211092164101 | Iowa alluvial | 7.50 | 10/06/88 | 7.49 | 08/29/88 | | Cass | 411117095091902 | East Nishnabotna alluvial | 21.59 | 05/25/89 | 21.50 | 09/10/88 | | Cerro Gordo | 430658093281001 | glacial drift | 55.49 | 03/20/89 | 54.67 | 08/23/88 | | Crawford | 415512095313801 | Boyer alluvial | 26.09 | 08/09/89 | 25.90 | 01/09/86 | | Greene | 415448094163401 | North Raccoon alluvial | 20.83 | 01/17/89 | 20.78 | 10/07/85 | | Greene | 415449094155601 | glacial drift | 39.52 | 07/12/89 | 37.84 | 10/07/85 | | Greene | 420507094141901 | buried channel | 42.81 | 07/12/89 | 41.70 | 07/18/88 | | Greene | 420723094143201 | buried channel | 41.43 | 07/12/89 | 40.18 | 07/18/88 | | Guthrie | 414110094260501 | South Raccoon alluvial | 11.07 | 10/19/88 | 10.54 | 10/08/85 | | Guthrie | 414728094392401 | South Raccoon alluvial | 16.65 | 04/04/89 | 15.81 | 10/08/85 | | Harrison | 413024095353901 | glacial drift | 60.54 | 07/05/89 | 58.35 | 07/20/88 | | Harrison | 414226095435002 | Boyer alluvial | 14.27 | 08/09/89 | 14.10 | 09/09/88 | | Harrison | 414228095442301 | Boyer alluvial | 22.43 | 08/09/89 | 21.35 | 09/09/88 | | Harrison | 415124095361501 | Boyer alluvial | 15.59 | 08/09/89 | 15.25 | 09/09/88 | | Harrison | 415109095363201 | Boyer alluvial | 12.47 | 08/09/89 | 12.06 | 09/09/88 | | Harrison | 414702095395101 | Boyer alluvial | 12.51 | 08/09/89 | 11.43 | 09/09/88 | | Humboldt | 424039094103601 | glacial drift | 16.72 | 03/16/89 | 14.35 | 08/15/88 | | Iowa | 414930092093801 | Iowa alluvial | 10.55 | 01/03/89 | 9.91 | 08/29/88 | | Iowa | 414816092053401 | Iowa alluvial | 9.19 | 07/27/89 | 8.67 | 08/29/88 | | Iowa | 415125092164201 | Iowa alluvial | 13.47 | 07/27/89 | 13.16 | 08/29/88 | | Monona | 420730095910701 | Maple alluvial | 15.21 | 07/07/89 | 14.27 | 10/15/84 | | Monona | 421006095580301 | Little Sioux alluvial | 13.92 | 07/07/89 | 13.04 | 07/18/88 | | Muscatine | 412120091080401 | alluvial | 17.86 | 08/02/89 | 17.72 | 08/09/88 | | Pottawattamie | 411024095095502 | East Nishnabotna alluvial | 9.95 | 05/25/89 | 9.54 | 09/10/88 | | Shelby | 413442095193101 | West Nishnabotna alluvial | 22.98 | 10/19/88 | 22.42 | 07/20/88 | | Shelby | 413359095182701 | buried channel | 153.16 | 07/05/89 | 150.98 | 01/08/83 | | Shelby | 413031095204901 | West Nishnabotna alluvial | 18.17 | 07/05/89 | 16.55 | 07/20/88 | | Shelby | 414856095160101 | buried channel | 210.95 | 07/05/89 | 209.91 | 09/06/83 | | Washington | 421829091304701 | glacial drift | 12.65 | 11/01/88 | 11.49 | 09/13/88 | While not directly dependent on local infiltration by precipitation, recharge to the deeper bedrock aquifers is still affected by changes in climatic conditions. The above-average precipitation in the mid-1980's provided sufficient recharge to the deeper aquifers so that effects on water levels in these aquifers were minimized during the periods of less-than-normal precipitation that the State experienced during water years 1988 and 1989. Water levels in these wells were affected by the less-than-normal amounts of precipitation in the areas of recharge, although low water levels were not measured until the end of water year 1988. The rate of decline in the water levels in wells in the bedrock aquifers accelerated during water year 1989, due to withdrawals by pumpage and the lack of adequate precipitation in the recharge areas. During water year 1989, historical low water levels were measured in 41 wells completed in bedrock aquifers (table 4). Every principal aquifer recorded a noticeable decline, with historical low water levels measured in wells penetrating each aquifer. Almost one-half of the previous historical low water levels that were surpassed in water year 1989 were measured during water year 1988. In Benton County, historical low water levels were measured in 4 wells penetrating the Silurian, Devonian and Ordovician, rocks in water year 1989. The previous historical water levels for these wells were measured during water year 1977 and 1988, when the State experienced less-than-normal precipitation. In Des Moines County in southeast Iowa, a Devonian-Mississippian well with 39 years of record had a new historical low water level of 86.04 feet below land-surface datum on April 22, 1989. historical low water level surpassed the previous historical low measured in April 1950 by 2.85 feet. A well completed in Devonian rocks in Johnson County in east-central Iowa with 48 years of record had the historical low water level of 21.05 feet below land-surface datum measured in September 1957 broken with a new low of 21.65 feet measured on August 21, 1989. ### Ground-Water Quality The ground-water-quality monitoring program has been operated by the U.S. Geological Survey in cooperation with the University of Iowa Hygienic Laboratory and the Iowa Geological Survey Bureau since 1982. Since 1985, the program has emphasized the analysis of water samples for nitrogen and herbicides primarily from municipal wells with depths less than 200 feet. Approximately 200 wells out of an inventory of 1200 wells throughout the State are sampled each year on a rotating basis. Initially, wells were sampled once a year during the months from April to November. In 1988, a group of wells that have consistently yielded water containing relatively large concentrations of nitrate, herbicides, or both, were sampled three times during the year to assess the seasonal variation. In general, water year 1989 has been a continuation of this sampling strategy. Table 4.--Historical low water levels measured during water year 1989 in wells completed in bedrock aquifers. Water levels are in feet below land-surface datum. | | | | | | Previous | | |-----------|-----------------|----------------------------------|------------|--------------|------------|-------------| | | | | Historical | Date | Historical | Date | | County | Well Number | Aquifer | Low | Measured | Low | Measured | | Audubon | 413044094565601 | Dakota | 53.09 | 07/05/89 | 53.05 | 08/03/82 | | udubon | 413958094544501 | Dakota | 40.71 | 04/05/89 | 37.62 | 08/20/81 | | Benton | 420319091540102 | Silurian-Devonian | 167.63 | 09/11/89 | 166.92 | 08/09/77 | | Benton | 420731092083801 | Devonian | 64.96 | 10/12/88 | 64.80 | 06/29/77 | | enton | 420731092083803 | Devonian | 65.03 | 10/12/88 | 64.86 | 06/29/77 | | enton | 421326091522701 | Silurian-Devonian-<br>Ordovician | 151.64 | 08/24/89 | 149.86 | 08/17/88 | | arroll | 420705094394501 | Dakota | 56.14 | 07/12/89 | 54.90 | 01/07/86 | | arroll | 420233094475901 | Dakota | 21.54 | 04/03/89 | 20.77 | 07/18/88 | | layton | 424057091320001 | Silurian-Orodovician | 134.76 | 08/01/89 | 133.18 | 02/04/68 | | elaware | 422029091144302 | Silurian | 26.49 | 07/31/89 | 24.37 | 09/30/88 | | es Moines | 404753091142501 | Devonian-Mississippian | 86.04 | 04/22/89 | 83.19 | 04/26/50 | | reene | 415449094161501 | Pennsylvanian | 5.93 | 07/12/89 | 5.57 | 01/07/86 | | reene | 415449094173201 | Pennsylvanian | 73.09 | 07/12/89 | 72.59 | 01/07/86 | | reene | 415608094260701 | Dakota | 14.72 | 07/12/89 | 14.53 | 01/07/86 | | uthrie | 414514094381601 | Dakota | 12.75 | 10/19/88 | 11.66 | 01/08/86 | | arrison | 414955096000601 | Pennsylvani an | 64.50 | 07/07/89 | 64.07 | 01/15/82 | | asper | 414147093035401 | Cambrian-Ordovician | 272.07 | 07/20/89 | 271.19 | 09/16/87 | | ohnson | 414107091322901 | Silurian | 148.60 | 08/02/89 | 146.90 | 07/01/88 | | ohnson | 413955091320303 | Silurian-Devonian | 169.22 | 09/05/89 | 168.40 | 07/27/78 | | ohnson | 414315091252002 | Devonian | 21.65 | 08/21/89 | 21.05 | 09/26/57 | | ohnson | 414853091425101 | Silurian-Devonian | 76.97 | 10/06/88 | 76.64 | 09/06/88 | | ohnson | 415052091483801 | Silurian-Devonian | 90.38 | 09/11/89 | 87.44 | 09/12/88 | | ones | 415808091160501 | Silurian | 6.21 | 09/11/89 | 5.68 | 09/12/88 | | inn | 415534091251102 | Cambrian-Ordovician | 337.96 | 09/25/89 | 336.61 | 08/23/88 | | inn | 415556091313001 | Silurian | 52.95 | 09/11/89 | 51.16 | 07/06/77 | | inn | 415509091461801 | Silurian-Devonian | 109.17 | 09/11/89 | 108.37 | 07/22/77 at | | | • | | | | | 07/23/77 | | inn | 420508091395811 | Silurian | 55.27 | 09/11/89 | 54.38 | 03/06/77 | | inn | 421149091403301 | Silurian-Devonian | 33.61 | 09/11/89 | 32.87 | 03/23/77 | | inn | 420954091480801 | Silurian-Devonian | 34.58 | 09/11/89 | 32.31 | 09/12/88 | | yon | 431812096302701 | Dakota | 101.30 | 07/06/89 | 97.56 | 12/09/82 | | yon | 432553096105701 | Dakota | 114.68 | 09/12/89 | 114.60 | 05/07/85 | | onona | 421018095582001 | Dakota | 15.77 | 10/17/88 and | 14.84 | 07/18/88 | | | | | | 07/07/89 | | | | sceola | 431620095482402 | Dakota | 226.19 | 07/06/89 | 221.78 | 07/20/88 | | sceola | 432828095283611 | Dakota | 344.88 | 01/18/89 | 344.54 | 05/24/88 | | lymouth | 425249096125001 | Dakota | 122.35 | 07/06/89 | 122.00 | 03/27/80 | | ac | 422850095171501 | Dakota | 292.28 | 05/31/89 | 291.90 | 09/18/87 as | | | | | | | | 05/26/88 | | helby | 414624095252301 | Dakota | 116.56 | 07/05/89 | 109.29 | 04/12/88 | | ioux | 430913096033201 | Dakota | 195.12 | 07/06/89 | 194.88 | 07/20/88 | | ashington | 411300091320701 | Mississippian | 76.22 | 09/05/89 | 75.40 | 09/02/88 | | ashington | 411244091323501 | Mississippian | 78.50 | 09/05/89 | 77.98 | 09/02/88 | | ashington | 412037091564701 | Mississippian | 25.29 | 08/23/89 and | 24.11 | 09/26/88 at | | - | | • • | | 08/24/89 | | 09/27/88 | During water year 1989, 222 untreated water samples were collected from 145 municipal wells (fig. 10) throughout the State. These samples were analyzed by the University of Iowa Hygienic Laboratory, and the results of the analyses are published in this report. Single samples were collected from 93 of these wells during July and August. These wells were selected on the basis of having been completed at depths of 250 feet or less and were located in communities for which water-quality data has not been obtained as part of the monitoring program since 1985. Samples were analyzed for common dissolved constituents, nutrients, and common herbicides. Samples from the other 52 municipal wells were collected in spring, summer, and fall, and analyzed for nutrients and common herbicides. The spring samples were also analyzed for common dissolved constituents. Only 25 samples collected during the fall were analyzed in time to be included in this report. Of the 93 wells from which only one sample was collected, 60 percent were less than 200 feet deep; 43 percent were completed in unconsolidated aquifers, and 57 percent were completed in bedrock aquifers. Nitrate concentration exceeded the detection level in 39 wells, ammonia in 61 wells, atrazine in 13 wells, cyanazine in 8 wells, alachlor in 3 wells, and metolachlor in 2 wells. Concentrations of nitrate were greater than or equal to 3 mg/L in water from 21 of the 93 wells. Generally, nitrate concentrations greater than 3 mg/L can be attributed to human activities (Madison, R.J., and Brunett, J.O., 1984, Overview of the occurrence of nitrate in ground water of the United States, in National Water Summary 1984--Water-Quality Issues: U.S. Geological Survey Water-Supply Paper 2275, p. 93-103). None of the samples exceeded the USEPA maximum contaminant level (MCL) for public drinking-water of 10 mg/L (USPEA, 1989, Maximum contaminant levels, subpart B of part 141, National primary drinking water regulations: U.S. Code of Federal Regulations, Title 40, Part 141 revised as of July 1, 1989, p. 547-551). Water from 18 of the 93 wells contained detectable concentrations of one or more herbicides. Herbicides did not exceed MCL's or proposed MCL's for any of the wells. The largest herbicide concentration was 1.6 $\mu$ g/L of atrazine. Twelve of the samples were collected from wells less than 200 feet deep and the remaining six were from wells 200 to 250 feet deep. may be important because detectable concentrations herbicides generally are not found in wells greater than 200 feet deep. 19 percent rate of occurrence for water year 1989 is larger than the rate of occurrence for the same period last year, 6 percent, and more similar to the described 1988, rate by (Detroy, M.G., Ground-water-quality-monitoring program in Iowa: Nitrate and pesticides in shallow aquifers: U.S. Geological Survey Water-Resources Investigations Report 88-4123, 32 p.) for the same periods prior to 1988. However, a direct comparison may be misleading because different wells were sampled in water year 1989. Below-normal precipitation, which persisted in much of the State during the water year, may have reduced the occurrence rate because infiltrating precipitation did not leach agricultural chemicals into the ground water. Figure 10. —— Location of wells where water samples were collected during water year 1989. Of the 52 wells from which samples were collected more than once, all were less than 200 feet deep; 39 were completed in unconsolidated surficial aquifers, and 13 were completed in bedrock aquifers. Water samples from these wells have historically contained detectable concentrations of agricultural chemicals. Water year 1989 was no exception. Nitrate was present at concentrations above the detection level in water samples from 49 wells, at least once during the year. Ammonia was present in 10 wells, atrazine in 27 wells, cyanazine in 8 wells, metolachlor in 7 wells, alachlor in 3 wells, and metribuzin in 1 well. In general, water samples from wells that contained agricultural chemicals during the first sampling period were found to contain them during subsequent sampling periods. Concentrations varied little between sampling periods except for a few wells; however, all of the samples for the third period were not collected in time for inclusion in this report. Of the 52 wells with multiple samples, nitrate concentrations were larger than or equal to 3 mg/L in water sampled from 41 wells, and concentrations were greater than or equal to 10 mg/L in water sampled from 10 wells at least once during the water year. Samples from four wells had concentrations of atrazine that exceeded the USEPA PMCL for this compound at least once during the water year. The largest herbicide concentration was 13 $\mu$ g/L of atrazine. #### SPECIAL NETWORKS AND PROGRAMS Hydrologic Bench-Mark Network is a network of 57 sites in small drainage basins around the country whose purpose is to provide consistent data on the hydrology, including water quality, and related factors in representative undeveloped watersheds nationwide, and to provide analyses on a continuing basis to compare and contrast conditions observed in basins more obviously affected by the activities of man. National Stream Quality Accounting Network (NASQAN) is a data-collection network designed by the U.S. Geological Survey to meet many of the information needs of government agencies and other groups involved in natural or regional water-quality planning and management. The 500 or so sites in NASQAN are generally located at the downstream ends of hydrologic accounting designated by the U.S. Geological Survey Office of Water Coordination in consultation with the Water Resources Council. The objectives of NASQAN are (1) to obtain information on the quality and quantity of water moving within and from the United States through a systematic and uniform process of data collection, summarization, analysis, and reporting such that the data may be used for, (2) description of the areal variability of water quality in the Nation's rivers through analysis of data from this and other programs, (3) detection of changes or trends with time in the pattern of occurrence of water-quality characteristics, and (4) providing a nationally consistent data base useful for water-quality assessment and hydrologic research. The National Trends Network (NTN) is a 150-station network for sampling atmospheric deposition in the United States. The purpose of the network is to determine the variability, both in location and in time, of the composition of atmospheric deposition, which includes snow, rain, dust particles, aerosols, and gases. The core from which the NTN was built was the already-existing deposition-monitoring network of the National Atmospheric Deposition Program (NADP). Radiochemical Program is a network of regularly sampled water-quality stations where samples are collected to be analyzed for radioisotopes. The stre ms that are sampled represent major drainage basins in the conterminous United States. Tritium Network is a network of stations which has been established to provide baseline information on the occurrence of tritium in the Nation's surface waters. In addition to the surface-water stations in the network, tritium data are also obtained at a number of precipitation stations. The purpose of the precipitation stations is to provide an estimate sufficient for hydrologic studies of the tritium input to the United States. #### EXPLANATION OF THE RECORDS The surface-water and ground-water records published in this report are for the 1989 water year that began October 1, 1988, and ended September 30, 1989. A calendar of the water year is provided on the inside of the front cover. contain streamflow data, stage and content data for lakes and reservoirs, water-quality for surface and ground data water, ground-water-level data. The locations of the stations and wells where the data were collected are shown in figures 4, 8, 10-12. The following sections of the introductory text are presented to provide users with a more explanation of how the hydrologic data published in this report were collected, analyzed, computed, and arranged for presentation. # Station Identification Numbers Each data station, whether streamsite or well, in this report is assigned a unique identification number. This number is unique in that it applies specifically to a given station and to no other. The number usually is assigned when a station is first established and is retained for that station indefinitely. The systems used by the U.S. Geological Survey to assign identification numbers for surface-water stations and for ground-water well sites differ, but both are based on geographic location. The "downstream order" system is used for regular surface-water stations and the "latitude-longitude" system is used for wells. ## Downstream Order System Since October 1, 1950, the order of listing hydrologic-station records in Survey reports is in a downstream direction along the main stream. All stations on a tributary entering upstream from a mainstream station are listed before that station. A station on a tributary that enters between two mainstream stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. The rank of any tributary with respect to the stream to which it is immediately tributary is indicated by an indention in the "List of Stations" in the front of this report. Each indention represents one rank. This downstream order and system of indention shows which stations are on tributaries between any two stations and the rank of the tributary on which each station is situated. Figure 11. —— Location of active, continuous—record gaging stations. Figure 12. —— Location of active, crest—stage gaging stations. The station-identification number is assigned according to downstream order. In assigning station numbers, no distinction is made between partial-record stations and other stations; therefore, the station number for a partial-record station indicates downstream-order position in a list made up of both types of stations. Gaps are left in the series of numbers to allow for new stations that may be established; hence, the numbers are not consecutive. The complete eight-digit number for each station, such as 05388250, which appears just to the left of the station name, includes the two-digit Part number "05" plus the six-digit downstream-order number "388250." The Part number designates the major river basin; for example, Part "05" is the Mississippi River Basin. ### Latitude-Longitude System The identification numbers for wells and miscellaneous surface-water sites are assigned according to the grid system of latitude and longitude. The number consists of 15 digits. The first six digits denote the degrees, minutes, and seconds of latitude, the next seven digits denote degrees, minutes, and seconds of longitude, and the last two digits (assigned sequentially) identify the wells or other sites within a l-second grid. This site-identification number, once assigned, is a pure number and has no locational significance. In the rare instance where the initial determination of latitude and longitude are found to be in error, the station will retain its initial identification number; however, its true latitude and longitude will be listed in the LOCATION paragraph of the station description. (See figure below.) Latitude and longitude coordinates for wells: 1. 414315N 091252001. Figure 13.--Latitude-longitude well number. ### Numbering System For Wells Each well is identified by means of (1) a 15-digit number that is based on the grid system of latitude and longitude, and (2) a local number that is provided for continuity with older reports and for other use as dictated by local needs. The former number serves not only to identify the well but also to locate it as a point on a map (fig. 10). For maximum utility, latitude and longitude code numbers are determined to seconds in order that each well may have a unique number. The first six digits denote degrees, minutes, and seconds of north latitude; the next seven digits are degrees, minutes, and seconds of west longitude; and the last two numbers are a sequential number assigned in the order in which the wells are located in a 1-second quadrangle. The local well numbers are in accordance with the Bureau of Land Management's system of land subdivision. Each well number is made up of three segments. The first segment indicates the township, the second the range, and the third the section in which the well is located (fig. 14). The letters after the section number which are assigned in a counter-clockwise direction (beginning with "A" in the northeast quarter), represent subdivisions of the section. The first letter denotes a 160-acre tract, the second a 40-acre tract, the third a 10-acre tract, and the fourth a 2.5 acre tract. Numbers are added as suffixes to distinguish wells in the same tract. Thus, the number 96-20-3CDBD1 designates the well in the SE 1/4 NW 1/4 SE 1/4 SW 1/4 sec.3, T.96 N., R.20 W. Figure 14.--Local well-numbering system for well 96-20-3CDBD1. # Records of Stage and Water Discharge Records of stage and water discharge may be complete or partial. records of discharge are those obtained using a continuous stage-recording device through which either instantaneous or mean daily discharges may be computed for any time, or any period of time, during the period of record. Complete records of lake or reservoir content, similarly, are those for which stage or content may be computed or estimated with reasonable accuracy for any time, or period of time. They may be stage-recording device, but need not be. obtained using continuous be а Because daily mean discharges and end-of-day contents commonly are published for such stations, they are referred to as "daily stations." Location of all complete-record surface water stations which are given in this report are shown in figure 11. Partial records are obtained through discrete measurements without using a continuous stage-recording device and generally pertain only to a characteristic of either high, medium or low flow. The location of all active, crest-stage gaging stations are shown in figure 12. ### Data Collection and Computation The data obtained at a complete-record gaging station on a stream or canal consist of a continuous record of stage, individual measurements of discharge throughout a range of stages, and notations regarding factors that may affect the relationships between stage and discharge. These data, together with supplemental information, such as weather records, are used to compute daily discharges. The data obtained at a complete-record gaging station on a lake or reservoir consist of a record of stage and of notations regarding factors that may affect the relationship between stage and lake content. These data are used with stage-capacity curves or tables to compute lake storage. Continuous records of stage are obtained with analog recorders that trace continuous graphs of stage or with digital recorders that punch stage values on paper tapes at selected time intervals. Measurements of discharge are made with current meters using methods adopted by the Geological Survey as a result of experience accumulated since 1880. These methods are described in standard textbooks, in Water-Supply Paper 2175, and in U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chapter A6. In computing discharge records, results of individual measurements are plotted against the corresponding stages, and stage-discharge relation curves are then constructed. From these curves, rating tables indicating the approximate discharge for any stage within the range of the measurements are prepared. If it is necessary to define extremes of discharge outside the range of the current-meter measurements, the curves are extended using: (1) logarithmic plotting; (2) velocity-area studies; (3) results of indirect measurements of peak discharge, such as slope- area or contracted-opening measurements, and computations of flow over dams or weirs; or (4) step-backwater techniques. Daily mean discharges are computed by applying the daily mean stages (gage heights) to the stage-discharge curves or tables. If the stage-discharge relation is subject to change because of frequent or continual change in the physical features that form the control, the daily mean discharge is determined by the shifting-control method, in which correction factors based on the individual discharge measurements and notes of the personnel making the measurements are applied to the gage heights before the discharges are determined from the curves or tables. This shifting-control method also is used if the stage-discharge relation is changed temporarily because of aquatic growth or debris on the control. For some stations, formation of ice in the winter may so obscure the stage-discharge relations that daily mean discharges must be estimated from other information such as temperature and precipitation records, notes of observations, and records for other stations in the same or nearby basins for comparable periods. At some stream-gaging stations, the stage-discharge relation is affected by the backwater from reservoirs, tributary streams, or other sources. This necessitates the use of the slope method in which the slope or fall in a reach of the stream is a factor in computing discharge. The slope or fall is obtained by means of an auxiliary gage set at some distance from the base gage. At some stations the stage-discharge relation is affected by changing stage; at these stations the rate of change in stage is used as a factor in computing discharge. In computing records of lake or reservoir contents, it is necessary to have available from surveys, curves or tables defining the relationship of stage and content. The application of stage to the stage-content curves or tables gives the contents from which daily, monthly, or yearly changes then are determined. If the stage-content relation changes because of deposition of sediment in a lake or reservoir, periodic resurveys may be necessary to redefine the relation. Even when this is done, the contents computed may become increasingly in error as the lapsed time since the last survey increases. Discharges over lake or reservoir spillways are computed using stage-discharge relations. For some gaging stations, there are periods when no gage-height record is obtained, or the recorded gage height is so faulty that it cannot be used to compute daily discharge or contents. This happens when the recorder stops or otherwise fails to operate properly, intakes are plugged, the float is frozen in the well, or for various other reasons. For these periods, the daily discharges are estimated from the recorded range in stage, discharge computed before and after the missing record, discharge measurements, weather records, and comparison with other station records from the same or nearby basins. Likewise, daily contents may be estimated from operator's logs, previous or following record, inflow-outflow studies, and other information. Information explaining how estimated daily-discharge values are identified in station records is included in the next two sections, "Data Presentation" (REMARKS paragraph) and "Identifying Estimated Daily Discharge." #### Data Presentation The records published for each gaging station consist of two parts, the manuscript or station description and the data table for the current water year. The manuscript provides, under various headings, descriptive information, such as station location; period of record; average discharge; historical extremes; record accuracy; and other remarks pertinent to station operation and regulation. The following information, as appropriate, is provided with each continuous record of discharge or lake content. Comments to follow clarify information presented under the various headings of the station description. LOCATION.--Information on locations is obtained from the most accurate maps available. The location of the gage with respect to the cultural and physical features in the vicinity and with respect to the reference place mentioned in the station name is given. River mileages were determined by methods given in "River Mileage Measurement," Bulletin 14, Revision of October 1968, prepared by the Water Resources Council or were provided by the U.S. Army Corps of Engineers. DRAINAGE AREA.--Drainage areas are measured using the most accurate maps available. Because the type of maps available varies from one drainage basin to another, the accuracy of drainage areas likewise varies. Drainage areas are updated as better maps become available. PERIOD OF RECORD.--This indicates the period for which there are published records for the station or for an equivalent station. An equivalent station is one that was in operation at a time that the present station was not, and whose location was such that records from it can reasonably be considered equivalent with records from the present station. REVISED RECORDS.--Published records, because of new information, occasionally are found to be incorrect, and revisions are printed in later reports. Listed under this heading are all the reports in which revisions have been published for the station and the water years to which the revisions apply. If a revision did not include daily, monthly, or annual figures of discharge, that fact is noted after the year dates as follows: "(M)" means that only the instantaneous maximum discharge was revised; "(m)" that only the instantaneous minimum was revised; and "(P)" that only peak discharges were revised. If the drainage area has been revised, the report in which the most recently revised figure was first published is given. GAGE.--The type of gage in current use, the datum of the current gage referred to National Geodetic Vertical Datum of 1929 (see glossary), and a condensed history of the types, locations, and datums of previous gages are given under this heading. REMARKS.--All periods of estimated daily-discharge record will either be identified by date in this paragraph of the station description for water-discharge stations or flagged in the daily-discharge table. (See next section, "Identifying Estimated Daily Discharge.") If a remarks statement is used to identify estimated record, the paragraph will begin with this information presented as the first entry. The paragraph is also used to present information relative to the accuracy of the records, to special methods of computation, to conditions that affect natural flow at the station and, possibly, to other pertinent items. For reservoir stations, information is given on the dam forming the reservoir, the capacity, outlet works and spillway, and purpose and use of the reservoir. COOPERATION. -- Records provided by a cooperating organization or obtained for the Geological Survey by a cooperating organization are identified here. AVERAGE DISCHARGE.--The discharge value given is the arithmetic mean of the water-year mean discharges. It is computed only for stations having at least 5 water years of complete record, and only water years of complete record are included in the computation. It is not computed for stations where diversions, storage, or other water-use practices cause the value to be meaningless. If water developments significantly altering flow at a station are put into use after the station has been in operation for a period of years, a new average is computed as soon as 5 water years of record have accumulated following the development. The median of yearly mean discharges also is given under this heading for stations having 10 or more water years of record, if the median differs from the average given by more than 10 percent. EXTREMES FOR PERIOD OF RECORD.--Extremes may include maximum and minimum stages and maximum and minimum discharges or content. Unless otherwise qualified, the maximum discharge or content is the instantaneous maximum corresponding to the highest stage that occurred. The highest stage may have been obtained from a graphic or digital recorder, a crest-stage gage, or by direct observation of a nonrecording gage. If the maximum stage did not occur on the same day as the maximum discharge or content, it is given separately. Similarly, the minimum is the instantaneous minimum discharge, unless otherwise qualified, and was determined and is reported in the same manner as the maximum. EXTREMES OUTSIDE PERIOD OF RECORD.--Included here is information concerning major floods or unusually low flows that occurred outside the stated period of record. The information may or may not have been obtained by the U.S. Geological Survey. EXTREMES FOR CURRENT YEAR.--Extremes given here are similar to those for the period of record, except the peak discharge listing may include secondary peaks. For stations meeting certain criteria, all peak discharges and stages occurring during the water year and greater than a selected base discharge are presented under this heading. The peaks greater than the base discharge, excluding the highest one, are referred to as secondary peaks. Peak discharges are not published for canals, ditches, drains, or streams for which the peaks are subject to substantial control by man. The time of occurrence for peaks is expressed in 24-hour local standard time. For example, 12:30 a.m. is 0030, and 1:30 p.m. is 1330. The minimum for the current water year appears below the table of peak data. REVISIONS.--If a critical error in published records is discovered, a revision is included in the first report published following discovery of the error. Although rare, occasionally the records of a discontinued gaging station may need revision. Because, for these stations, there would be no current or, possibly, future station manuscript published to document the revision in a "Revised Records" entry, users of data for these stations who obtained the record from previously published data reports may wish to contact the offices whose addresses are given on the back of the title page of this report to determine if the published records were ever revised after the station was discontinued. Of course, if the data were obtained by computer retrieval, the data would be current and there would be no need to check because any published revision of data is always accompanied by revision of the corresponding data in computer storage. Manuscript information for lake or reservoir stations differs from that for stream stations in the nature of the "Remarks" and in the inclusion of a skeleton stage-capacity table when daily contents are given. The daily table for stream-gaging stations gives mean discharge for each day and is followed by monthly and yearly summaries. In the monthly summary below the daily table, the line headed "TOTAL" gives the sum of the daily figures. The line headed "MEAN" gives the average flow in cubic feet per second during the month. The lines headed "MAX" and "MIN" give the maximum and minimum daily discharges, respectively, for the month. Discharge for the month also is usually expressed in cubic feet per second per square mile (line headed "CFSM"), or in inches (line headed "IN."), or in acre-feet (line headed "AC-FT"). Figures for cubic feet per second per square mile and runoff in inches are omitted if there is extensive regulation or diversion or if the drainage area includes large noncontributing areas. In the yearly summary below the monthly summary, the figures shown are the appropriate discharges for the calendar and water years. At some stations monthly and (or) yearly observed discharges are adjusted for reservoir storage or diversion, or diversions or reservoir contents are given. These figures are identified by a symbol and corresponding footnote. Data collected at partial-record stations follow the information for continuous-record sites. This section consists of a table of annual maximum stage and discharge for crest-stage stations. ### Identifying Estimated Daily Discharge Estimated daily-discharge values published in the water-discharge tables of annual State data reports are identified by listing the dates of the estimated record in the REMARKS paragraph of the station description. ### Accuracy of the Records The accuracy of streamflow records depends primarily on: (1) The stability of the stage-discharge relation or, if the control is unstable, the frequency of discharge measurements; and (2) the accuracy of measurements of stage, measurements of discharge, and interpretation of records. The accuracy attributed to the records is indicated under "REMARKS." "Excellent" means that about 95 percent of the daily discharges are within 5 percent of their true values; "good," within 10 percent; and "fair," within 15 percent. Records that do not meet the criteria mentioned are rated "poor." Different accuracies may be attributed to different parts of a given record. Daily mean discharges in this report are given to the nearest hundredth of a cubic foot per second for values less than 1 ft $^3$ /s the nearest tenth between 1.0 and 10 ft $^3$ /s; to whole numbers between 10 and 1,000 ft $^3$ /s; and to 3 significant figures for more than 1,000 ft $^3$ /s. The number of significant figures used is based solely on the magnitude of the discharge value. The same rounding rules apply to discharges listed for partial-record stations and miscellaneous sites. Discharge at many stations, as indicated by the monthly mean, may not reflect natural runoff due to the effects of diversion, consumption, regulation by storage, increase or decrease in evaporation due to artificial causes, or to other factors. For such stations, figures of cubic feet per second per square mile and of runoff, in inches, are not published. #### Other Records Available Information used in the preparation of the records in this publication, such as discharge-measurement notes, gage-height records, temperature measurements, and rating tables is on file in various field offices of the Iowa District. Also, most of the daily mean discharges are in computer-readable form and have been analyzed statistically. Information on the availability of the unpublished information or on the results of statistical analyses of the published records may be obtained from the offices whose addresses are given on the back of the title page of this report. # Records of Surface-Water Quality Records of surface-water quality ordinarily are obtained at or near stream-gaging stations because interpretation of records of surface-water quality nearly always requires corresponding discharge data. Records of surface-water quality in this report may involve a variety of types of data and measurement frequencies. ### Classification of records Water-quality data for surface-water sites are grouped into one of three classifications. A continuing-record station is a site where data are collected on a regularly scheduled basis. Frequency may be once or more times daily, weekly, monthly, or quarterly. A partial-record station is a site where limited water-quality data are collected systematically over a period of years. Frequency of sampling is usually less than quarterly. A miscellaneous sampling site is a location other than a continuing or partial-record station, where random samples are collected to give better areal coverage to define water-quality conditions in the river basin. A careful distinction needs to be made between "continuing records" as used in this report and "continuous recordings," which refers to a continuous graph or a series of discrete values punched at short intervals on a paper tape. Some records of water quality, such as temperature and specific conductance, may be obtained through continuous recordings; however, because of costs, most data are obtained only monthly or less frequently. Locations of stations for which records on the quality of surface water appear in this report are shown in figure 4. ## Arrangement of Records Water-quality records collected at a surface-water daily record station are published immediately following that record, regardless of the frequency of sample collection. Station number and name are the same for both records. Where a surface-water daily record station is not available or where the water quality differs significantly from that at the nearby surface-water station, the continuing water-quality record is published with its own station number and name in the regular downstream-order sequence. Water-quality data for partial-record stations and for miscellaneous sampling sites appear in separate tables following the table of discharge measurements at miscellaneous sites. ### On-site measurements and sample collection In obtaining water-quality data, a major concern needs to be assuring that the data obtained represent the in-situ quality of the water. To assure this, certain measurements, such as water temperature, pH, alkalinity and dissolved oxygen, are made onsite when the samples are taken. To assure that measurements made in the laboratory also represent the in situ water, carefully prescribed procedures are followed in collecting the samples, in treating the samples to prevent changes in quality pending analysis, and in shipping the samples to the laboratory. Procedures of onsite measurements and for collecting, treating, and shipping samples are given in publications on "Techniques of Water-Resources Investigations," Book 1, Chap. C2; Book 3, Chap. C2; Book 5, Chap. A1, A3, and A4. All of these references are listed on p. 52-53 of this report. Also, detailed information on collecting, treating, and shipping samples may be obtained from the Geological Survey District office. One sample can define adequately the water quality at a given time if the mixture of solutes throughout the stream cross section is homogeneous. However, the concentration of solutes at different locations in the cross section may vary widely with different rates of water discharge, depending on the source of material and the turbulence and mixing of the stream. Some streams must be sampled through several vertical sections to obtain the representative sample needed for an accurate mean concentration and for use in calculating load. All samples obtained for the National Stream Quality Accounting Network are obtained from at least several verticals. Whether samples are obtained from the centroid of flow or from several verticals, depends on flow conditions and other factors which must be evaluated by the collector. Chemical-quality data published in this report are considered to be the most representative values available for stations listed. The values reported represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. ## Water temperature and specific conductance Water temperatures are measured at most of the water-quality stations. The measurement of temperature and specific conductance is performed during each regular site visit (usually at a six week interval) to stream-gaging stations. Records of stream temperature indicate significant thermal characteristics of the stream when analysed over a long period of record. Large streams have small daily temperature variations while shallow streams may have a daily range of several degrees and may closely follow the changes in air temperature. Furthermore, some streams may be affected by waste-heat discharge. Specific conductance can be used as a general indicator of stream quality. This determination is easily made in the field with a portable meter, and the results are very useful as general indicators of dissolved-solids concentration or as a base for extrapolating other analytical data. Records for temperature and specific conductance appear in the section "Analyses of samples collected at miscellaneous sites". ### Sediment Suspended-sediment concentrations are determined from samples collected by using depth-integrating samples. Samples usually are obtained at several verticals in the cross section, or a single sample may be obtained at a fixed point and a coefficient applied to determine the mean concentration in the cross sections. During periods of rapidly changing flow or rapidly changing concentration, samples may have been collected more frequently (twice daily or, in some instances, hourly). The published sediment discharges for days of rapidly changing flow or concentration were computed by the subdivided-day method (time-discharge weighted average). Therefore, for those days when the published sediment discharge value differs from the value computed as the product of discharge times mean concentration times 0.0027, the reader can assume that the sediment discharge for that day was computed by the subdivided-day method. For periods when no samples were collected, daily discharges of suspended sediment were estimated on the basis of water discharge, sediment concentrations observed immediately before and after the periods, and suspended-sediment loads for other periods of similar discharge. At other stations, suspended-sediment samples were collected periodically at many verticals in the stream cross section. Although data collected periodically may represent conditions only at the time of observations, such data are useful in establishing seasonal relations between quality and streamflow and in predicting long-term sediment-discharge characteristics of the stream. In addition to the records of the quantities of suspended-sediment, records of the periodic measurements of the particle-size distribution of the suspended-sediment and bed material are included. Miscellaneous suspended-sediment samples were collected during flood events have been included with the station's water quality data or in the section "Analyses of samples at miscellaneous sites". ## Laboratory measurements Sediment samples, samples for indicator bacteria, and daily samples for specific conductance are analyzed locally. All other samples are analyzed in the U.S. Geological Survey laboratory in Arvada, Colorado and the University of Iowa Hygenic Laboratory. Methods used in analyzing sediment samples and computing sediment records are given in TWRI, Book 5, Chap. Cl. Methods used by the U.S. Geological Survey laboratories are given in TWRI, Book 1, Chap. D2, Book 3, Chap. C2; Book 5, Chap. Al, A3, and A4. ### Data Presentation For continuing-record stations, information pertinent to the history of station operation is provided in descriptive headings preceding the tabular data. These descriptive headings give details regarding location, drainage area, period of record, type of data available, instrumentation, general remarks, cooperation, and extremes for parameters currently measured daily. Tables of chemical, physical, biological, radiochemical data, and so forth, obtained at a frequency less than daily are presented first. Tables of "daily values" of specific conductance, pH, water temperature, dissolved oxygen, and suspended sediment then follow in sequence. In the descriptive headings, if the location is identical to that of the discharge gaging station, neither the LOCATION nor the DRAINAGE AREA statements are repeated. The following information, as appropriate, is provided with each continuous-record station. Comments that follow clarify information presented under the various headings of the station description. LOCATION. -- See Data Presentation under "Records of Stage and Water Discharge;" same comments apply. DRAINAGE AREA.--See Data Presentation under "Records of Stage and Water Discharge;" same comments apply. PERIOD OF RECORD.--This indicates the periods for which there are published water-quality records for the station. The periods are shown separately for records of parameters measured daily or continuously and those measured less than daily. For those measured daily or continuously, periods of record are given for the parameters individually. INSTRUMENTATION. -- Information on instrumentation is given only if a water-quality monitor temperature record, sediment pumping sampler, or other sampling device is in operation at a station. REMARKS.--Remarks provide added information pertinent to the collection, analysis, or computation of the records. COOPERATION. -- Records provided by a cooperating organization or obtained for the Geological Survey by a cooperating organization are identified here. EXTREMES.--Maximums and minimums are given only for parameters measured daily or more frequently. None are given for parameters measured weekly or less frequently, because the true maximums or minimums may not have been sampled. Extremes, when given, are provided for both the period of record and for the current water year. REVISIONS.--If errors in published water-quality records are discovered after publication, appropriate updates are made to the Water-Quality File in the U.S. Geological Survey's computerized data system, WATSTORE, and subsequently by monthly transfer of update transactions to the U.S. Environmental Protection Agency's STORET system. Because the usual volume of updates makes it impractical to document individual changes in the State data-report series or elsewhere, potential users of U.S. Geological Survey water-quality data are encouraged to obtain all required data from the appropriate computer file to insure the most recent updates. The surface-water-quality records for partial-record stations and miscellaneous sampling sites are published in separate tables following the table of discharge measurements at miscellaneous sites. No descriptive statements are given for these records. Each station is published with its own station number and name in the regular downstream-order sequence. # Remark Codes The following remark codes may appear with the water-quality data in this report: | PRINTED OUTPUT | REMARK | |----------------|---------------------------------------------------------------------------------------------------------| | E | Estimated value | | > | Actual value is known to be greater than the value shown | | < | Actual value is known to be less than the value shown | | K | Results based on colony count outside the acceptance range (non-ideal colony count) | | L | Biological organism count less<br>than 0.5 percent (organism<br>may be observed rather than<br>counted) | | D | Biological organism count equal<br>to or greater than 15 percent<br>(dominant) | | & | Biological organism estimated as dominant | # Records of Ground-Water Levels Ground-water level data from a network of observation wells in Iowa are published in this report. These data provide a limited historical record of water-level changes in the State's most important aquifers. Locations of the observation wells in this network in Iowa are shown in figure 13. Information about the availability of the data in the water-level files and reports of the U.S. Geological Survey may be obtained from the Iowa District Office (see address on back of title page). ## Data Collection and Computation Measurements of water levels are made in many types of wells under varying conditions, but the methods of measurement are standardized to the extent possible. The equipment and measuring techniques used at each observation well ensures that measurements at each well are of consistent accuracy and reliability. Tables of water-level data are arranged alphabetically by counties. The site identification number, based on latitude and longitude, for a given well is the 15-digit numeric value that appears in the upper left corner of the station description. The secondary identification number is the local well number, an alphanumeric value, derived from the township, range, and section location of the well (fig. 14). Water-level records are obtained from direct measurements with a chalked steel tape, electric line, airline, or from the graph of a water-level recorder. The water-level measurements in this report are in feet with reference to land-surface datum. Land-surface datum is a plane that is approximately at land surface at each well. The elevation of the land-surface datum is given in the well description. The height of the measuring point above or below land-surface datum is given in each well description. Water levels in wells equipped with recording gages are reported for every fifth day and the end of each month (EOM). Water-level measurements are reported to the nearest hundredth of a foot. Estimates, indicated by an "e" may be reported in tenths of a foot. Adjustments to the water level recorder chart are indicated by an "a". The error of water-level measurements may be, at most, a few hundredths of a foot. #### Data Presentation Each well record consists of two parts, the station description and the table of water levels observed during the water year. The description of the well is presented by headings preceding the tabular data. The following explains the information presented under each heading. LOCATION. -- This paragraph follows the well identification number and includes the latitude and longitude (given in degrees, minutes, and seconds), the hydrologic unit number, the distance and direction from a geographic point of reference, and the well owner's name. AQUIFER.--This entry is the aquifer(s) name (if one exists) and geologic age of the strata open to the well. WELL CHARACTERISTICS.--This entry describes the well depth, casing diameter, casing depth, opening or screened interval(s), method of construction, and use of water from the well. METHOD/INSTRUMENTATION. -- This paragraph provides information on the frequency of measurement and the collection method used. DATUM.--This entry includes the measuring point and the land-surface elevation at the well. The measuring point is described physically and in relation to land surface. The elevation of the land-surface datum is in feet above National Geodetic Vertical Datum of 1929 and its precision is dependent on the method of determination. REMARKS.--This entry describes factors that may influence the water level in a well or the measurement of the water level and any information not presented in the other parts of the station description but considered useful. PERIOD OF RECORD.--This entry indicates the period for which there are published records for the well. It reports the month and year of the begining of publication of water-level records by the U.S. Geological Survey. REVISED RECORDS.--If any revisions of previously published data were made for water-levels, the Water Data Report in which they appeared and year published would appear here. EXTREMES FOR PERIOD OF RECORD. -- This entry contains the highest and lowest water levels for the period of record, below land-surface datum, and the dates of their occurrence. A table of water levels follows the station description for each well. Water levels are reported in feet below land-surface datum. For wells equipped with recorders, only abbreviated tables are published. The highest and lowest water levels of the water year and the dates of occurence are shown on a line below the abbreviated table. Because all values are not published for wells with recorders, the extremes may be values that are not listed in the table. Missing records are indicated by dashes in place of the water level. Hydrographs are included for 83 wells which are representative of hydrologic conditions in the important aquifers in Iowa. Only water-level data from a national network of observation wells are given in this report. These data are intended to provide a sampling and historical record of water-level changes in the Nation's most important aquifers. Locations of the observation wells in this network in Iowa are shown in figure 8. # Records of Ground-Water Quality Records of ground-water quality in this report differ from other types of records in that for most sampling sites they consist of only one set of measurements for the water year. The quality of ground water ordinarily changes only slowly; therefore, for most general puposes one annual sampling, or only a few samples taken at infrequent intervals during the year, is sufficient. Frequent measurement of the same constituents is not necessary unless one is concerned with a particular problem, such as monitoring for trends in nitrate concentration. In the special cases where the quality of ground water may change more rapidly, more frequent measurements are made to identify the nature of the changes. The records of ground-water quality in this report were obtained as a part a statewide ground-water quality monitoring network operated by the Iowa District. All samples were obtained from municipal wells throughout Iowa. This program is conducted in cooperation with the University of Iowa Hygienic Laboratory (UHL) and the Iowa Geological Survey. All samples are collected by USGS personnel, field-preserved and submitted to UHL for analysis. Chemical analyses include common constituents (major ions), nutrients, trace metals, radionuclides and pesticides. Approximately 10 percent of the samples receive additional analyses for about 90 organic priority pollutants, however these analyses are not presented in this report but are on file in the District office. Most methods for collecting and analyzing water samples are described in the "U.S. Geological Survey Techniques of Water-Resources Investigations" manuals listed on a following page. The values reported in this report represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. All samples were obtained by trained personnel. The wells sampled were pumped long enough to assure that the water collected came directly from the aquifer and had not stood for a long time in the well casing where it would have been exposed to the atmosphere and to the material, possible metal, comprising the casings. The samples collected represent raw water #### Data Presentation The records of ground-water quality are published in a section titled GROUND-WATER QUALITY DATA immediately following the ground-water-level records. Data for quality of ground water are listed alphabetically by County, and are identified by station number. The prime identification number for wells sampled is the 15-digit station number derived from the latitude-longitude locations. No descriptive statements are given for ground-water-quality records; however, the station number, date and time of sampling, depth of well, and other pertinent data are given in the table containing the chemical analyses of the ground water. The REMARK codes listed for surface-water-quality records are also applicable to ground-water-quality records. Explanation of ground-water-quality data tables--descriptive headings MAP STATION: Reference to illustrations found in "SUMMARY OF NUMBER HYDROLOGIC CONDITIONS". STATION: 15-digit number based on grid system of latitude and NUMBER longitude LOCAL WELL: Refers to the Bureau of Land Management System of land NUMBER subdivision DATE: Date of well construction. LOCAL WELL NAME: Name used by community to identify well. AQUIFER: Refers to the lithologic unit in which the well is CODE completed. Derived from first two digits of the GEOLOGIC UNIT, the principal unit which is providing the majority of water to the well. | 11 | = | Quaternary | 34 = | = | Devonian | |----|---|---------------|------|---|------------| | 21 | = | Cretaceous | 35 - | _ | Silurian | | 32 | = | Pennsylvanian | 36 - | _ | Ordivician | | 33 | _ | Mississippian | 37 - | = | Cambrian | Third digit and remaining alphabetic characters refer to the more specific lithologic unit which the well is tapping. The following examples are commonly used units: | CODE | <u>General</u> | <u>Specific</u> | |---------|----------------|--------------------------| | 111ALVM | Quaternary | (alluvium) | | 217DKOT | Cretaceous | (Dakota sandstone) | | 344CDVL | Devonian | (Cedar Valley limestone) | ### ACCESS TO WATSTORE DATA The National $\underline{\text{WAT}}$ er Data $\underline{\text{STO}}$ rage and $\underline{\text{RE}}$ trieval System (WATSTORE) was established for handling water data collected through the activities of the U.S. Geological Survey and to provide for more effective and efficient means of releasing the data to the public. The system is operated and maintained on the central computer facilities of the Survey at its National Center in Reston, Virginia. WATSTORE can provide a variety of useful products ranging from simple data tables to complex statistical analyses. A minimal fee, plus the actual computer cost incurred in producing a desired product, is charged to the requester. Information about the availability of specific types of data, the acquisition of data or products, and user charges can be obtained locally from the offices whose addresses are given on the back of the title page. General inquiries about WATSTORE may be directed to: Chief Hydrologist U.S. Geological Survey 437 National Center Reston, Virginia 22092 ### DEFINITION OF TERMS Terms related to streamflow, water-quality, and other hydrologic data, as used in this report, are defined below. See also table for converting English units to International System (SI) Units on the inside of the back cover. Acre-foot (AC-FT, acre-ft) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equivalent to 43,560 cubic feet or about 326,000 gallons or 1,233 cubic meters. Aquifer is a geologic formation, group of formations, or part of a formation that contains sufficient saturated permeable material to yield significant quantities of water to wells and springs. Artesian means confined and is used to describe a well in which the water level stands above the top of the aquifer tapped by the well. A flowing artesian well is one in which the water level is above the land surface. <u>Bacteria</u> are microscopic unicellular organisms, typically spherical, rodlike, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, while others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants. Fecal coliform bacteria are bacteria that are present in the intestine or feces of warm-blooded animals. They are often used as indicators of the sanitary quality of the water. In the laboratory they are defined as all organisms that produce blue colonies within 24 hours when incubated at 44.5°C plus or minus 0.2°C on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. Fecal streptococcal bacteria are bacteria found also in the intestine of warm-blooded animals. Their presence in water is considered to verify fecal pollution. They are characterized as Gram-positive, cocci bacteria which are capable of growth in brain-heart infusion broth. In the laboratory they are defined as all the organisms which produce red or pink colonies within 48 hours at 35°C plus or minus 1.0°C on KF-streptococcus medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. Bed material is the sediment mixture of which a streambed, lake, pond, reservoir, or estuary bottom is composed. Bottom material: See Bed material. <u>Cubic-foot-per-second day</u> is the volume of water represented by a flow of 1 cubic foot per second for 24 hours. It is equivalent to 86,400 cubic feet, approximately 1.9835 acre-feet, about 646,000 gallons, or 2,445 cubic meters. <u>Contents</u> is the volume of water in a reservoir or lake. Unless otherwise indicated, volume is computed on the basis of a level pool and does not include bank storage. <u>Control</u> designates a feature downstream from the gage that determines the stage-discharge relation at the gage. This feature may be a natural constriction of the channel, an artificial structure, or a uniform cross section over a long reach of the channel. Control structure as used in this report is a structure on a stream or canal that is used to regulate the flow or stage of the stream or to prevent the intrusion of salt water. <u>Cubic foot per second</u> (ft<sup>3</sup>/s) is the rate of discharge representing a volume of 1 cubic foot passing a given point during 1 second and is equivalent to 7.48 gallons per second or 448.8 gallons per minute or 0.02832 cubic meters per second. <u>Cubic feet per second per square mile</u> (CFSM) is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming that the runoff is distributed uniformly in time and area. <u>Discharge</u> is the volume of water (or more broadly, volume of fluid plus suspended sediment) that passes a given point within a given period of time. Mean discharge (MEAN) is the arithmetic mean of individual daily mean discharges during a specific period. <u>Instantaneous discharge</u> is the discharge at a particular instant of time. <u>Dissolved</u> refers to that material in a representative water sample which passes through a 0.45 um membrane filter. This is a convenient operational definition used by Federal agencies that collect water data. Determinations of "dissolved" constituents are made on subsamples of the filtrate. Dissolved-solids concentration of water is determined either analytically by the "residue-on-evaporation" method, or mathematically by totaling the concentrations of individual constituents reported in a comprehensive chemical analysis. During the analytical determination of dissolved solids, the bicarbonate (generally a major dissolved component of water) is converted to carbonate. Therefore, in the mathematical calculation of dissolved-solids concentration, the bicarbonate value, in milligrams per liter, is multiplied by 0.492 to reflect the change. Drainage area of a stream at a specified location is that area, measured in a horizontal plane, enclosed by a topographic divide from which direct surface runoff from precipitation normally drains by gravity into the stream above the specified point. Figures of drainage area given herein include all closed basins, or noncontributing areas, within the area unless otherwise specified. <u>Drainage basin</u> is a part of the surface of the earth that is occupied by a drainage system, which consists of a surface stream or a body of impounded surface water together with all tributary surface streams and bodies of impounded surface water. Gage height (G.H.) is the water-surface elevation referred to some arbitrary gage datum. Gage height is often used interchangeably with the more general term "stage," although gage height is more appropriate when used with a reading on a gage. Gaging station is a particular site on a stream, canal, lake, or reservoir where systematic observations of hydrologic data are obtained. <u>Hardness</u> of water is a physical-chemical characteristic that is commonly recognized by the increased quantity of soap required to produce lather. It is computed as the sum of equivalents of polyvalent cations and is expressed as the equivalent concentration of calcium carbonate (CaCO ). Hydrologic Bench-Mark Network is a network of 57 sites in small drainage basins around the country whose purpose is to provide consistent data on the hydrology, including water quality, and related factors in representative undeveloped watersheds nationwide, and to provide analyses on a continuing basis to compare and contrast conditions observed in basins more obviously affected by the activities of man. Hydrologic unit is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as delineated by the Office of Water Data Coordination on the State Hydrologic Unit Maps; each hydrologic unit is identified by an eight-digit number. <u>Land-surface datum</u> (lsd) is a datum plane that is approximately at land surface at each ground-water observation well. Measuring point (MP) is an arbitrary permanent reference point from which the distance to the water surface in a well is measured to obtain the water level. Micrograms per gram (ug/g) is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the element per unit mass (gram) of material analyzed. <u>Micrograms per liter</u> (UG/L, ug/L) is a unit expressing the concentration of chemical constituents in solution as mass (micrograms) of solute per unit volume (liter) of water. One thousand micrograms per liter is equivalent to one milligram per liter. $\frac{\text{Milligrams per liter}}{\text{concentration of chemical constituents in solution.}} \text{ is a unit for expressing the concentration of chemical constituents in solution.} \text{ Milligrams per liter represents the mass of solute per unit volume (liter) of water.} \text{ Concentration of suspended sediment also is expressed in mg/L and is based on the mass of dry sediment per liter of water-sediment mixture.}$ National Geodetic Vertical Datum of 1929 (NGVD of 1929) is a geodetic datum derived from a general adjustment of the first order level nets of both the United States and Canada. It was formerly called "Sea Level Datum of 1929" or "mean sea level" in this series of reports. Although the datum was derived from the average sea level over a period of many years at 26 tide stations along the Atlantic, Gulf of Mexico, and Pacific Coasts, it does not necessarily represent local mean sea level at any particular place. National Stream Quality Accounting Network (NASQAN) is a nationwide data-collection network designed by the U.S. Geological Survey to meet many of the information needs of government agencies and other groups involved in natural or regional water-quality planning and management. The 500 or so sites in NASQAN are generally located at the downstream ends of hydrologic accounting units designated by the U.S. Geological Survey Office of Water Data Coordination in consultation with the Water Resources Council. The objectives of NASQAN are (1) to obtain information on the quality and quantity of water moving within and from the United States through a systematic and uniform process of data collection, summarization, analysis, and reporting such that the data may be used for, (2) description of the areal variability of water quality in the Nation's rivers through analysis of data from this and other programs, (3) detection of changes or trends with time in the pattern of occurrence of water-quality characteristics, and (4) providing a nationally consistent data base useful for water-quality assessment and hydrologic research. The <u>National Trends Network</u> (NTN) is a 150-station network for sampling atmospheric deposition in the United States. The purpose of the network is to determine the variability, both in location and in time, of the composition of atmospheric deposition, which includes snow, rain, dust particles, aerosols, and gases. The core from which the NTN was built was the already-existing deposition-monitoring network of the National Atmospheric Deposition Program (NADP). <u>Parameter Code</u> is a 5-digit number used in the U.S. Geological Survey computerized data system, WATSTORE, to uniquely identify a specific constituent. The codes used in WATSTORE are the same as those used in the U.S. Environmental Protection Agency data system, STORET. The Environmental Protection Agency assigns and approves all requests for new codes. <u>Partial-record station</u> is a particular site where limited streamflow and/or water-quality data are collected systematically over a period of years for use in hydrologic analyses. <u>Particle size</u> is the diameter, in millimeters (mm), of a particle determined by either sieve or sedimentation methods. Sedimentation methods (pipet, bottom-withdrawal tube, visual- accumulation tube) determine fall diameter of particles in either distilled water (chemically dispersed) or in native water (the river water at the time and point of sampling). <u>Particle-size classification</u> used in this report agrees with the recommendation made by the American Geophysical Union Subcommittee on Sediment Terminology. The classification is as follows: | Classification | Size (mm) | Method of analysis | |----------------|-----------------|------------------------| | Clay | 0.00024 - 0.004 | Sedimentation | | Silt | .004062 | Sedimentation | | Sand | .062 - 2.0 | Sedimentation or sieve | | Gravel | 2.0 - 64.0 | Sieve | The particle-size distributions given in this report are not necessarily representative of all particles in transport in the stream. Most of the organic matter is removed, and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water. Chemical dispersion is not used for native-water analysis. <u>Pesticides</u> are chemical compounds used to control undesirable organisms. Major categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides. <u>Picocurie</u> (PC, pCi) is one trillionth (1 x 10 ) of the amount of radioactivity represented by a curie (Ci). A curie is the amount of radioactivity that yields $3.7 \times 10$ radioactive disintegrations per second. A picocurie yields 2.22 dpm (disintegrations per minute). Radiochemical program is a network of regularly sampled water-quality stations where samples are collected to be analyzed for radioisotopes. The streams that are sampled represent major drainage basins in the conterminous United States. Recoverable from bottom material is the amount of a given constituent that is in solution after a representative sample of bottom material has been digested by a method (usually using an acid or mixture of acids) that results in dissolution of readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment and thus the determination represents less than the total amount (that is, less than 95 percent) of the constituent in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results. Return period is the average time interval between occurrences of a hydrological event of a given or greater magnitude, usually expressed in years. May also be called recurrence interval. Runoff in inches (IN., in.) shows the depth to which the drainage area would be covered if all the runoff for a given time period were uniformly distributed on it. Sediment is solid material that originates mostly from disintegrated rocks and is transported by, suspended in, or deposited from water; it includes chemical and biochemical precipitates and decomposed organic material, such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are influenced by environmental factors. Some major factors are degree of slope, length of slope, soil characteristics, land usage, and quantity and intensity of precipitation. Bed load is the sediment that is transported in a stream by rolling, sliding, or skipping along the bed and very close to it. In this report, bed load is considered to consist of particles in transit within 0.25 ft of the streambed. Bed load discharge (tons per day) is the quantity of bed load measured by dry weight that moves past a section as bed load in a given time. <u>Suspended sediment</u> is the sediment that at any given time is maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid. <u>Suspended-sediment concentration</u> is the velocity-weighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 ft above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L). Mean concentration is the time-weighted concentration of suspended sediment passing a stream section during a 24-hour day. Suspended-sediment discharge (tons/day) is the rate at which dry mass of sediment passes a section of a stream or is the quantity of sediment, as measured by dry mass or volume, that passes a section in a given time. It is calculated in units of tons per day as follows: concentration (mg/L) x discharge $ft^3/s \times 0.0027$ . Suspended-sediment load is a general term that refers to material in suspension. It is not synonymous with either discharge or concentration. Total sediment discharge (tons/day) is the sum of the suspended-sediment discharge and the bed-load discharge. It is the total quantity of sediment, as measured by dry mass or volume, that passes a section during a given time. Total-sediment load or total load is a term which refers to the total sediment (bed load plus suspended-sediment load) that is in transport. It is not synonymous with total-sediment discharge. $\frac{7\text{-day }10\text{-year }1\text{ow }flow}{10\text{-year }10\text{-year }10\text{-ye$ Sodium-adsorption-ratio (SAR) is the expression of relative activity of sodium ions in exchange reactions within soil and is an index of sodium or alkali hazard to the soil. Waters range in respect to sodium hazard from those which can be used for irrigation on almost all soils to those which are generally unsatisfactory for irrigation. Solute is any substance that is dissolved in water. Specific conductance is a measure of the ability of a water to conduct an electrical current. It is expressed in microsiemens per centimeter at 25° C. Specific conductance is related to the type and concentration of ions in solution and can be used for approximating the dissolved-solids content of the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is about 65-percent of the specific conductance (in microsiemens). This relation is not constant from stream to stream, and it may vary in the same source with changes in the composition of the water. Stage-discharge relation is the relation between gage height (stage) and volume of water, per unit of time, flowing in a channel. Streamflow is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation. Surface area of a lake is that area outlined on the latest U.S.G.S. topographic map as the boundary of the lake and measured by a planimeter in acres. In localities not covered by topographic maps, the areas are computed from the best maps available at the time planimetered. All areas shown are those for the stage when the planimetered map was made. <u>Surficial bed material</u> is the part (0.1 to 0.2 ft) of the bed material that is sampled using U.S. Series Bed-Material Samplers. <u>Suspended</u> (as used in tables of chemical analyses) refers to the amount (concentration) of undissolved material in a water-sediment mixture. It is associated with the material retained on a 0.45-micrometer filter. Suspended, recoverable is the amount of a given constituent that is in solution after the part of a representative water-suspended sediment sample that is retained on a 0.45 um membrane filter has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter is not achieved by the digestion treatment and thus the determination represents something less than the "total" amount (that is, less than 95-percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results. Determinations of "suspended, recoverable" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) <u>dissolved</u> and (2) <u>total recoverable</u> concentrations of the constituent. Suspended, total is the total amount of a given constituent in the part of a representative water-suspended sediment sample that is retained on a 0.45 um membrane filter. This term is used only when the analytical procedure assures measurement of at least 95-percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total." Determinations of "suspended, total" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) <u>dissolved</u> and (2) <u>total</u> concentrations of the constituent. Thermograph is an instrument that continuously records variations of temperature on a chart. The more general term "temperature recorder" is used in the table headings and refers to any instrument that records temperature whether on a chart, a tape, or any other medium. <u>Time-weighted average</u> is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total number of days. A time-weighted average represents the composition of water that would be contained in a vessel or reservoir that had received equal quantities of water from the stream each day for the year. $\frac{\text{Tons per acre-foot}}{\text{foot of water.}}$ indicates the dry mass of dissolved solids in 1 acre-foot of water. It is computed by multiplying the concentration of the constituent, in milligrams per liter, by 0.00136. Tons per day (T/DAY) is the quantity of a substance in solution or suspension that passes a stream section during a 24-hour period. Total is the total amount of a given constituent in a representative water-suspended sediment sample, regardless of the constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95-percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total." (Note that the word "total" does double duty here, indicating both that the sample consists of a water-suspended sediment mixture and that the analytical method determined all of the constituent in the sample.) Total discharge is the total quantity of any individual constituent, as measured by dry mass or volume, that passes through a stream cross-section per unit of time. This term needs to be qualified, such as "total sediment discharge," "total chloride discharge," and so on. Total, recoverable is the amount of a given constituent that is in solution after a representative water-suspended sediment sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95-percent) of the constituent present in the dissolved and suspended phases of the sample. To achieve comparability of analytical data, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results. Tritium Network is a network of stations which has been established to provide baseline information on the occurrence of tritium in the Nation's surface waters. In addition to the surface-water stations in the network, tritium data are also obtained at a number of precipitation stations. The purpose of the precipitation stations is to provide an estimate sufficient for hydrologic studies of the tritium input to the United States. <u>Water year</u> in U.S. Geological Survey reports dealing with surface-water supply is the 12-month period October 1 through September 30. The water year is designated by the calendar year in which it ends and which includes 9 of the 12 months. Thus, the year ending September 30, 1989, is called the "1989 water year." <u>WDR</u> is used as an abbreviation for "Water-Data Report" in the REVISED RECORDS paragraph to refer to State annual hydrologic-data reports (WRD was used as an abbreviation for "Water-Resources Data" in reports published prior to 1976). Weighted average is used in this report to indicate discharge-weighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of the discharges. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir. $\underline{\mathtt{WSP}}$ is used as an abbreviation for "Water-Supply Paper" in reference to previously published reports. #### PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS The U.S. Geological Survey publishes a series of manuals describing procedures for planning and conducting specialized work in water-resources investigations. The material is grouped under major subject headings called books and is further divided into sections and chapters. For example, Section A of Book 3 (Applications of Hydraulics) pertains to surface water. The chapter, the unit of publication, is limited to a narrow field of subject matter. This format permits flexibility in revision and publication as the need arises. The reports listed below are for sale by the U.S. Geological Survey, Books and Open-File Reports Section, Federal Center, Box 25425, Denver, Colorado 80225 (authorized agent of the Superintendent of Documents, Government Printing Office). Prepayment is required. Remittance should be sent by check or money order payable to the U.S. Geological Survey. Prices are not included because they are subject to change. Current prices can be obtained by writing to the above address. When ordering or inquiring about prices for any of these publications, please give the title, book number, chapter number, and "U.S. Geological Survey Techniques of Water-Resources Investigations." - 1-D1. Water temperature--influential factors, field measurement, and data presentation, by H. H. Stevens, Jr., J. F. Ficke, and G. F. Smoot: USGS--TWRI Book 1, Chapter D1. 1975. 65 pages. - 1-D2. Guidelines for collection and field analysis of ground-water samples for selected unstable constituents, by W. W. Wood: USGS-TWRI Book 1, Chapter D2. 1976. 24 pages. - 2-D1. Application of surface geophysics to ground-water investigations, by A. A. R. Zohdy, G. P. Eaton, and D. R. Mabey: USGS--TWRI Book 2, Chapter D1. 1974. 116 pages. - 2-D2. Application of seismic-refraction techniques to hydrologic studies, by F. P. Haeni: USGS--TWRI Book 2, Chapter D2. 1988. 86 pages. - 2-E1. Application of borehole geophysics to water-resources investigations, by W. S. Keys and L. M. MacCary: USGS-TWRI Book 2, Chapter El. 1971. 126 pages. - 2-F1. Application of drilling, coring, and sampling techniques to test holes and wells, by Eugene Shuter and Warren E. Teasdale: USGS--TWRI Book 2, Chapter F1. 1989. 97 pages. - 3-Al. General field and office procedures for indirect discharge measurements, by M. A. Benson and Tate Dalrymple: USGS--TWRI Book 3, Chapter Al. 1967. 30 pages. - 3-A2. Measurement of peak discharge by the slope-area method, by Tate Dalrymple and M. A. Benson: USGS--TWRI Book 3, Chapter A2. 1967. 12 pages. - 3-A3. Measurement of peak discharge at culverts by indirect methods, by G. L. Bodhaine: USGS--TWRI Book 3, Chapter A3. 1968. 60 pages. - 3-A4. Measurement of peak discharge at width contractions by indirect methods, by H. F. Matthai: USGS--TWRI Book 3, Chapter A4. 1967. 44 pages. - 3-A5. Measurement of peak discharge at dams by indirect methods, by Harry Hulsing: USGS--TWRI Book 3, Chapter A5. 1967. 29 pages. - 3-A6. General procedure for gaging streams, by R. W. Carter and Jacob Davidian: USGS--TWRI Book 3, Chapter A6. 1968. 13 pages. - 3-A7. Stage measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI Book 3. Chapter A7. 1968. - 3-A8. Discharge measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI Book 3, Chapter A8. 1969. 65 pages. - 3-A9. Measurement of time of travel in streams by dye tracing, by F. A. Kilpatrick and J. F. Wilson, Jr.: USGS--TWRI Book 3, Chapter A9. 1989. 27 pages. - 3-A10. Discharge ratings at gaging stations, by E. J. Kennedy: USGS--TWRI Book 3, Chapter A10. 1984. 59 pages. - 3-All. Measurement of discharge by moving-boat method, by G. F. Smoot and C. E. Novak: USGS--TWRI Book 3, Chapter All. 1969. 22 pages. - 3-A12. Fluorometric procedures for dye tracing, by J. F. Wilson, Jr., E. D. Cobb, and F. A. Kilpatrick: USGS--TWRI Book 3, Chapter A12. 1986. 41 pages. - 3-Al3. Computation of continuous records of streamflow, by E. J. Kennedy: USGS--TWRI Book 3, Chapter Al3. 1983. 53 pages. - 3-A14. Use of flumes in measuring discharge, by F. A. Kilpatrick and V. R. Schneider: USGS--TWRI Book 3, Chapter A14. 1983. 46 pages. - 3-Al5. Computation of water-surface profiles in open channels, by Jacob Davidian: USGS--TWRI Book 3, Chapter Al5. 1984. 48 pages. - 3-A16. Measurement of discharge using tracers, by F. A. Kilpatrick and E. D. Cobb: USGS--TWRI Book 3, Chapter A16. 1985. 52 pages. - 3-A17. Acoustic velocity meter systems, by Antonius Laenen: USGS--TWRI Book 3, Chapter A17. 1985. 38 pages. - 3-Al8. Determination of stream reaeration coefficients by use of tracers, by F. A. Kilpatrick, R. E. Rathbun, N. Yotsukura, G. W. Parker, and L. L. DeLong: USGS--TWRI Book 3, Chapter Al8. 1989. 52 pages. #### WATER RESOURCES DATA - IOWA, 1989 #### PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS--Continued - 3-B1. Aquifer-test design, observation, and data analysis, by R. W. Stallman: USGS--TWRI Book 3, Chapter Bl. 1971. 26 pages. - 3-B2. Introduction to ground-water hydraulics, a programmed text for self-instruction, by G. D. Bennett: USGS--TWRI Book 3, Chapter B2. 1976. 172 pages. - 3-B3. Type curves for selected problems of flow to wells in confined aquifers, by J. E. Reed: USGS--TWRI Book 3, Chapter B3. 1980. 106 pages. - 3-B5. Definition of boundary and initial conditions in the analysis of saturated ground-water flow systems--An introduction, by 0. L. Franke, T. E. Reilly, and G. D. Bennett: USGS--TWRI Book 3, Chapter B5. 1987. 15 pages. - 3-B6. The principle of superposition and its application in ground-water hydraulics, by T. E. Reilly, O. L. Franke, and G. D. Bennett: USGS--TWRI Book 3, Chapter B6. 1987. 28 pages. - 3-C1. Fluvial sediment concepts, by H. P. Guy: USGS--TWRI Book 3, Chapter C1. 1970. 55 pages. - 3-C2. Field methods for measurement of fluvial sediment, by H. P. Guy and V. W. Norman: USGS-TWRI Book 3, Chapter C2. 1970. 59 pages. - 3-C3. Computation of fluvial-sediment Aischarge, by George Porterfield: USGS--TWRI Book 3, Chapter C3. 1972. 66 pages. - 4-Al. Some statistical tools in hydrology, by H. C. Riggs: USGS--TWRI Book 4, Chapter Al. 1968. 39 pages. - 4-A2. Frequency curves, by H. C. Riggs: USGS-TWRI Book 4, Chapter A2. 1968. 15 pages. - 4-B1. Low-flow investigations, by H. C. Riggs: USGS--TWRI Book 4, Chapter B1. 1972. 18 pages. - 4-B2. Storage analyses for water supply, by H. C. Riggs and C. H. Hardison: USGS--TWRI Book 4, Chapter B2. 1973. 20 pages. - 4-B3. Regional analyses of streamflow characteristics, by H. C. Riggs: USGS-TWRI Book 4, Chapter B3. 1973. 15 pages. - 4-D1. Computation of rate and volume of stream depletion by wells, by C. T. Jenkins: USGS-TWRI Book 4, Chapter D1. 1970, 17 pages. - 5-A1. Methods for determination of inorganic substances in water and fluvial sediments, by M. J. Fishman and L. C. Friedman: USGS--TWRI Book 5, Chapter A1. 1989. 545 pages. - 5-A2. Determination of minor elements in water by emission spectroscopy, by P. R. Barnett and E. C. Mallory, Jr.: USGS--TWRI Book 5, Chapter A2. 1971. 31 pages. - 5-A3. Methods for the determination of organic substances in water and fluvial sediments, edited by R. L. Wershaw, M. J. Fishman, R. R. Grabbe, and L. E. Lowe: USGS--TWRI Book 5, Chapter A3. 1987. 80 pages. - 5-A4. Methods for collection and analysis of aquatic biological and microbiological samples, by L. J. Britton and P. E. Greeson, editors: USGS--TWRI Book 5, Chapter A4. 1989. 363 pages. - 5-A5. Methods for determination of radioactive substances in water and fluvial sediments, by L. L. Thatcher, V. J. Janzer, and K. W. Edwards: USGS-TWRI Book 5, Chapter A5. 1977. 95 pages. - 5-A6. Quality assurance practices for the chemical and biological analyses of water and fluvial sediments, by L. C. Friedman and D. E. Erdmann: USGS--TWRI Book 5, Chapter A6. 1982. 181 pages. - 5-Cl. Laboratory theory and methods for sediment analysis, by H. P. Guy: USGS--TWRI Book 5, Chapter Cl. 1969. 58 pages. - 6-Al. A modular three-dimensional finite-difference ground-water flow model, by M. G. McDonald and A. W. Harbaugh: USGS--TWRI Book 6, Chapter Al. 1988. 586 pages. - 7-Cl. Finite difference model for aquifer simulation in two dimensions with results of numerical experiments, by P. C. Trescott, G. F. Pinder, and S. P. Larson: USGS--TWRI Book 7, Chapter Cl. 1976. 116 pages. - 7-C2. Computer model of two-dimensional solute transport and dispersion in ground water, by L. F. Konikow and J. D. Bredehoeft: USGS-TWRI Book 7, Chapter C2. 1978. 90 pages. - 7-C3. A model for simulation of flow in singular and interconnected channels, by R. W. Schaffrannek, R. A. Baltzer, and D. E. Goldberg: USGS--TWRI Book 7, Chapter C3. 1981. 110 pages. - 8-Al. Methods of measuring water levels in deep wells, by M. S. Garber and F. C. Koopman: USGS--TWRI Book 8, Chapter Al. 1968. 23 pages. - 8-A2. Installation and service manual for U.S. Geological Survey manometers, by J. D. Craig: USGS--TWRI Book 8, Chapter A2. 1983. 57 pages. - 8-B2. Calibration and maintenance of vertical-axis type current meters, by G. F. Smoot and C. E. Novak: USGS--TWRI Book 8, Chapter B2. 1968. 15 pages. # DISCONTINUED GAGING STATIONS The following stream-gaging stations have been discontinued in Iowa. Continuous daily streamflow records were collected and published for the period of record shown for each station. # Discontinued gaging stations | Chahi | G+ -+ / | Drainage | David - 6 | |-----------------------------------------------------------------------------|----------------------|-----------------------|--------------------| | Station name | Station<br>number | area<br>(sq mi) | Period of record | | | Humber | (sq mr) | | | Upper Iowa River at Decorah, Iowa | 05387500 | 511 | 1952-83 | | Upper Iowa River near Decorah, Iowa | 05388000 | 568 1913-14 | ; 1919-27; 1933-51 | | Paint Creek at Waterville, Iowa | 05388500 | 42.8 | 1952-73 | | Yellow River at Ion, Iowa | 05389000 | 221 | 1934-51 | | Mississippi River at Clayton, Iowa | 05411500 | 9,200 | 1930-36 | | Turkey River at Elkader, Iowa<br>Little Maquoketa River near Durango, Iowa | 05412000<br>05414500 | 891<br>130 | 1932-42<br>1934-82 | | Maquoketa River near Manchester, Iowa | 05417000 | 305 | 1933-73 | | Maquoketa River near Delhi, Iowa | 05417500 | 347 | 1933-40 | | Bear Creek near Monmouth, Iowa | 05417700 | 61.3 | 1957-76 | | Maquoketa River above North Fork Maquoketa River | 05418000 | 938 | 1913-14 | | near Maquoketa, Iowa | | | | | Wapsipinicon River at Stone City, Iowa | 05421500 | 1,324 | 1903-14 | | Crow Creek at Eldridge, Iowa | 05422420 | 2.20 | 1977-82 | | Crow Creek at Mt. Joy, Iowa | 05422450 | 6.90 | 1977-82 | | Pine Creek at Muscatine, Iowa<br>Eagle Lake inlet near Britt, Iowa | 05448150<br>05448285 | 38.9<br>3.83 | 1975-82<br>1975-80 | | Eagle Lake outlet near Britt, Iowa | 05448290 | 11.3 | 1975-80 | | West Branch (West Fork) Iowa River near Klemme, Iowa | 05448500 | 112 | 1948-58 | | Iowa River near Iowa Falls, Iowa | 05450000 | 665 | 1911-14 | | Upper Pine Lake at Eldora, Iowa | 05450500 | 14.9 | 1936-70 | | Lower Pine Lake at Eldora, Iowa | 05451000 | 15.9 | 1936-70 | | Iowa River near Belle Plaine, Iowa | 05452500 | 2,455 | 1939-59 | | Lake Macbride near Solon, Iowa | 054 <b>5</b> 3500 | 27.0 | 1936-71 | | Ralston Creek at Iowa City, Iowa | 05455000 | 3.01 | 1924-87 | | Cedar River at Mitchell, Iowa | 05457500 | 826 | 1933-42 | | Shell Rock River near Northwood, Iowa | 05459000 | 300 | 1945-86 | | Shell Rock River at Marble Rock (Greene), Iowa | 05460500<br>05461000 | 1,318<br>1,357 | 1933-53<br>1933-42 | | Shell Rock River at Greene, Iowa<br>Shell Rock River near Clarksville, Iowa | 05461500 | 1,626 | 1915-27; 1932-34 | | Fourmile Creek near Lincoln, Iowa | 05464130 | 1,020 | 1962-67; 1969-74 | | Half Mile Creek near Gladbrook, Iowa | 05464133 | 1.33 | 1962-67; 1969-74 | | Fourmile Creek near Traer, Iowa | 05464137 | 19.51 | 1962-74; 1975-80 | | Prairie Creek at Fairfax, Iowa | 05464640 | 178 | 1966-82 | | South Skunk River below Squaw Creek near Ames, Iowa | 05471000 | 556 | 1952-79 | | Lake Keomah near Oskaloosa, Iowa | 05472000 | 3.06 | 1936-71 | | Skunk River at Coppock, Iowa | 05473000 | 2,916 | 1913-44 | | Big Creek near Mount Pleasant, Iowa | 05473500 | 106 | 1955-79 | | East Fork Des Moines River near Burt, Iowa | 05478000 | 462 | 1971-74 | | East Fork Des Moines River near Hardy, Iowa | 05478500 | 1,268 | 1940-54 | | Des Moines River near Fort Dodge, Iowa | 05479500 | 3,753 | 1911-13 | | Lizard Creek near Clare, Iowa<br>Des Moines River near Boone, Iowa | 05480000<br>05481500 | 257<br>5, <b>5</b> 11 | 1940-82<br>1920-68 | | Des Moines River at Des Moines, Iowa | 05482000 | 6,245 | 1905-06; 1915-61 | | Storm Lake at Storm Lake, Iowa | 05482140 | 28.3 | 1970-75. | | Springbrook Lake near Guthrie Center, Iowa | 05483500 | 5.18 | 1936-71 | | Raccoon River at Des Moines, Iowa | 05485000 | 3,590 | 1902-03 | | Lake Ahquabi near Indianola, Iowa | 05487000 | 4.93 | 1936-71 | | White Breast Creek near Knoxville, Iowa | 05488000 | 380 | 1945-62 | | Muchakinock Creek near Eddyville, Iowa | 05489190 | 70.2 | 1975-79 | | Lake Wapello near Drakesville, Iowa | 05490000 | 7.75 | 1936-71 | | Sugar Creek near Keokuk, Iowa | 05491000 | 105 | 1922-31; 1958-73 | | Fox River at Bloomfield, Iowa | 05494300 | 87.7 | 1957-73 | | Fox River at Cantril, Iowa | 05494500 | 161 | 1940-51 | | Rock River at Rock Rapids, Iowa<br>Dry Creek at Hawarden, Iowa | 06483270<br>06484000 | 788<br>48.4 | 1959-74<br>1948-69 | | West Fork ditch at Holly Springs, Iowa | 06602000 | 399 | 1939-69 | | Loon Creek near Orleans, Iowa | 06603920 | 31 | 1971-74 | | Spirit Lake outlet at Orleans, Iowa | 06604100 | 75.6 | 1971-74 | | Milford Creek at Milford, Iowa | 06604400 | 146 | 1971-74 | | Little Sioux River at Spencer, Iowa | 06605100 | 990 | 1936-42 | | Little Sioux River at Gillett Grove, Iowa | 06605600 | 1,334 | 1958-73 | | Little Sioux River near Kennebeck, Iowa | 06606700 | 2,738 | 1939-69 | | Odebolt Creek near Arthur, Iowa | 06607000 | 39.3 | 1957-75 | | Maple River at Turin, Iowa | 06607300 | 725 | 1939-41 | | Little Sioux River near Blencoe (Turin), Iowa | 06607510 | 4,470<br>9.26 | 1939-42<br>1963-69 | | Steer Creek near Magnolia, Iowa<br>Thompson Creek near Woodbine, Iowa | 06609200<br>06609590 | 6.97 | 1963-69 | | Willow Creek near Logan, Iowa | 06609590<br>06609600 | 129 | 1972-75 | | Indian Creek at Council Bluffs, Iowa | 06610500 | 7.99 | 1954-76 | | Mosquito Creek near Earling, Iowa | 06610520 | 32.0 | 1965-79 | | Waubonsie Creek near Bartlett, Iowa | 06806000 | 30.4 | 1946-69 | | West Nishnabotna River at Harlan, Iowa | 06807320 | 316 | 1977-82 | | West Nishnabotna River at (near) White Cloud, Iowa | 06807500 | 9 <b>67</b> | 1918-24 | | Mule Creek near Malvern, Iowa | 06808000 | 10.6 | 1954-69 | | Spring Valley Creek near Tabor, Iowa | 06808200 | 7.6 | 1955-64 | | Davids Creek near Hamlin, Iowa | 06809000 | 26.0 | 1952-73 | | Tarkio river at Blanchard, Iowa | 06812000 | 200 | 1934-40 | | West Nodaway River at Villisca, Iowa | 06816500 | 342 | 1918-25 | | Honey Creek near Russell, Iowa | 06903500 | 13.2<br>708 | 1952-62<br>1938-59 | | Chariton River near Centerville, Iowa | 06904000 | 708 | 1938-59 | | | | | | #### DISCONTINUED WATER-QUALITY STATIONS The following water-quality stations have been discontinued in Iowa. Continuous daily records of water temperature or sediment and monthly or periodic samples of chemical quality were collected and published for the period of record shown for each station. An asterisk (\*) in the type of record column indicates that periodic data is available for that parameter subsequent to the period of daily record. Discontinued water-quality stations | Station name | Station | Drainage<br>area | Type<br>of | Period of record | |------------------------------------------|----------------------|------------------|--------------------------------------------------------------------------------------|------------------| | 333333 | number | (sq mi) | Record | | | Upper Iowa River at Decorah, Iowa | 05387500 | 511 | Sed., Temp. | 1963-1983 | | Upper Iowa River near Dorchester, Iowa | 05388250 | 770 | Sed., Temp.<br>Sed., Temp. | 1975-81 | | Paint Creek at Waterville, Iowa | 05388500 | 42.8 | Temp. | 1952-56 | | and order as wassiville, lowe | 03000300 | | Sed. | 1952-57 | | Turkey River at Garber, Iowa | 05412500 | 1,545 | Temp., Sed.* | 1957-62 | | Mississippi River at Dubuque, Iowa | 05414700 | 1,600 | Chem. | 1969-73 | | Maquoketa River near Maquoketa, Iowa | 05418500 | 1,553 | Chem., Temp., Sed. | | | | | 85,600 | Chem. | 1973-87 | | Mississippi River at Clinton, Iowa | 05420500<br>05421000 | 1,048 | Chem.* | 1968-70 | | Mapsipinicon River at Independence, Iowa | 03421000 | 1,040 | | | | Crow Creek at Bettendorf, Iowa | 05422470 | 17.8 | Temp.*, Sed.*<br>Chem., Temp., Sed. | 1978-82 | | | | 429 | Temp.*, Sed.* | 1957-62 | | Iowa River near Rowan, Iowa | 05449500 | | Chem. | 1971: 1975-81 | | Cedar River near Gilbertville, Iowa | 05464020 | 5,234 | Chem., Temp., Sed. | | | Iowa River at Iowa City, Iowa | 05454500 | 3,271 | Chem Temp., Sed. | 1906-1907 1944- | | Ralston Creek at Iowa City, Iowa | 05455000 | 3.01 | Chem., Temp., Sed.<br>Chem., Temp., Sed.<br>Chem., Temp., Sed.<br>Chem., Temp., Sed. | 1060-74 | | Fourmile Creek near Lincoln, Iowa | 05464130 | 13.78 | Chem., Temp., Sed. | 1969-74 | | Half Mile Creek near Gladbrook, Iowa | 05464133 | 1.33 | Chem., lemp., Sed. | 1909-74 | | Fourmile Creek near Traer, Iowa | 05464137 | 19.51 | Chem., lemp., Sed. | 1909-74 | | Cedar River near Palo, Iowa | 05464450 | 6,380 | Chem. | 1975-79 | | Cedar River at Cedar Rapids, Iowa | 05464500 | 6,640 | Chem. * | 1906-07; 1944-54 | | | | | Temp.* | 1944-54 | | | | | Sed. | 1943-54 | | Cedar River near Bertram, Iowa | 05464760 | 6,955 | Chem. | 1975-81 | | Mississippi River at Burlington, Iowa | 05469720 | 4,000 | Chem. | 1969-73 | | Mississippi River at Keokuk, Iowa | 05474500 | 119,000 | Chem. | 1974-87 | | Des Moines River at Fort Dodge, Iowa | 05480500 | 4,190 | Chem. | 1972-73 | | Des Moines River at Des Moines, Iowa | 05482000 | 6,245 | Chem. | 1954-55 | | | | | Temp., Sed. | 1954-61 | | E. Fork Hardin Creek near Churdan, Iowa | 05483000 | 24.0 | Temp.*,Sed.* | 1952-57 | | M. Fork Raccoon River near Bayard, Iowa | 05483450 | 375 | Chem., Temp., Sed. | 1979-85 | | M. Fork Raccoon River at Panora, Iowa | 05483600 | 440 | Chem., Temp., Sed. | 1979-85 | | Raccoon River at Des Moines, Iowa | 05485000 | 3,590 | | 1945-47 | | Des Moines River below Raccoon River | 05485500 | 9,770 | Chem., Temp.<br>Chem.* | 1944-45 | | at Des Moines, Iowa | 03403300 | 9,770 | Temp.*, Sed. | 1944-47 | | Des Maines Diver heles Des Maines Tour | 05485520 | 9,901 | Chem. | 1971; 1975-81 | | Des Moines River below Des Moines, Iowa | | 503 | Temp.*, Sed. | 1962-67 | | Middle River near Indianola, Iowa | 05486490 | | | 1968-73 | | White Breast Creek near Dallas, Iowa | 05487980 | 342 | Chem. | 1967-73 | | Die Gierre Dieser al Gierre Gile Torre | 00105050 | 0.410 | Temp., Sed. | 1969-73 | | Big Sioux River at Sioux City, Iowa | 06485950 | 9,410 | Chem. | 1972-86 | | Missouri River at Sioux City, Iowa | 06486000 | 314,600 | Chem. | | | Floyd River at James, Iowa | 06600500 | 882 | Temp., Sed. | 1968-73 | | Floyd River at Sioux City, Iowa | 06600520 | 921 | Chem. | 1969-73 | | Missouri River at Decatur, Nebr. | 06601200 | 316,160 | Chem. | 1974-81 | | Little Sioux River at Correctionville, | 06606600 | 2,500 | Chem. * | 1954-55 | | Iowa | | | Temp.* | 1951-62 | | | | | Sed. | 1950-62 | | Little Sioux River near Kennebec, Iowa | 06606700 | 2,738 | Temp. | 1950-55 | | | | | Sed. | 1950-57 | | Little Sioux River at River Sioux, Iowa | 06607513 | 3,600 | Chem. | 1969-73 | | Soldier River near Mondamin, Iowa | 06608505 | 440 | Chem. | 1970-73 | | Steer Creek near Magnolia, Iowa | 06609200 | 9.26 | Temp., Sed. | 1963-69 | | Thompson Creek near Woodbine, Iowa | 06609590 | 6.97 | Temp., Sed. | 1963-69 | | Millow Creek near Logan, Iowa | 06609600 | 129 | Chem., Temp. | 1972-75 | | | | | Sed. | 1971-75 | | Missouri River at Omaha, Nebr. | 06610000 | 322,800 | Chem. | 1969-86 | | Mule Creek near Malvern, Iowa | 06808000 | 10.6 | Temp. | 1958-69 | | J.Jon | 5550000 | | Sed. | 1954-69 | | Davids Creek near Hamlin, Iowa | 06809000 | 26.0 | Temp.* | 1952-53; 1965-68 | | | | 894 | Temp., Sed. | 1962-73 | | East Nishnabotna River at Red Oak, Iowa | 06809500 | | | 1969-73 | | Platte River near Diagonal, Iowa | 06818750 | 217 | Chem. | 1967-73 | | Thompson River at Davis City, Iowa | 06898000 | 701 | Chem. | | | | | <b>.</b> | Temp., Sed. | 1968-73 | | Weldon River near Leon, Iowa | 06898400 | 104 | Chem. | 1968-73 | | Chariton River near Chariton, Iowa | 06903400 | 182 | Temp., Sed. | 1969-73 | | | 0000000 | 12 2 | Sed. | 1952-62 | | Honey Creek near Russell, Iowa | 06903500 | 13.2 | Temp.*, Sed.* | 1962-69 | Type of record: Chem. (chemical quality); Temp. (water temperature); Sed. (sediment). #### MISSISSIPPI RIVER BASIN #### UPPER IOWA RIVER BASIN #### 05388250 UPPER IOWA RIVER NEAR DORCHESTER, IA LOCATION.--Lat 43°25'16", long 91°30'31", in SW1/4 NW1/4 sec.1, T.99 N., R.6 W., Allamakee County, Hydrologic Unit 07060002, on right bank at upstream side of bridge on State Highway 76, 650 ft upstream from Mineral Creek, 0.5 mi upstream from Bear Creek, 3.5 mi south of Dorchester, and 18.1 mi upstream from mouth. DRAINAGE AREA. -- 770 mi2. PERIOD OF RECORD. -- September 1936 to June 1975 (gage heights and discharge measurements only), July 1975 to current year. GE.--Water-stage recorder. Datum of gage is 660.00 ft above NGVD. Prior to Jan. 6, 1938, nonrecording gage on old bridge at site 0.2 mi upstream at datum 5.91 ft higher. Jan. 6, 1938, to Apr. 26, 1948, nonrecording gage at datum 60.00 ft lower, Apr. 27, 1948 to August 1963, nonrecording gage on old bridge and August 1963 to June 1975 nonrecording gage on new bridge at same datum. GAGE. -- Water-stage recorder. REMARKS.--Estimated daily discharges: Nov. 29 to Mar. 12 and Sept. 4-6. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Geological Survey gage-height telemeter and U.S. Army Corps of Engineers data collection platform at station. AVERAGE DISCHARGE.--14 years, (water years 1976-89) 551 ft<sup>3</sup>/s, 9.72 in/yr, 399,200 acre-ft/yr; median of yearly mean discharges, 510 ft<sup>3</sup>/s, 9.0 in/yr, 369,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 14,000 ft<sup>3</sup>/s Mar. 12, 1976, gage height, 17.67 ft; minimum daily discharge, 79 ft<sup>3</sup>/s Dec. 31, 1976. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of May 30, 1941, reached a stag discharge, 30,400 ft<sup>3</sup>/s on basis of slope-area determination of peak flow. reached a stage of 21.8 ft, from flood profile, EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 4,000 ft3/s and maximum (\*): | Date<br>Mar. 12 | Time<br>0430 | Discharge<br>(ft <sup>3</sup> /s)<br>4,900 | Gage height<br>(ft)<br>(a) *14.50 | Date<br>Mar. 14 | Time<br>2107 | Discharge<br>(ft <sup>3</sup> /s)<br>*5,550 | Gage height<br>(ft)<br>13.14 | |--------------------|--------------|--------------------------------------------|-----------------------------------|-----------------|--------------|---------------------------------------------|------------------------------| | (a) Ice<br>Minimum | | harge, 80 ft <sup>3</sup> /s | Feb. 4. | | | | | | | DI | SCHARGE, CUBIC F | EET PER SECOND, WATE | R YEAR OCTOBER | 1988 TO SEP | TEMBER 1989 | | | | | | | | M | EAN VALUE | S | | | | | | |-------------|------|-------------|------|------|------|-----------|-------|-------------|------|------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 146 | 128 | 110 | 115 | 250 | 110 | 307 | 445 | 287 | 137 | 115 | 166 | | 2 | 138 | 128 | 120 | 115 | 150 | 105 | 283 | 405 | 271 | 135 | 99 | 248 | | 2<br>3<br>4 | 134 | 126 | 130 | 110 | 90 | 100 | 269 | 369 | 235 | 133 | 101 | 250 | | 4 | 129 | 129 | 140 | 110 | 80 | 110 | 257 | 346 | 210 | 130 | 100 | 198 | | 5 | 127 | 135 | 150 | 105 | 100 | 140 | 249 | 335 | 194 | 125 | 129 | 183 | | 6<br>7 | 125 | 133 | 140 | 115 | 140 | 120 | 235 | 313 | 181 | 123 | 140 | 173 | | 7 | 123 | 130 | 135 | 120 | 180 | 110 | 244 | 297 | 174 | 121 | 116 | 171 | | 8 | 123 | 129 | 130 | 125 | 160 | 120 | 235 | 283 | 170 | 115 | 105 | 171 | | 9 | 124 | 127 | 125 | 115 | 140 | 130 | 219 | 272 | 168 | 117 | 99 | 171 | | 10 | 124 | 126 | 120 | 110 | 145 | 170 | 209 | 263 | 165 | 115 | 99 | 164 | | 11 | 124 | 124 | 115 | 115 | 150 | 300 | 204 | 249 | 157 | 122 | 97 | 160 | | 12 | 120 | 128 | 110 | 115 | 160 | 1500 | 197 | 237 | 152 | 122 | 95 | 160 | | 13 | 118 | 133 | 115 | 110 | 165 | 2750 | 190 | 230 | 156 | 116 | 96 | 168 | | 14 | 120 | 131 | 120 | 115 | 140 | 3230 | 186 | 226 | 148 | 112 | 97 | 168 | | 15 | 123 | 133 | 110 | 120 | 130 | 3460 | 181 | 222 | 146 | 110 | 100 | 166 | | 16 | 126 | 156 | 100 | 115 | 120 | 1470 | 178 | 215 | 145 | 107 | 101 | 166 | | 17 | 126 | 154 | 96 | 120 | 110 | 1060 | 175 | 211 | 140 | 103 | 99 | 163 | | 18 | 128 | 15 <b>6</b> | 105 | 125 | 115 | 495 | 171 | 208 | 135 | 111 | 98 | 159 | | 19 | 127 | 151 | 115 | 120 | 110 | 428 | 169 | 210 | 130 | 124 | 96 | 151 | | 20 | 128 | 151 | 130 | 125 | 100 | 379 | 168 | 215 | 127 | 130 | 99 | 147 | | 21 | 136 | 145 | 125 | 120 | 96 | 375 | 168 | 213 | 123 | 120 | 103 | 141 | | 22 | 133 | 139 | 130 | 125 | 100 | 358 | 168 | 204 | 123 | 127 | 112 | 143 | | 23 | 133 | 132 | 135 | 125 | 90 | 894 | 193 | 200 | 120 | 125 | 108 | 145 | | 24 | 133 | 142 | 140 | 130 | 100 | 1980 | 252 | 19 <b>9</b> | 125 | 120 | 104 | 141 | | 25 | 131 | 140 | 130 | 130 | 110 | 1460 | 285 | 203 | 141 | 115 | 102 | 130 | | 26 | 128 | 143 | 125 | 125 | 130 | 1050 | 272 | 270 | 153 | 107 | 98 | 127 | | 27 | 130 | 147 | 120 | 125 | 120 | 795 | 284 | 275 | 152 | 114 | 101 | 125 | | 28 | 129 | 142 | 115 | 140 | 115 | 604 | 338 | 237 | 142 | 105 | 133 | 123 | | 29 | 126 | 140 | 115 | 170 | | 478 | 413 | 218 | 140 | 107 | 170 | 121 | | 30 | 126 | 130 | 110 | 190 | | 399 | 444 | 214 | 140 | 122 | 195 | 120 | | 31 | 127 | | 120 | 210 | | 348 | | 294 | | 123 | 156 | | | TOTAL | 3965 | 4108 | 3781 | 3910 | 3596 | 25028 | 7143 | 8078 | 4850 | 3693 | 3463 | 4819 | | MEAN | 128 | 137 | 122 | 126 | 128 | 807 | 238 | 261 | 162 | 119 | 112 | 161 | | MAX | 146 | 156 | 150 | 210 | 250 | 3460 | 444 | 445 | 287 | 137 | 195 | 250 | | MIN | 118 | 124 | 96 | 105 | 80 | 100 | 168 | 199 | 120 | 103 | 95 | 120 | | AC-FT | 7860 | 8150 | 7500 | 7760 | 7130 | 49640 | 14170 | 16020 | 9620 | 7330 | 6870 | 9560 | | CFSM | . 17 | .18 | . 16 | .16 | . 17 | 1.05 | .31 | . 34 | .21 | . 15 | . 15 | .21 | | IN. | . 19 | .20 | . 18 | .19 | . 17 | 1.21 | .35 | .39 | . 23 | . 18 | . 17 | . 23 | | | | | | | | | | | | | | | TOTAL 93003 MEAN 254 MAX 1600 MIN 96 AC-FT 184500 CFSM .33 IN. 4.49 TOTAL 76434 MEAN 209 MAX 3460 MIN 80 AC-FT 151600 CFSM .27 IN. 3.69 **CAL YR 1988** WTR YR 1989 #### 05389500 MISSISSIPPI RIVER AT MCGREGOR, IA LOCATION.--Lat 43°01'29", long 91°10'21", in SE1/4 SE1/4 sec.22, T.95 N., R.3 W., Clayton County, Hydrologic Unit 07050001, on right bank in city park at east end of Main Street in McGregor, 2.6 mi upstream from Wisconsin River, 4.3 mi downstream from Yellow River, and at mile 633.4 upstream from Ohio River. DRAINAGE AREA. -- 67,500 mi<sup>2</sup>, approximately. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- August 1936 to current year. REVISED RECORDS. -- WDR IA-75-1: 1974. GAGE.--Water-stage recorder. Datum of gage is 604.84 ft above NGVD. Prior to June 1, 1937, and since June 2, 1939, auxiliary water-stage recorder; June 1, 1937 to June 1, 1939, auxiliary nonrecording gage 14.1 mi upstream in tailwater of dam 9, at datum 5.30 ft lower. REMARKS.--Estimated daily discharges: Dec. 11 to Jan. 30, and Feb. 2 to Mar. 22. Records good except those for estimated daily discharges and for discharges less than 10,000 ft<sup>3</sup>/s, which are fair. Stage-discharge relation affected by backwater from Wisconsin River and Lock and Dam No. 10. Minor flow regulation caused by navigation dams. U.S. Army Corps of Engineers data collection platform at station. AVERAGE DISCHARGE. -- 53 years, 35,300 ft3/s, 7.10 in/yr, 25,570,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD. --Maximum daily discharge, 276,000 ft<sup>3</sup>/s Apr. 24, 1965; maximum gage height, 25.38 ft Apr. 24, 1965; minimum daily discharge, 6,200 ft<sup>3</sup>/s Dec. 9, 1936; minimum gage height, -0.86 ft Aug. 18, 1936. EXTREMES OUTSIDE PERIOD OF RECORD. -- Maximum stage since at least 1828, that of Apr. 24, 1965. EXTREMES FOR CURRENT YEAR.--Maximum daily discharge, 103,000 ft<sup>3</sup>/s Apr. 2; maximum gage height, 13.85 ft Apr. 3,4; minimum daily discharge, 9,310 ft<sup>3</sup>/s Aug. 15; minimum gage height, 5.90 ft Oct. 7. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | | | DISCL | MOE, COBIC | , FEET FE | SECOND | MEAN VALU | ES CETOB | EK 1900 1 | O BELLEND | LK 1909 | | | |-----------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 19900 | 14400 | 19500 | 17100 | 16900 | 14500 | 98700 | 42800 | 50200 | 27700 | 12800 | 16600 | | 2 | 21400 | 16100 | 18900 | 16000 | 16500 | 14600 | 103000 | 42600 | 51500 | 27300 | 14400 | 18800 | | 3 | 23200 | 15700 | 18900 | 15100 | 15700 | 14900 | 102000 | 42700 | 53500 | 25800 | 16400 | 18500 | | 4 | 23600 | 16400 | 19500 | 14800 | 16000 | 15000 | 98700 | 43100 | 59600 | 24300 | 16400 | 17200 | | 5 | 20600 | 18100 | 20700 | 14900 | 16300 | 14900 | 93200 | 46100 | 65700 | 23900 | 17600 | 18900 | | 6 | 16300 | 20000 | 21600 | 14100 | 16500 | 14800 | 86600 | 46800 | 66700 | 24100 | 18200 | 23200 | | 7 | 16100 | 19900 | 20900 | 14200 | 16500 | 14600 | 80500 | 47100 | 59800 | 24000 | 18100 | 26800 | | 8 | 17000 | 18800 | 20000 | 13900 | 16400 | 14500 | 76300 | 46700 | 48900 | 23100 | 15800 | 28400 | | 9 | 17300 | 17800 | 19100 | 13300 | 16200 | 14400 | 71900 | 46300 | 39900 | 21800 | 11900 | 29600 | | 10 | 17800 | 17200 | 18100 | 13400 | 15900 | 14300 | 67000 | 45300 | 35200 | 21100 | 11000 | 29300 | | 11 | 18200 | 17400 | 14700 | 13500 | 15800 | 15400 | 68200 | 44000 | 30500 | 20500 | 9740 | 26900 | | 12 | 17000 | 16300 | 13000 | 13400 | 17000 | 18800 | 70200 | 43200 | 26200 | 19500 | 9620 | 23900 | | 13 | 15900 | 16100 | 11100 | 13400 | 16900 | 27800 | 71100 | 42700 | 22000 | 18100 | 9650 | 20100 | | 14 | 16100 | 16200 | 10500 | 13400 | 16800 | 35200 | 72000 | 42300 | 18800 | 16900 | 9340 | 16700 | | 15 | 15000 | 16900 | 10700 | 13500 | 16800 | 46500 | 71200 | 41200 | 16900 | 16400 | 9310 | 14100 | | 16 | 15200 | 19700 | 10500 | 13800 | 16900 | 45700 | 68900 | 40400 | 17700 | 15300 | 10700 | 12700 | | 17 | 14700 | 20600 | 10900 | 14000 | 17300 | 44200 | 65700 | 39500 | 20900 | 14600 | 13000 | 12600 | | 18 | 14800 | 22800 | 11800 | 14100 | 17300 | 36500 | 61300 | 37900 | 28300 | 13500 | 14900 | 13800 | | 19 | 14300 | 23700 | 13000 | 14200 | 17200 | 30000 | 56100 | 36300 | 33000 | 14000 | 15500 | 13700 | | 20 | 14900 | 24500 | 14500 | 14400 | 17200 | 24900 | 51800 | 35700 | 34200 | 14100 | 16000 | 14300 | | 21 | 15800 | 25400 | 16700 | 14300 | 17200 | 20000 | 50400 | 34700 | 34100 | 15500 | 17000 | 15300 | | 22 | 17000 | 26500 | 17000 | 14300 | 17200 | 16000 | 50700 | 31900 | 31200 | 16400 | 18400 | 15700 | | 23 | 16700 | 27200 | 16800 | 14400 | 17200 | 17600 | 51500 | 29500 | 26200 | 16600 | 18600 | 16600 | | 24 | 16500 | 27400 | 17100 | 14700 | 16400 | 18300 | 51300 | 28300 | 22500 | 17100 | 18100 | 17200 | | 25 | 16300 | 26200 | 17100 | 14700 | 15700 | 26300 | 50900 | 28000 | 20300 | 17400 | 17100 | 16100 | | 26<br>27<br>28<br>29<br>30<br>31 | 15700<br>15400<br>14500<br>14500<br>14900<br>14700 | 25200<br>24500<br>21700<br>19900<br>19700 | 17200<br>17700<br>19000<br>18500<br>18100<br>17900 | 14900<br>14900<br>15500<br>15900<br>16400<br>18300 | 15100<br>14400<br>14400<br> | 40200<br>56200<br>68200<br>77400<br>82400<br>90800 | 49300<br>46800<br>45800<br>45400<br>44500 | 30500<br>33200<br>35100<br>38100<br>40900<br>47000 | 18800<br>19300<br>21800<br>24400<br>26000 | 17000<br>15600<br>14200<br>13700<br>12400<br>12000 | 16300<br>15600<br>16600<br>17000<br>16200<br>15800 | 15500<br>16300<br>16400<br>15600<br>16200 | | TOTAL<br>MEAN<br>MAX<br>MIN<br>AC-FT<br>CFSM<br>IN. | 521300<br>16820<br>23600<br>14300<br>1034000<br>.25 | 612300<br>20410<br>27400<br>14400<br>1214000<br>.30<br>.34 | 511000<br>16480<br>21600<br>10500<br>1014000<br>.24<br>.28 | 452800<br>14610<br>18300<br>13300<br>898100<br>.22<br>.25 | 459700<br>16420<br>17300<br>14400<br>911800<br>.24<br>.25 | 984900<br>31770<br>90800<br>14300<br>1954000<br>.47 | 2021000<br>67370<br>103000<br>44500<br>4009000<br>1.00<br>1.11 | 1229900<br>39670<br>47100<br>28000 | 1024100<br>34140<br>66700<br>16900<br>2031000<br>.51 | 573900<br>18510<br>27700<br>12000<br>1138000<br>.27<br>.32 | 457060<br>14740<br>18600<br>9310<br>906600<br>.22<br>.25 | 557000<br>18570<br>29600<br>12600<br>1105000<br>.28<br>.31 | CAL YR 1988 TOTAL 7571670 MEAN 20690 MAX 57200 MIN 8990 AC-FT 15020000 CFSM .31 IN. 4.17 WTR YR 1989 TOTAL 9404960 MEAN 25770 MAX 103000 MIN 9310 AC-FT 18650000 CFSM .38 IN. 5.18 # 05389500 MISSISSIPPI RIVER AT MCGREGOR, IA--Continued WATER-QUALITY RECORDS LOCATION.--Samples collected by boat 1.5 mi downstream from discharge station. Prior to April 1981, at bridge on U.S. Highway 18, 1.2 mi upstream from gage. PERIOD OF RECORD. -- Water years 1975 to current year. PERIOD OF DAILY RECORD. -SPECIFIC CONDUCTANCE: July 1975 to current year. WATER TEMPERATURES: July 1975 to current year. SUSPENDED-SEDIMENT DISCHARGE: July 1975 to current year. REMARKS. -- Records of specific conductance are obtained from suspended-sediment samples at time of analysis. EXTREMES FOR PERIOD OF DAILY RECORD. -SEDIMENT CONCENTRATIONS: Maximum daily mean, 2350 mg/L Mar. 19, 1986; minimum daily mean, 1 mg/L Dec. 23-25, 1976, Dec. 20, 28, 1977, Feb. 13-17, 23, Mar. 5-9, 1986, Dec. 2, 6, 8-11, 1987, Dec. 26, 1988 to Jan. 4, 1989, Jan. 9-11, and Feb. 20, 21, 1989. SEDIMENT LOADS: Maximum daily, 363,000 tons Mar. 19, 1986; minimum daily, 31 tons Dec. 25, 1976. EXTREMES FOR CURRENT YEAR -SEDIMENT CONCENTRATIONS: Maximum daily mean, 193 mg/L May 17; minimum daily mean, 1 mg/L Dec. 26 to Jan. 4, Jan. 9-11, and Feb. 20, 21. SEDIMENT LOADS: Maximum daily, 20,600 tons May. 17; minimum daily, 36 tons Jan. 9-11. | | SPECIFIC | CONDUCTA | NCE MICR | OSIEMENS/ | CM AT 25<br>INSTAN | 5 DEG C,<br>NTANEOUS | WATER YEAR<br>VALUES | OCTOBER | 1988 TO | SEPTEMBER | 1989 | | |--------------|----------|----------|----------|-----------|--------------------|----------------------|----------------------|---------|---------|-----------|------|-----| | DAY | OCT | иол | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | | 385 | | | 385 | | | | | | | | | 1<br>2<br>3 | 360 | | 350 | 405 | | | | | | | 360 | | | 3 | | | | | 415 | 450 | 310 | | | 345 | | | | 4 | | 380 | | | | | | 355 | 315 | | 370 | | | 5 | | | 355 | 395 | | | | | 305 | | | | | 6 | 395 | | | | 405 | 480 | 320 | | | | | 345 | | 7 | | | | | | | | 340 | | | | | | 8<br>9<br>10 | | | | | | | | | | | | | | . 9 | | 385 | 370 | 415 | | | | | | 340 | 360 | 350 | | 10 | 410 | | | | 430 | 460 | | 335 | | 335 | | | | 11 | | | | | | 425 | | | 320 | | 365 | 360 | | 12<br>13 | | 405 | 390 | | | | 330 | | | | | 365 | | 13 | | | | 420 | 450 | 380 | | | | 330 | | 350 | | 14 | 405 | | | | | | | | | | 340 | | | 15 | | 405 | | | | 395 | 315 | 330 | | | | 365 | | 16 | | | | | | | | | 325 | | | | | 17 | | 400 | 380 | | 440 | 405 | 345 | | | 340 | 350 | | | 18 | 395 | | | | | | | 325 | | | | | | 19 | | | | | | | | | | | | 365 | | 20 | | | 380 | | 425 | 380 | 355 | 345 | | 340 | | | | 21 | 420 | 390 | | | | | | | 320 | | | | | 22 | | | | | | | | | | | 360 | | | 23 | | | | 425 | | | | | | | | | | 24 | | | 390 | | 410 | 410 | 340 | 345 | 320 | 325 | | 370 | | 25 | 400 | 380 | | | | | | | 320 | | 365 | | | 26 | 380 | | 395 | | | | | | | | | | | 27 | | | | 430 | 430 | 375 | 340 | | | | 345 | | | 28 | | 380 | | | | | | | 295 | | | | | 29 | | | 405 | | | | | 330 | 310 | 345 | | 385 | | 30 | | | | 410 | | | 355 | | | | | | | 31 | | | | | | 320 | | | | 370 | 350 | | # 05389500 MISSISSIPPI RIVER AT MCGREGOR, IA--Continued WATER-QUALITY RECORDS WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 INSTANTANEOUS VALUES DAY OCT NOV APR JUL SEP DEC JAN FEB JUN AUG MAR MAY 10.0 6.0 ---------1.0 .0 ------\_\_\_ ---.0 5.0 ---29.0 ------. === 5.0 14.0 20.0 26.0 5 ---1.0 20.0 .0 ---9.0 \_\_\_ ---.0 7.0 ---6 7 22.0 15.0 .0 ---8 5.0 29.0 27.0 25.0 10 11.0 15.0 27.0 .0 1.0 ---2.0 ---20.0 ---------25.5 20.0 11 12 13 14 15 ------.0 4.5 10.0 ---\_---.0 1.0 29.0 11.0 ---24.0 ---4.0 1.0 10.0 15.0 17.0 .0 11.0 20.0 ------16 17 18 19 20 ---.0 ------4.0 .0 28.0 26.0 9.0 18.0 ..0 23.0 ---------.0 11.0 18.0 28.0 .0 21 22 23 24 25 ------. \_\_\_\_ ------9.0 4.0 ------21.0 ---25.0 1.0 ---12.0 19.0 24.0 25.0 4.0 ---29.0 .0 8.0 3.0 26.0 ---------26 27 28 29 30 31 8.0 .0 === ---------.0 4.0 15.0 24.0 ------3.0 .0 20.0 24.0 29.0 14.0 SEDIMENT, SUSPENDED CONCENTRATION (MG/L), WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 6.0 26.0 24.0 | DAY | MEAN<br>CONCEN-<br>TRATION<br>(MG/L) | LOAD<br>(TONS/<br>DAY) | |----------------------------------|--------------------------------------|------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|----------------------------------|--------------------------------------|------------------------------------|--------------------------------------|-----------------------------------|--------------------------------------|----------------------------------------------| | | OCTO | BER | NOVEM | BER | DECEM | BER | JANUA | RY | FEBRU | ARY | MARCH | | | 1<br>2<br>3<br>4<br>5 | 22<br>22<br>21<br>18<br>17 | 1180<br>1270<br>1320<br>1150<br>946 | 42<br>39<br>43<br>31<br>29 | 1630<br>1700<br>1820<br>1370<br>1420 | 7<br>7<br>6<br>5<br>5 | 369<br>357<br>306<br>263<br>279 | 1<br>1<br>1<br>2 | 46<br>43<br>41<br>40<br>80 | 42<br>25<br>4<br>3<br>3 | 1920<br>1110<br>170<br>130<br>132 | 3<br>3<br>2<br>2<br>2 | 117<br>118<br>80<br>81<br>80 | | 6<br>7<br>8<br>9<br>10 | 15<br>13<br>18<br>22<br>20 | 660<br>565<br>826<br>1030<br>961 | 27<br>25<br>24<br>23<br>22 | 1460<br>1340<br>1220<br>1110<br>1020 | 4<br>4<br>3<br>3 | 233<br>226<br>216<br>155<br>147 | 3<br>2<br>2<br>1<br>1 | 114<br>77<br>75<br>36<br>36 | 4<br>4<br>4<br>4 | 178<br>178<br>177<br>175<br>172 | 3<br>3<br>3<br>4<br>12 | 120<br>118<br>117<br>156<br>463 | | 11<br>12<br>13<br>14<br>15 | 21<br>21<br>22<br>38<br>35 | 1030<br>964<br>944<br>1650<br>1420 | 21<br>40<br>35<br>25<br>18 | 987<br>1760<br>1520<br>1090<br>821 | 3<br>4<br>4<br>3<br>3 | 119<br>140<br>120<br>85<br>87 | 1<br>2<br>2<br>2<br>2<br>2 | 36<br>72<br>72<br>72<br>73 | 3<br>3<br>2<br>2<br>2<br>2 | 128<br>138<br>91<br>91<br>91 | 51<br>78<br>97<br>135<br>152 | 2120<br>3960<br>7280<br>12800<br>19100 | | 16<br>17<br>18<br>19<br>20 | 29<br>23<br>18<br>15<br>14 | 1190<br>913<br>719<br>579<br>563 | 18<br>18<br>17<br>16<br>15 | 957<br>1000<br>1050<br>1020<br>992 | 2<br>2<br>2<br>2<br>2 | 57<br>59<br>64<br>70<br>78 | 3<br>4<br>4<br>4 | 112<br>151<br>152<br>153<br>156 | 2<br>2<br>2<br>2<br>1 | 91<br>93<br>93<br>93<br>46 | 105<br>30<br>27<br>29<br>29 | 13000<br>3580<br>2660<br>2350<br>1950 | | 21<br>22<br>23<br>24<br>25 | 14<br>43<br>54<br>47<br>28 | 597<br>1970<br>2430<br>2090<br>1230 | 13<br>13<br>14<br>15<br>15 | 892<br>930<br>1030<br>1110<br>1060 | 2<br>2<br>2<br>2<br>2<br>2 | 90<br>92<br>91<br>92<br>92 | 4<br>4<br>4<br>3 | 154<br>154<br>156<br>159<br>119 | 1<br>2<br>2<br>2<br>2 | 46<br>93<br>93<br>89<br>85 | 29<br>28<br>27<br>25<br>30 | 1570<br>1210<br>1280<br>1240<br>2130 | | 26<br>27<br>28<br>29<br>30<br>31 | 22<br>29<br>24<br>23<br>22<br>33 | 933<br>1210<br>940<br>900<br>885<br>1310 | 12<br>10<br>8<br>7<br>7 | 816<br>661<br>469<br>376<br>372 | 1<br>1<br>1<br>1<br>1 | 46<br>48<br>51<br>50<br>49<br>48 | 3<br>2<br>2<br>2<br>2<br>4 | 121<br>80<br>84<br>86<br>89<br>198 | 2<br>2<br>3<br> | 82<br>78<br>117<br> | 37<br>43<br>42<br>40<br>39<br>36 | 4020<br>6520<br>7730<br>8360<br>8680<br>8830 | | TOTAL | ւ | 34375 | | 33003 | | 4179 | | 3037 | | 5980 | | 121820 | # 05389500 MISSISSIPPI RIVER AT MCGREGOR, IA--Continued # WATER-QUALITY RECORDS SEDIMENT, SUSPENDED CONCENTRATION (MG/L), WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DAY | MEAN<br>CONCEN-<br>TRATION<br>(MG/L) | LOAD<br>(TONS/<br>DAY) | |----------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|----------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------------|--------------------------------------|----------------------------------------------|--------------------------------------|--------------------------------------| | | APR | IL | MAY | | JUN | E | JUL | Y | AUGU | ST | SEPTEM | BER | | 1 | 30 | 7990 | 32 | 3700 | 41 | 5560 | 36 | 2690 | 28 | 968 | 25 | 1120 | | 2 | 24 | 6670 | 28 | 3220 | 56 | 7790 | 44 | 3240 | 34 | 1320 | 20 | 1020 | | 3 | 18 | 4960 | 32 | 3690 | 28 | 4040 | 38 | 2650 | 38 | 1680 | 26 | 1300 | | 4 | 18 | 4800 | 43 | 5000 | 20 | 3220 | 35 | 2300 | 42 | 1860 | 33 | 1530 | | 5 | 18 | 4530 | 52 | 6470 | 15 | 2660 | 34 | 2190 | 59 | 2800 | 23 | 1170 | | 6 | 22 | 5140 | 42 | 5310 | 15 | 2700 | 31 | 2020 | 74 | 3640 | 32 | 2000 | | 7 | 34 | 7390 | 29 | 3690 | 28 | 4520 | 29 | 1880 | 73 | 3570 | 55 | 3980 | | 8 | 38 | 7830 | 29 | 3660 | 72 | 9510 | 34 | 2120 | 55 | 2350 | 39 | 2990 | | 9 | 38 | 7380 | 31 | 3880 | 112 | 12100 | 47 | 2770 | 35 | 1120 | 32 | 2560 | | 10 | 37 | 6690 | 32 | 3910 | 65 | 6180 | 44 | 2510 | 30 | 891 | 33 | 2610 | | 11 | 37 | 6810 | 42 | 4990 | 31 | 2550 | 37 | 2050 | 41 | 1080 | 34 | 2470 | | 12 | 37 | 7010 | 28 | 3270 | 30 | 2120 | 44 | 2320 | 49 | 1270 | 37 | 2390 | | 13 | 33 | 6340 | 92 | 10600 | 30 | 1780 | 42 | 2050 | 43 | 1120 | 40 | 2170 | | 14 | 29 | 5640 | 123 | 14000 | 29 | 1470 | 35 | 1600 | 30 | 757 | 40 | 1800 | | 15 | 26 | 5000 | 153 | 17000 | 28 | 1280 | 34 | 1510 | 25 | 628 | 35 | 1330 | | 16 | 25 | 4650 | 180 | 19600 | 27 | 1290 | 43 | 1780 | 20 | 578 | 25 | 857 | | 17 | 28 | 4970 | 193 | 20600 | 26 | 1470 | 82 | 3230 | 24 | 842 | 24 | 816 | | 18 | 31 | 5130 | 138 | 14100 | 25 | 1910 | 150 | 5470 | 33 | 1330 | 32 | 1190 | | 19 | 32 | 4850 | 63 | 6170 | 25 | 2230 | 144 | 5440 | 41 | 1720 | 49 | 1810 | | 20 | 34 | 4760 | 29 | 2800 | 25 | 2310 | 86 | 3270 | 50 | 2160 | 62 | 2390 | | 21 | 33 | 4490 | 22 | 2060 | 25 | 2300 | 72 | 3010 | 55 | 2520 | 68 | 2810 | | 22 | 33 | 4520 | 20 | 1720 | 25 | 2110 | 53 | 2350 | 46 | 2290 | 73 | 3090 | | 23 | 33 | 4590 | 22 | 1750 | 25 | 1770 | 40 | 1790 | 43 | 2160 | 65 | 2910 | | 24 | 33 | 4570 | 25 | 1910 | 25 | 1520 | 27 | 1250 | 42 | 2050 | 52 | 2410 | | 25 | 32 | 4400 | 25 | 1890 | 23 | 1260 | 28 | 1320 | 39 | 1800 | 50 | 2170 | | 26<br>27<br>28<br>29<br>30<br>31 | 36<br>48<br>44<br>46<br>35 | 4790<br>6070<br>5440<br>5640<br>4210 | 24<br>24<br>23<br>23<br>22<br>18 | 1980<br>2150<br>2180<br>2370<br>2430<br>2280 | 22<br>20<br>30<br>40<br>40 | 1120<br>1040<br>1770<br>2640<br>2810 | 27<br>26<br>28<br>46<br>43<br>25 | 1240<br>1100<br>1070<br>1700<br>1440<br>810 | 34<br>32<br>45<br>60<br>64<br>41 | 1500<br>1350<br>2020<br>2750<br>2800<br>1750 | 77<br>111<br>142<br>157<br>133 | 3220<br>4890<br>6290<br>6610<br>5820 | | TOTA:<br>YEAR | | 167260<br>845631 | | 178380 | | 95030 | | 70170 | | 54674 | | 77723 | PARTICLE-SIZE DISTRIBUTION OF SUSPENDED SEDIMENT, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DA | TE | TIME | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | SEDI-<br>MENT,<br>SUS-<br>PENDED<br>(MG/L)<br>(80154) | SEDI-<br>MENT,<br>DIS-<br>CHARGE,<br>SUS-<br>PENDED<br>(T/DAY)<br>(80155) | SED.<br>SUSP.<br>SIEVE<br>DIAM.<br>Z FINER<br>THAN<br>.062 MM<br>(70331) | |-----------|----|------|-------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------| | OCT<br>13 | | 1205 | 12.0 | 25900 | 21 | 1470 | 88 | | APR | • | 1203 | 13.0 | 23900 | 21 | 1470 | 00 | | 07<br>MAY | • | 1305 | 8.0 | 76900 | 38 | 7890 | 96 | | 11 | | 1135 | 17.0 | 46800 | 42 | 5310 | 98 | | JUN<br>28 | • | 1130 | 27.5 | 19600 | 30 | 1590 | 94 | | AUG<br>02 | • | 1100 | 27.0 | 12900 | 33 | 1150 | 97 | | SEP<br>13 | | 1200 | 21.0 | 18700 | 43 | 2170 | 99 | PARTICLE-SIZE DISTRIBUTION OF SURFACE BED MATERIAL, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | TIME | NUMBER<br>OF<br>SAM-<br>PLING<br>POINTS<br>(COUNT)<br>(00063) | BED<br>MAT.<br>SIEVE<br>DIAM.<br>Z FINER<br>THAN<br>.062 MM<br>(80164) | BED<br>MAT.<br>SIEVE<br>DIAM.<br>7 FINER<br>THAN<br>.125 MM<br>(80165) | BED<br>MAT.<br>SIEVE<br>DIAM.<br>Z FINER<br>THAN<br>.250 MM<br>(80166) | BED<br>MAT.<br>SIEVE<br>DIAM.<br>Z FINER<br>THAN<br>.500 MM<br>(80167) | BED<br>MAT.<br>SIEVE<br>DIAM.<br>Z FINER<br>THAN<br>1.00 MM<br>(80168) | BED<br>MAT.<br>SIEVE<br>DIAM.<br>Z FINER<br>THAN<br>2.00 MM<br>(80169) | BED<br>MAT.<br>SIEVE<br>DIAM.<br>Z FINER<br>THAN<br>4.00 MM<br>(80170) | BED<br>MAT.<br>SIEVE<br>DIAM.<br>Z FINER<br>THAN<br>8.00 MM<br>(80171) | BED<br>MAT.<br>SIEVE<br>DIAM.<br>Z FINER<br>THAN<br>16.0 MM<br>(80172) | |-----------|------|---------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------| | OCT | | | | | | | | | | | | | 13<br>APR | 1150 | 6 | 7 | 10 | 28 | 77 | 87 | 92 | 97 | 100 | | | 07<br>MAY | 1340 | 3 | 1 | 3 | 19 | 85 | 98 | 99 | 100 | | | | 11<br>JUN | 1225 | 2 | | 0 | 10 | 76 | 97 | 99 | 100 | | | | 28 | 1130 | 1 | 1 | 1 | 11 | 64 | 88 | 95 | 99 | 100 | | | AUG<br>02 | 1100 | 2 | 1 | 3 | 42 | 97 | 100 | 98 | 99 | 100 | | | SEP<br>13 | 1200 | 5 | 5 | 11 | 38 | 82 | 93 | 96 | 98 | 99 | 100 | #### 05411600 TURKEY RIVER AT SPILLVILLE, IA LOCATION.--Lat 43°12'28", long 91°56'56", in SW1/4 NE1/4 sec.19, T.97 N., R.9 W., Winneshiek County, Hydrologic Unit 07060004, on right bank 60 ft downstream from bridge on county highway W14 at north edge of Spillville, 150 ft downstream from old mill dam, 0.6 mi upstream from Wonder Creek and at mile 98.5. DRAINAGE AREA, -- 177 mi2. PERIOD OF RECORD.--June 1956 to September 1973, October 1977 to current year. Monthly discharge only for some periods, published in WSP 1728. REVISED RECORDS. -- WDR IA-75-1: 1974. GAGE. -- Water-stage recorder. Datum of gage is 1,034.92 ft above NGVD. REMARKS.--Estimated daily discharges: Oct. 26-30, Nov. 21-23, and Nov. 28 to Mar. 31. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. AVERAGE DISCHARGE. -- 29 years, 122 ft3/s, 9.36 in/yr, 88,390 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 8,600 ft<sup>3</sup>/s July 12, 1972, gage height, 16.73 ft; minimum daily discharge, 4.4 ft<sup>3</sup>/s Feb. 1-3, 1959. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in June 1947 reached a stage of 18.4 ft, from floodmark, discharge, about 10,000 ft<sup>3</sup>/s. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 1,200 ft3/s and maximum (\*): | | | Discharge | Gage height | | | Discharge | Gage height | |---------|------|-----------|-------------|------|------|----------------------|-------------| | Date | Time | (ft³/s) | (ft) | Date | Time | (ft <sup>3</sup> /s) | (£t) | | Mar. 12 | 0115 | *800 | (a) *9.61 | | | | | DISCHARGE CURIC FEET PER SECOND. WATER VEAR OCTORER 1988 TO SEPTEMBER 1989 (a) Ice jam Minimum discharge, $6.4~\rm{ft^3/s}$ Aug. 18, 19. | | | DISCHARG | E, CUBIC | FEET PER | SECOND, | WATER YEAR<br>EAN VALUES | OCTOBER | 1988 TO | SEPTEMBER | 1989 | | | |-----------------------------------|---------------------------------------|----------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------------|-------------------------------------------------|------------------------------------------------|----------------------------------------|------------------------------------------|------------------------------------------|---------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | 15<br>15<br>15<br>14<br>15 | 14<br>13<br>14<br>14<br>15 | 11<br>12<br>13<br>14<br>15 | 11<br>10<br>10<br>9.5<br>9.0 | 30<br>18<br>12<br>8.0<br>10 | 13<br>12<br>12<br>13<br>15 | 47<br>45<br>40<br>37<br>34 | 76<br>65<br>58<br>55<br>52 | 50<br>38<br>32<br>29<br>25 | 12<br>12<br>12<br>11<br>10 | 7.6<br>7.6<br>7.8<br>9.1 | 37<br>32<br>32<br>28<br>24 | | 6<br>7<br>8<br>9<br>10 | 14<br>14<br>15<br>14 | 14<br>13<br>13<br>13<br>12 | 14<br>13<br>12<br>11 | 10<br>11<br>12<br>13<br>12 | 13<br>17<br>14<br>12<br>13 | 14<br>13<br>14<br>15<br>16 | 32<br>31<br>30<br>29<br>28 | 51<br>47<br>45<br>45<br>40 | 23<br>21<br>21<br>20<br>19 | 9.8<br>9.5<br>9.4<br>9.3<br>8.9 | 12<br>10<br>9.3<br>8.6<br>8.1 | 21<br>20<br>19<br>19<br>19 | | 11<br>12<br>13<br>14<br>15 | 12<br>13<br>13<br>13<br>12 | 12<br>13<br>14<br>14<br>14 | 9.5<br>9.0<br>9.5<br>10<br>9.5 | 11<br>11<br>11<br>12<br>12 | 14<br>15<br>16<br>14<br>13 | 100<br>450<br>300<br>400<br>230 | 27<br>26<br>26<br>25<br>24 | 39<br>36<br>34<br>33<br>31 | 19<br>19<br>18<br>18 | 11<br>10<br>9.2<br>8.7<br>8.7 | 7.8<br>7.6<br>7.8<br>7.9<br>7.5 | 17<br>17<br>17<br>15<br>14 | | 16<br>17<br>18<br>19<br>20 | 12<br>13<br>13<br>13<br>14 | 19<br>19<br>18<br>17<br>16 | 9.0<br>8.5<br>9.0<br>10 | 13<br>13<br>14<br>14<br>13 | 12<br>12<br>13<br>13 | 120<br>90<br>74<br>66<br>64 | 24<br>24<br>23<br>24<br>25 | 30<br>27<br>27<br>28<br>28 | 16<br>15<br>14<br>14<br>13 | 8.8<br>8.7<br>12<br>11<br>10 | 7.3<br>7.1<br>6.8<br>7.1<br>7.9 | 13<br>12<br>12<br>11<br>11 | | 21<br>22<br>23<br>24<br>25 | 15<br>16<br>15<br>14<br>15 | 15<br>14<br>15<br>16<br>15 | 11<br>12<br>13<br>13 | 13<br>14<br>15<br>14 | 11<br>12<br>11<br>13<br>15 | 61<br>60<br>120<br>240<br>160 | 25<br>27<br>42<br>76<br>73 | 26<br>25<br>24<br>24<br>25 | 12<br>12<br>14<br>14<br>14 | 10<br>9.8<br>9.6<br>9.9<br>9.7 | 7.1<br>7.0<br>7.4<br>7.3<br>7.0 | 11<br>12<br>11<br>11 | | 26<br>27<br>28<br>29<br>30<br>31 | 14<br>15<br>15<br>16<br>16 | 16<br>16<br>15<br>11<br>10 | 12<br>11<br>11<br>10<br>10 | 13<br>14<br>14<br>15<br>18<br>23 | 16<br>15<br>14<br> | 120<br>96<br>80<br>64<br>56<br>52 | 59<br>53<br>58<br>103<br>101 | 25<br>24<br>23<br>23<br>25<br>29 | 17<br>16<br>14<br>13<br>13 | 8.6<br>7.9<br>7.7<br>7.9<br>8.4<br>8.0 | 7.4<br>7.6<br>12<br>14<br>11 | 10<br>10<br>10<br>10<br>10 | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 439<br>14.2<br>16<br>12<br>871<br>.08 | 434<br>14.5<br>19<br>10<br>861<br>.08<br>.09 | 345.0<br>11.1<br>15<br>8.5<br>684<br>.06 | 398.5<br>12.9<br>23<br>9.0<br>790<br>.07 | 388.0<br>13.9<br>30<br>8.0<br>770<br>.08 | 3140<br>101<br>450<br>12<br>6230<br>.57<br>.66 | 1218<br>40.6<br>103<br>23<br>2420<br>.23<br>.26 | 1120<br>36.1<br>76<br>23<br>2220<br>.20<br>.24 | 580<br>19.3<br>50<br>12<br>1150<br>.11 | 299.5<br>9.66<br>12<br>7.7<br>594<br>.05 | 274.7<br>8.86<br>19<br>6.8<br>545<br>.05 | 496<br>16.5<br>37<br>10<br>984<br>.09 | CAL YR 1988 TOTAL 15465.2 MEAN 42.3 MAX 430 MIN 8.5 AC-FT 30680 CFSM .24 IN. 3.25 WTR YR 1989 TOTAL 9132.7 MEAN 25.0 MAX 450 MIN 6.8 AC-FT 18110 CFSM .14 IN. 1.92 67 #### 05412060 SILVER CREEK NEAR LUANA, IA LOCATION.--Lat 43°01'19", long 91°29'21", in NE1/4 SEC.25, T.95 N., R.6 W., Clayton County, Hydrologic Unit 07060004, on right upstream bank of bridge on county road W70, 2.3 miles south of Highway 52 and 18, and 3.2 miles south of Luana. DRAINAGE AREA. -- 4.39 mi2. PERIOD OF RECORD. -- May 1986 to current year. GAGE. -- Water-stage recorder. REMARKS.--Estimated daily discharges: Oct. 7, 8, 12, Nov. 28, 30, Dec. 10, 13-15, Jan. 17, 19, Feb. 6-8, 10-15, 17-22, 25,26, Feb. 28 to Mar. 4, Mar. 10,11, 14, Mar. 28 to Apr. 4, July 28, Aug. 8, 11, 16-18, 20, and Sept. 2-13. Records fair except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 181 ft3/s Mar. 11, 1989, gage height, 8.78 ft (backwater from ice); no flow, Aug. 21, 1989. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 50 ft3/s and maximum (\*): | Date | Time | Discharge<br>(ft3/s) | Gage height<br>(ft) | Date | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height<br>(ft) | |---------|------|----------------------|---------------------|---------|------|-----------------------------------|---------------------| | Jan. 22 | 1700 | 60 | 6.46 | Mar. 11 | 1540 | *181 | (a)*8.78 | | Jan. 30 | 1615 | 149 | 6,91 | Mar. 14 | 1230 | 160 | (a) 8.53 | | Mar. 10 | 1515 | 120 | (a) 7.51 | Aug. 22 | 1840 | 98 | 6.66 | (a) backwater from ice. No flow, Aug. 21. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 MEAN VALUES | | | | | | • | | | | | | | | |-----------------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|-------------------------------------------------|----------------------------------------|----------------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|----------------------------------------|----------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | .41<br>.26<br>.18<br>.14 | .35<br>.27<br>.19<br>.18<br>.16 | .19<br>.21<br>.24<br>.22<br>.23 | .12<br>.10<br>.09<br>.07<br>.09 | .54<br>.42<br>.34<br>.24<br>.22 | .10<br>.09<br>.09<br>.08<br>.08 | .25<br>.22<br>.17<br>.14<br>.14 | .17<br>.17<br>.17<br>.19<br>.19 | .19<br>.18<br>.24<br>.17 | .12<br>.19<br>.27<br>.22<br>.18 | .03<br>.03<br>.03<br>.15 | 1.5<br>.90<br>.60<br>.40<br>.30 | | 6<br>7<br>8<br>9<br>10 | .28<br>.22<br>.22<br>.22<br>.12 | .14<br>.15<br>.14<br>.15<br>.14 | .25<br>.20<br>.17<br>.15<br>.12 | .11<br>.13<br>.11<br>.06<br>.02 | .21<br>.20<br>.19<br>.17 | .09<br>.09<br>.08<br>.14 | .11<br>.14<br>.16<br>.09 | .17<br>.17<br>.16<br>.20<br>.23 | .14<br>.13<br>.13<br>.13<br>.12 | .17<br>.20<br>.18<br>.22<br>.17 | .14<br>.03<br>.02<br>.03<br>.03 | .24<br>.20<br>.28<br>.26<br>.24 | | 11<br>12<br>13<br>14<br>15 | .14<br>.14<br>.15<br>.21 | .12<br>.20<br>.22<br>.17<br>.29 | .09<br>.07<br>.11<br>.14<br>.10 | .03<br>.03<br>.03<br>.04<br>.05 | .19<br>.20<br>.21<br>.21<br>.19 | 83<br>9.2<br>2.7<br>37<br>.97 | .06<br>.06<br>.05<br>.06 | .22<br>.23<br>.22<br>.21<br>.22 | .12<br>.18<br>.14<br>.10 | .18<br>.21<br>.23<br>.21<br>.24 | .02<br>.06<br>.09<br>.03 | .22<br>.20<br>.18<br>.15<br>.11 | | 16<br>17<br>18<br>19<br>20 | .16<br>.15<br>.15<br>.12<br>.14 | .39<br>.26<br>.22<br>.24<br>.18 | .08<br>.09<br>.13<br>.21 | .07<br>.07<br>.07<br>1.0<br>.50 | .18<br>.18<br>.17<br>.16<br>.15 | . 47<br>. 46<br>. 38<br>. 33<br>. 32 | .06<br>.06<br>.05<br>.04 | .20<br>.18<br>.23<br>.24<br>.20 | .09<br>.09<br>.09<br>.11<br>.13 | .26<br>.15<br>.20<br>.14<br>.09 | .01<br>.01<br>.01<br>.01 | .10<br>.10<br>.10<br>.10 | | 21<br>22<br>23<br>24<br>25 | .21<br>.14<br>.14<br>.11 | .20<br>.20<br>.22<br>.22<br>.23 | .21<br>.22<br>.25<br>.20<br>.16 | .21<br>7.9<br>2.4<br>.66<br>.32 | .14<br>.13<br>.12<br>.13 | . 32<br>. 59<br>. 81<br>. 42<br>. 32 | .08<br>.09<br>.25<br>.17 | .17<br>.17<br>.16<br>.21 | .08<br>.35<br>.27<br>.20<br>.23 | .06<br>.07<br>.07<br>.06 | .00<br>4.9<br>1.3<br>.12<br>.04 | .08<br>.10<br>.10<br>.08<br>.09 | | 26<br>27<br>28<br>29<br>30<br>31 | .26<br>.30<br>.25<br>.21<br>.25 | .30<br>.25<br>.23<br>.20<br>.21 | .16<br>.22<br>.14<br>.07<br>.07 | .27<br>4.8<br>1.0<br>6.9<br>23<br>8.3 | .17<br>.13<br>.11 | .28<br>.27<br>.28<br>.35<br>.32 | .17<br>.17<br>.20<br>.18<br>.17 | .16<br>.13<br>.14<br>.24<br>.33 | .29<br>.29<br>.13<br>.14 | .05<br>.04<br>.02<br>.03<br>.06 | .08<br>.06<br>1.0<br>.20<br>.07<br>.20 | .09<br>.08<br>.09<br>.07<br>.06 | | TOTAL<br>MEAN<br>MAX<br>MIN<br>AC-FT<br>CFSM<br>IN. | 6.24<br>.20<br>.41<br>.09<br>12<br>.05 | 6.42<br>.21<br>.39<br>.12<br>13<br>.05 | 5.14<br>.17<br>.31<br>.07<br>10<br>.04 | 58.55<br>1.89<br>23<br>.02<br>116<br>.43<br>.50 | 5.63<br>.20<br>.54<br>.11<br>11<br>.05 | 160.90<br>5.19<br>83<br>.08<br>319<br>1.18<br>1.36 | 3.69<br>.12<br>.25<br>.04<br>7.3<br>.03 | 6.22<br>.20<br>.33<br>.13<br>.12<br>.05 | 4.80<br>.16<br>.35<br>.08<br>9.5<br>.04 | 4.39<br>.14<br>.27<br>.02<br>8.7<br>.03 | 9.27<br>.30<br>4.9<br>.00<br>18<br>.07 | 7.12<br>.24<br>1.5<br>.06<br>14<br>.05 | CAL YR 1988 TOTAL 488.24 MEAN 1.33 MAX 26 MIN .05 AC-FT 968 CFSM .30 IN. 4.14 WTR YR 1989 TOTAL 278.37 MEAN .76 MAX 83 MIN .00 AC-FT 552 CFSM .17 IN. 2.36 #### 05412070 UNNAMED CREEK NEAR LUANA, IA LOCATION.--Lat 43°02'24", long 91°28'07", in SE 1/4 sec.18, T.95 N., R.5 W., Clayton County, Hydrologic Unit 07060004, on right upstream bank at culvert on the north-south gravel road between county road W70 and county road X16, 0.8 mile south of State Highway 52 and 18 and approximately 1.6 miles south of Luana. DRAINAGE AREA. -- 1.15 mi2. PERIOD OF RECORD. -- May 1986 to current year. GAGE. -- Water-stage recorder. REMARKS.--Estimated daily discharges: Jan. 6 to Mar. 7. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 96 ft3/s Aug. 13, 1987, gage height, 11.81 ft; maximum gage height, 11.84 ft, Mar. 1, 1988, (backwater from ice); no flow at times each year. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 25 ft3/s and maximum (\*); | | | Discharge | Gage height | | | Discharge | Gage height | |---------|------|----------------------|-------------|---------|------|----------------------|-------------| | Date | Time | (ft <sup>3</sup> /s) | (ft) | Date | Time | (ft <sup>3</sup> /s) | (ft) | | Mar. 11 | 1500 | 37 | (a) *11.46 | Mar. 14 | 1115 | *43 | (a) 11.45 | (a) Backwater from ice No flow for many days. | | | DISCHARGE | , CUBIC | FEET PER | SECOND, | WATER YEAR<br>EAN VALUES | OCTOBER | 1988 TO | SEPTEMBER | 1989 | | | |-----------------------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|------------------------------------------------|----------------------------------|----------------------------------------|----------------------------------|-----------------------------------------|------------------------------------------|------------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | Jun | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | .00<br>.00<br>.00<br>.00 .00<br>.00<br>.00<br>.13<br>.14 | 1.5<br>.00<br>.00<br>.01<br>.00 | | 6<br>7<br>8<br>9<br>10 | .00<br>.00<br>.00<br>.00 | .00<br>.00<br>.00<br>.00 | .00<br>.00<br>.00<br>.00 | .00<br>.00<br>.00<br>.00 | .00<br>.00<br>.00<br>.00 | .00<br>.00<br>.00<br>.05<br>7.0 | .00<br>.00<br>.00<br>.00 | .00<br>.00<br>.00<br>.00 | .00<br>.00<br>.00<br>.00 | .00<br>.00<br>.00<br>.00 | .00<br>.00<br>.00<br>.00 | .00<br>.00<br>.16<br>.70<br>.02 | | 11<br>12<br>13<br>14<br>15 | .00<br>.00<br>.00<br>.00 | .00<br>.00<br>.00<br>.00 | .00<br>.00<br>.00<br>.00 | .00<br>.00<br>.00<br>.00 | .00<br>.00<br>.00<br>.00 | 6.9<br>2.5<br>.24<br>5.1<br>.18 | .00<br>.00<br>.00<br>.00 | .00<br>.00<br>.00<br>.00 | .00<br>.00<br>.00<br>.00 | .00<br>.00<br>.00<br>.00 | .00<br>.00<br>.00<br>.00 | .00<br>.00<br>.00<br>.00 | | 16<br>17<br>18<br>19<br>20 | .00<br>.00<br>.00<br>.00 | .00<br>.00<br>.00<br>.00 | .00<br>.00<br>.00<br>.00 | .00<br>.00<br>.00<br>.00 | .00<br>.00<br>.00<br>.00 | .08<br>.01<br>.00<br>.00 | .00<br>.00<br>.00<br>.00 | .00<br>.00<br>.00<br>.00 | .00<br>.00<br>.00<br>.00 | .00<br>.00<br>.06<br>.08<br>.01 | .00<br>.00<br>.00<br>.00 | .00<br>.00<br>.00<br>.00 | | 21<br>22<br>23<br>24<br>25 | .00<br>.00<br>.00<br>.00 | .00<br>.00<br>.00<br>.00 | .00<br>.00<br>.00<br>.00 | .00<br>.00<br>.00<br>.00 | .00<br>.00<br>.00<br>.00 | . 23<br>. 82<br>. 70<br>. 06<br>. 00 | .00<br>.00<br>.00<br>.00 | .00<br>.00<br>.00<br>.00 | .00<br>.00<br>.00<br>.00 | .00<br>.00<br>.00<br>.00 | .00<br>.34<br>.07<br>.00 | .00<br>.00<br>.00<br>.00 | | 26<br>27<br>28<br>29<br>30<br>31 | .00<br>.00<br>.00<br>.00<br>.00 | .00<br>.00<br>.00<br>.00 | .00<br>.00<br>.00<br>.00 | .00<br>.00<br>.00<br>.00<br>.00 | .00 | .00<br>.00<br>.00<br>.00<br>.00 | .00<br>.00<br>.00<br>.00 | .00<br>.00<br>.00<br>.00<br>.00 | .00<br>.00<br>.00<br>.00 | .00<br>.00<br>.00<br>.00<br>.00 | .01<br>.00<br>1.4<br>.00<br>.00 | .00<br>.00<br>.00<br>.00 | | TOTAL<br>MEAN<br>MAX<br>MIN<br>AC-FT<br>CFSM<br>IN. | 0.00<br>.00<br>.00<br>.00<br>.00 | 0.00<br>.00<br>.00<br>.00<br>.00 | 0.00<br>.00<br>.00<br>.00<br>.00 | 0.00<br>.00<br>.00<br>.00<br>.00 | 0.00<br>.00<br>.00<br>.00<br>.00 | 24.14<br>.78<br>7.0<br>.00<br>48<br>.68<br>.78 | 0.00<br>.00<br>.00<br>.00<br>.00 | 0.00<br>.00<br>.00<br>.00<br>.00<br>.0 | 0.00<br>.00<br>.00<br>.00<br>.00 | 0.15<br>.005<br>.08<br>.00<br>.3<br>.00 | 2.18<br>.070<br>1.4<br>.00<br>4.3<br>.06 | 2.39<br>.080<br>1.5<br>.00<br>4.7<br>.07 | CAL YR 1988 TOTAL 82.87 MEAN .23 MAX 7.0 MIN .00 AC-FT 164 CFSM .20 IN. 2.68 WTR YR 1989 TOTAL 28.86 MEAN .079 MAX 7.0 MIN .00 AC-FT 57 CFSM .07 IN. .93 #### 05412100 ROBERTS CREEK ABOVE SAINT OLAF, IA LOCATION.--Lat 42°55'49", long 91°23'03", in NW1/4 sec.25, T.94 N., R.5 W., Clayton County, Hydrologic Unit 07060004, on left downstream bank at bridge on road X28, 0.1 mi north of county road B65, on north edge of St. Olaf. DRAINAGE AREA. -- 70.7 mi2. PERIOD OF RECORD. -- September 1957 to July 1977 (operated as a low-flow station only), March 1986 to current year. GAGE. -- Water-stage recorder. Datum of gage is 826.73 ft above NGVD. REMARKS.--Estimated daily discharges: Nov. 29 to Mar. 17, June 25, June 29 to July 16, Aug. 22, Aug. 24 to Sept. 6 and Sept. 23. Records poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,020 ft<sup>3</sup>/s Mar. 11, 1989, gage height, 15.77 ft, backwater from ice; no flow July 25 to Aug. 1 and Aug. 8-22, 1989. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 500 ft3/s and maximum (\*): | Mar. 11 1900 *1,020 (a) *15.77 Mar. 14 1,000 ice jam | Date<br>Mar. 11 | Time<br>1900 | Discharge<br>(ft <sup>3</sup> /s)<br>*1,020 | Gage height<br>(ft)<br>(a) *15.77 | Date Tim<br>Mar. 14 | | Gage height<br>(ft)<br>ice jam | |------------------------------------------------------|-----------------|--------------|---------------------------------------------|-----------------------------------|---------------------|--|--------------------------------| |------------------------------------------------------|-----------------|--------------|---------------------------------------------|-----------------------------------|---------------------|--|--------------------------------| (a) Ice jam No flow July 25 to Aug. 1 and Aug. 8-22. | | | DISCHAF | RGE, CUBIC | FEET PER | SECOND | , Water Year<br>Mean Values | OCTOBER | 1988 TO | SEPTEMBER | 1989 | | | |-----------------------------------------------------|-----------------------------------------|------------------------------------------|------------------------------------------|-------------------------------------------|------------------------------------------|-----------------------------------------------------|------------------------------------------|-----------------------------------------|----------------------------------------|------------------------------------------|------------------------------------------------|----------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | .54<br>.47<br>.46<br>.36<br>.30 | 1.4<br>.84<br>1.0<br>1.2<br>1.4 | 1.5<br>1.8<br>1.6<br>1.5 | .74<br>.64<br>.56<br>.52<br>.50 | 9.0<br>2.5<br>1.0<br>.85<br>.78 | .86<br>.80<br>.80<br>.84<br>.78 | 4.0<br>3.6<br>3.0<br>2.2<br>1.7 | 2.0<br>1.6<br>1.7<br>1.9<br>2.1 | 1.9<br>1.1<br>1.2<br>.72<br>.37 | .06<br>.05<br>.05<br>.04<br>.03 | .00<br>.03<br>.03<br>.22<br>6.9 | 10<br>2.0<br>.90<br>.50<br>.25 | | 6<br>7<br>8<br>9<br>10 | .25<br>.32<br>.74<br>.44<br>.41 | 1.5<br>2.3<br>1.2<br>.89<br>1.0 | 1.8<br>1.6<br>1.4<br>1.1 | .58<br>.62<br>.56<br>.50<br>.48 | .72<br>.70<br>.68<br>.70<br>.74 | . 88<br>. 84<br>. 80<br>. 90<br>50 | 1.1<br>.81<br>.75<br>.75<br>.58 | 2.1<br>1.6<br>1.4<br>1.7<br>1.8 | .17<br>.08<br>.06<br>.06 | .03<br>.03<br>.03<br>.02<br>.02 | 1.1<br>.05<br>.00<br>.00 | .16<br>.23<br>.21<br>.26<br>.21 | | 11<br>12<br>13<br>14<br>15 | .27<br>.24<br>.22<br>.23<br>.29 | 1.1<br>1.5<br>2.0<br>2.8<br>4.3 | .78<br>.70<br>.74<br>.84<br>.75 | . 52<br>. 52<br>. 49<br>. 52<br>. 56 | .82<br>.90<br>.94<br>.86<br>.80 | 290<br>110<br>60<br>250<br>90 | . 42<br>. 43<br>. 60<br>. 48<br>. 28 | 1.4<br>.76<br>.40<br>.19 | .09<br>.23<br>.24<br>.16<br>.13 | .10<br>.08<br>.06<br>.04 | .00<br>.00<br>.00<br>.00 | .12<br>.15<br>.04<br>.02<br>.10 | | 16<br>17<br>18<br>19<br>20 | .34<br>.34<br>.49<br>.52<br>.60 | 18<br>10<br>4.6<br>3.4<br>3.2 | .64<br>.68<br>.74<br>1.0<br>1.4 | .52<br>.54<br>.58<br>1.0 | .77<br>.76<br>.72<br>.70 | 20<br>10<br>8.1<br>11<br>12 | .27<br>.27<br>.23<br>.17<br>.23 | .14<br>.09<br>.13<br>.25 | .13<br>.12<br>.15<br>.15 | .03<br>.08<br>.66<br>.74 | .00<br>.0<br>.00<br>.00 | .10<br>.10<br>.09<br>.09 | | 21<br>22<br>23<br>24<br>25 | .70<br>.67<br>1.3<br>1.1<br>.82 | 3.0<br>2.7<br>3.0<br>3.2<br>3.1 | 1.1<br>1.2<br>1.3<br>1.3 | 6.3<br>3.7<br>12<br>7.0<br>4.0 | .72<br>.68<br>.64<br>.70 | 10<br>10<br>49<br>52<br>25 | .37<br>.79<br>3.7<br>6.2<br>3.1 | .12<br>.12<br>.08<br>.17 | .15<br>.25<br>.27<br>.15 | .21<br>.12<br>.08<br>.01 | .00<br>.00<br>19<br>8.0<br>1.2 | .07<br>.05<br>.05<br>.04<br>.04 | | 26<br>27<br>28<br>29<br>30<br>31 | .90<br>.57<br>.33<br>.24<br>.46 | 3.1<br>3.3<br>3.6<br>2.0<br>2.3 | .94<br>1.1<br>.95<br>.84<br>.88 | 1.2<br>1.0<br>4.0<br>10<br>45<br>20 | 1.2<br>1.0<br>.94 | 18<br>16<br>13<br>11<br>7.3<br>5.2 | 2.3<br>2.1<br>2.6<br>3.1<br>2.7 | .21<br>.12<br>.07<br>.23<br>.81<br>2.9 | .13<br>.08<br>.09<br>.07<br>.06 | .00<br>.00<br>.00<br>.00 | 1.4<br>.80<br>1.0<br>.70<br>.40 | .03<br>.02<br>.04<br>.02<br>.04 | | TOTAL<br>MEAN<br>MAX<br>MIN<br>AC-FT<br>CFSM<br>IN. | 15.92<br>.51<br>1.3<br>.22<br>32<br>.01 | 92.93<br>3.10<br>18<br>.84<br>184<br>.04 | 34.60<br>1.12<br>1.8<br>.64<br>69<br>.02 | 135.15<br>4.36<br>45<br>.48<br>268<br>.06 | 32.43<br>1.16<br>9.0<br>.64<br>64<br>.02 | 1135.10<br>36.6<br>290<br>.78<br>2250<br>.52<br>.60 | 48.83<br>1.63<br>6.2<br>.17<br>97<br>.02 | 26.78<br>.86<br>2.9<br>.07<br>53<br>.01 | 8.58<br>.29<br>1.9<br>.06<br>17<br>.00 | 3.03<br>.098<br>.74<br>.00<br>6.0<br>.00 | 42.43<br>1.37<br>19<br>.00<br>84<br>.02<br>.02 | 16.04<br>.53<br>10<br>.02<br>32<br>.01 | CAL YR 1988 TOTAL 4327.43 MEAN 11.8 MAX 190 MIN .03 AC-FT 8580 CFSM .17 IN. 2.28 WTR YR 1989 TOTAL 1591.82 MEAN 4.36 MAX 290 MIN .00 AC-FT 3160 CFSM .06 IN. .84 #### 05412500 TURKEY RIVER AT GARBER. IA LOCATION.--Lat 42°44'24", long 91°15'42", in SE1/4 NW1/4 sec.36, T.92 N., R.4 W., Clayton County, Hydrologic Unit 07060004, on left bank 10 ft downstream from bridge on county highway C43, 800 ft upstream from Wayman Creek, 1,000 ft southeast of Garber, 2,000 ft downstream from Elk Creek, 1 mi downstream from Volga River, and 19.8 mi upstream from mouth. DRAINAGE AREA. -- 1,545 mi2. PERIOD OF RECORD. -- August 1913 to November 1916, May 1919 to September 1927, April 1929 to September 1930, October 1932 to current year. Monthly discharge only for some periods, published in WSP 1308. REVISED RECORDS. -- WSP 1308: 1922-25 (M), 1927 (M). WSP 1438: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 634.46 ft above NGVD. Prior to Feb. 7, 1935, nonrecording gage at same site and datum. REMARKS.--Estimated daily discharges: Dec. 3 to Mar. 14. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers data collection platform at station. AVERAGE DISCHARGE.--69 years (water years 1914-16, 1920-27, 1930, 1933-89), 943 ft<sup>3</sup>/s, 8.29 in/yr, 683,200 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 32,300 ft<sup>3</sup>/s Feb. 23, 1922, gage height, 28.06 ft, from flood-mark; minimum daily discharge, 49 ft<sup>3</sup>/s Jan. 28, 29, 1940. EXTREMES OUTSIDE PERIOD OF RECORD. -- Maximum stage since at least 1890, that of Feb. 23, 1922. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 8,000 ft3/s and maximum (\*): | | | Discharge | Gage height | | | Discharge | Gage height | |---------|------|----------------------|-------------|---------|--------------|----------------------|-------------| | Date | Time | (ft <sup>3</sup> /s) | (ft) | Date | Time | (ft <sup>3</sup> /s) | (ft) | | Mar. 12 | 0315 | *9,900 | (a) *17.82 | No othe | r peak great | er than base disc | harge. | (a) Ice jam Minimum discharge, 105 $\mathrm{ft}^3/\mathrm{s}$ Aug. 18, 19, 22. | | | DISCHARG | E, CUBIC | FEET PER | | WATER YEAR | OCTOBER | 1988 TO | SEPTEMBER | 1989 | | | |-------------|------|----------|----------|----------|-------|------------|---------|---------|-----------|-------------|-------|-------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 183 | 162 | 186 | 180 | 340 | 200 | 471 | 515 | 619 | 168 | 114 | 928 | | 5 | 174 | 159 | 167 | 175 | 200 | 190 | 436 | 508 | 480 | 165 | 109 | 957 | | ž | 168 | 159 | 180 | 170 | 140 | 180 | 409 | 455 | 392 | 169 | 107 | 627 | | 2<br>3<br>4 | 169 | | | | | | | | 350 | 160 | 113 | 475 | | | | 159 | 190 | 160 | 120 | 200 | 388 | 423 | | | | | | 5 | 166 | 170 | 200 | 150 | 150 | 230 | 360 | 424 | 320 | 161 | 340 | 400 | | 6 | 164 | 172 | 190 | 160 | 200 | 200 | 339 | 399 | 298 | 153 | 372 | 359 | | 7 | 160 | 172 | 180 | 180 | 240 | 190 | 323 | 377 | 279 | 142 | 225 | 324 | | 8 | 156 | 169 | 170 | 190 | 220 | 210 | 317 | 361 | 267 | 139 | 187 | 312 | | 9 | 156 | 167 | 160 | 180 | 200 | 220 | 305 | 363 | 256 | 136 | 164 | 334 | | 10 | 154 | 163 | 160 | 170 | 220 | 250 | 293 | 339 | 243 | 126 | 148 | 363 | | 10 | 134 | 103 | 100 | 170 | 220 | 230 | 253 | 335 | 243 | 120 | 140 | 303 | | 11 | 152 | 161 | 150 | 160 | 230 | 2000 | 282 | 316 | 236 | 124 | 138 | 359 | | 12 | 149 | 164 | 160 | 170 | 250 | 5000 | 274 | 300 | 255 | 121 | 130 | 329 | | 13 | 151 | 170 | 170 | 160 | 230 | 3000 | 264 | 286 | 277 | 117 | 124 | 299 | | 14 | 151 | 172 | 180 | 170 | 220 | 2800 | 260 | 277 | 266 | 114 | 122 | 261 | | 15 | 151 | 175 | 170 | 180 | 190 | 5050 | 252 | 264 | 255 | 114 | 121 | 240 | | 16 | 151 | 000 | 160 | 170 | 100 | 0.570 | 040 | 051 | 000 | 105 | 116 | 225 | | | 151 | 282 | 160 | 170 | 180 | 2570 | 248 | 254 | 229 | 125 | 116 | | | 17 | 156 | 268 | 150 | 180 | 170 | 1630 | 246 | 244 | 218 | 114 | 111 | 218 | | 18 | 165 | 234 | 160 | 190 | 180 | 954 | 237 | 238 | 210 | 139 | 107 | 208 | | 19 | 161 | 222 | 170 | 180 | 170 | 722 | 231 | 250 | 203 | 161 | 106 | 199 | | 20 | 161 | 215 | 190 | 190 | 165 | 694 | 229 | 311 | 191 | <b>16</b> 8 | 118 | 191 | | 21 | 166 | 209 | 180 | 180 | 160 | 666 | 237 | 247 | 182 | 139 | 112 | 182 | | 22 | 169 | 203 | 190 | 190 | 170 | 622 | 238 | 232 | 181 | 131 | 115 | 177 | | 23 | 176 | 197 | 200 | 200 | 160 | 950 | 333 | 220 | 192 | 126 | 823 | 173 | | 24 | 169 | 194 | 210 | 190 | 180 | 1360 | 542 | 218 | 179 | 120 | 532 | <b>16</b> 9 | | 25 | 164 | 194 | 200 | 200 | 200 | 1210 | 674 | 220 | 172 | 118 | 321 | 168 | | 23 | 104 | 194 | 200 | 200 | 200 | 1210 | 074 | 220 | 1,2 | 110 | 021 | 100 | | 26 | 161 | 205 | 190 | 190 | 230 | 986 | 569 | 214 | 195 | 114 | 267 | 163 | | 27 | 159 | 208 | 180 | 180 | 220 | 840 | 514 | 207 | 217 | 113 | 236 | 156 | | 28 | 155 | 206 | 175 | 200 | 210 | 759 | 591 | 217 | 209 | 112 | 223 | 153 | | 29 | 160 | 203 | 170 | 220 | | 684 | 582 | 214 | 193 | 113 | 214 | 151 | | 30 | 169 | 199 | 165 | 260 | | 596 | 538 | 272 | 180 | 113 | 218 | 148 | | 31 | 164 | | 170 | 290 | | 527 | | 421 | | 114 | 211 | | | | | | | | | | | | | | | 2015 | | TOTAL | 5010 | 5733 | 5473 | 5765 | 5545 | | 10982 | 9586 | 7744 | 4129 | 6344 | 9248 | | MEAN | 162 | 191 | 177 | 186 | 198 | 1151 | 366 | 309 | 258 | 133 | 205 | 308 | | MAX | 183 | 282 | 210 | 290 | 340 | 5050 | 674 | 515 | 619 | 169 | 823 | 957 | | MIN | 149 | 159 | 150 | 150 | 120 | 180 | 229 | 207 | 172 | 112 | 106 | 148 | | AC-FT | 9940 | | 10860 | 11430 | 11000 | 70790 | 21780 | 19010 | 15360 | 8190 | 12580 | 18340 | | CFSM | .10 | . 12 | . 11 | . 12 | . 13 | .75 | .24 | .20 | .17 | .09 | . 13 | .20 | | IN. | .12 | . 14 | . 13 | . 14 | . 13 | . 86 | .26 | . 23 | . 19 | .10 | .15 | . 22 | CAL YR 1988 TOTAL 189011 MEAN 516 MAX 2700 MIN 120 AC-FT 374900 CFSM .33 IN. 4.55 WTR YR 1989 TOTAL 111249 MEAN 305 MAX 5050 MIN 106 AC-FT 220700 CFSM .20 IN. 2.68 #### MAQUOKETA RIVER BASIN #### 05418450 NORTH FORK MAQUOKETA RIVER AT FULTON, IA LOCATION.--Lat 42°08'48", long 90°40'33" in SW1/4 NE1/4 sec.25, T.85 N., R.2 E, Jackson County, Hydrologic Unit 07060006, on right downstream bank at bridge on State Highway 61, 7.8 mi upstream from mouth, and 5.5 mi north of junction of State Highway 64 and 61 and 0.5 mi south of Fulton. DRAINAGE AREA. -- 516 mi2. WTR YR 1989 PERIOD OF RECORD. -- July 1977 to current year. GAGE.--Water-stage recorder. Datum of gage is 666.19 ft above NGVD. Nonrecording gage July 7 to September 22, 1977. REMARKS.--Estimated daily discharges: Dec. 8, 10-18, Jan. 9-16, 20, 21, 23-26, Jan. 28 to Feb. 2, 5-9, Feb. 25 to Mar. 11, and Aug. 26 to Sept. 8. Records fair except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. National Weather Service Limited Automatic Remote Collector at station. AVERAGE DISCHARGE. -- 12 years, 350 ft3/s, 9.21 in/yr, 253,600 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 10,700 ft<sup>3</sup>/s Aug. 31, 1981, gage height, 17.26 ft; minimum discharge, 52 ft<sup>3</sup>/s Feb. 3, 1989 (result of freezeup). EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood of May 18, 1974 reached a stage of 16.0 ft., from floodmark, discharge 10,000 ft<sup>3</sup>/s. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 2,500 ft3/s and maximum (\*): | Date<br>Mar. 11 | Time<br>0030 | Discharge<br>(ft <sup>3</sup> /s)<br>*5,500 | | neight<br>(t)<br>(13.00 | | ite<br>other pe | Time<br>eak greater | Dischar<br>(ft <sup>3</sup> /s<br>than bas | ;) | Gage he<br>(ft<br>rge. | | |-----------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------|--------------------------------------------------|----------------------------------------------------|-------------------------------------------------|-------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------| | (a) Ice | jam | | | | | | | | | | | | Minimum | discharge, | 52 ft <sup>3</sup> /s Feb.<br>DISCHARGE, CU | 3, result o<br>BIC FEET PER | R SECOND, | ip.<br>Water yea<br>Can values | R OCTOBER | R 1988 TO S | EPTEMB <b>ER</b> | 1989 | | | | DAY | OCT | NOV DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | 117<br>118<br>118<br>123<br>115 | 132 137<br>129 136<br>131 130<br>137 137<br>139 135 | 118<br>119<br>121 | 260<br>140<br>107<br>88<br>110 | 150<br>140<br>135<br>150<br>170 | 146<br>147<br>149<br>147 | 134<br>134<br>134<br>134<br>136 | 194<br>190<br>173<br>171<br>166 | 99<br>99<br>97<br>97<br>97 | 99<br>98<br>101<br>135<br>241 | 220<br>200<br>170<br>150<br>135 | | 6<br>7<br>8<br>9<br>10 | 102<br>113<br>114<br>116<br>119 | 133 135<br>131 131<br>132 125<br>133 116<br>141 110 | 149<br>141<br>135 | 150<br>180<br>165<br>150<br>133 | 150<br>145<br>160<br>170<br>190 | 138<br>136<br>138<br>134<br>127 | 132<br>129<br>134<br>137<br>135 | 165<br>167<br>165<br>171<br>163 | 100<br>107<br>107<br>109<br>113 | 173<br>142<br>120<br>108<br>103 | 125<br>130<br>144<br>319<br>230 | | 11<br>12<br>13<br>14<br>15 | 117<br>115<br>117<br>120<br>122 | 133 100<br>136 110<br>145 120<br>142 110<br>141 105 | 125<br>120<br>125 | 127<br>127<br>128<br>130<br>129 | 3000<br>2110<br>684<br>411<br>422 | 127<br>130<br>127<br>129<br>128 | 137<br>138<br>144<br>145<br>145 | 159<br>179<br>183<br>164<br>147 | 113<br>109<br>107<br>104<br>102 | 103<br>101<br>100<br>100<br>97 | 165<br>141<br>129<br>124<br>119 | | 16<br>17<br>18<br>19<br>20 | 127<br>130<br>133<br>128<br>125 | 141 110<br>138 120<br>134 130<br>134 134<br>129 139 | 146<br>156<br>162 | 122<br>114<br>121<br>126<br>129 | 417<br>254<br>211<br>191<br>194 | 114<br>115<br>120<br>116<br>113 | 142<br>137<br>135<br>137<br>145 | 129<br>116<br>102<br>109<br>135 | 102<br>103<br>117<br>142<br>142 | 94<br>89<br>88<br>105<br>131 | 116<br>114<br>110<br>110<br>107 | | 21<br>22<br>23<br>24<br>25 | 133<br>132<br>149<br>150<br>137 | 127 139<br>127 127<br>129 128<br>130 130<br>131 102 | 198<br>225<br>230 | 130<br>124<br>110<br>125<br>130 | 183<br>167<br>170<br>184<br>195 | 116<br>116<br>174<br>217<br>187 | 136<br>125<br>125<br>134<br>141 | 145<br>149<br>149<br>137<br>126 | 131<br>118<br>114<br>136<br>109 | 125<br>121<br>120<br>149<br>124 | 106<br>105<br>102<br>99<br>101 | | 26<br>27<br>28<br>29<br>30<br>31 | 130<br>129<br>131<br>129<br>128<br>130 | 144 101<br>148 166<br>140 167<br>135 123<br>134 120 | 212<br>250<br>300<br>350 | 150<br>140<br>135<br> | 186<br>183<br>179<br>175<br>164<br>154 | 160<br>148<br>154<br>150<br>140 | 140<br>137<br>143<br>150<br>164<br>172 | 116<br>112<br>111<br>104<br>99 | 106<br>108<br>107<br>105<br>110 | 120<br>110<br>100<br>95<br>98<br>120 | 103<br>103<br>103<br>104<br>105 | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 3867<br>125<br>150<br>102<br>7670<br>.24<br>.28 | 4056 3901<br>135 126<br>148 167<br>127 100<br>8050 7740<br>.26 .24<br>.29 .28 | 178<br>400<br>118<br>10960<br>.35 | 3780<br>135<br>260<br>88<br>7500<br>. 26<br>. 27 | 11394<br>368<br>3000<br>135<br>22600<br>.71<br>.82 | 4184<br>139<br>217<br>113<br>8300<br>.27<br>.30 | 4311<br>139<br>172<br>125<br>8550<br>.27<br>.31 | 4396<br>147<br>194<br>99<br>8720<br>.28<br>.32 | 3414<br>110<br>142<br>97<br>6770<br>.21<br>.25 | 3610<br>116<br>241<br>88<br>7160<br>.23<br>.26 | 4089<br>136<br>319<br>99<br>8110<br>.26<br>.29 | TOTAL 77293 MEAN 211 MAX 900 MIN 100 AC-FT 153300 CFSM .41 IN. 5.57 TOTAL 56526 MEAN 155 MAX 3000 MIN 88 AC-FT 112100 CFSM .30 IN. 4.08 #### MAQUOKETA RIVER BASIN #### 05418500 MAQUOKETA RIVER NEAR MAQUOKETA, IA LOCATION.--Lat 42°05'05", long 90°38'04", in SW1/4 NE1/4 sec.17, T.84 N., R.3 E., Jackson County, Hydrologic Unit 07060006, on right bank 300 ft upstream from bridge on State Highway 62, 1,200 ft upstream from Prairie Creek, 2.0 mi northeast of Maquoketa, 2.2 mi downstream from North Fork, and 26.7 mi upstream from mouth. DRAINAGE AREA. -- 1,553 mi<sup>2</sup>. PERIOD OF RECORD. -- September 1913 to current year. Prior to October 1939, published as "below North Fork near Maquoketa". Monthly discharge only for some periods, published in WSF 1308. REVISED RECORDS.--WSP 405: 1914. WSP 1438: Drainage area. WSP 1508: 1914-17, 1919-25, 1926 (M), 1929, 1933-34 (M), 1943. GAGE.--Water-stage recorder. Datum of gage is 625.96 ft above NGVD. Prior to July 14, 1924, nonrecording gage, and July 15, 1924 to Sept. 30, 1972, recording gage at same site at datum 10.00 ft higher. REMARKS.--Estimated daily discharges: Dec. 12-23, Dec. 27 to Mar. 11, and Mar. 21 to Apr. 4. Records good except those for estimated daily discharges, which are poor. Diurnal fluctuation caused by powerplant 4 mi upstream of station. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers data collection platform at station. AVERAGE DISCHARGE.--76 years, 1,023 ft3/s, 8.94 in/yr, 741,200 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 48,000 ft<sup>3</sup>/s June 27, 1944, gage height, 24.70 ft, at datum then in use; minimum daily discharge, 105 ft<sup>3</sup>/s Feb. 11-20, 1936. EXTREMES OUTSIDE PERIOD OF RECORD.--A flood, probably in 1903, reached a stage of 23.5 ft, discharge, 43,000 ft<sup>3</sup>/s, at datum in use prior to Oct. 1, 1972. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 7,500 ft3/s and maximum (\*) | Date | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height | D - 4 - | · #: | Discharge | Gage height | |---------|------|-----------------------------------|--------------------|---------|------|----------------------|-------------| | Mar. 11 | 0719 | *5,000 | (ft)<br>(a) *20.42 | Date | Time | (ft <sup>3</sup> /s) | (ft) | (a) Ice jam Minimum daily discharge, 199 ft3/s July 7. | | | DISCHARG | E, CUBIC | FEET PER | SECOND, | WATER YEAR<br>MEAN VALUES | OCTOBER | 1988 TO | SEPTEMBER | 1989 | | | |-------------|------------|--------------------|--------------------------|------------|------------|---------------------------|--------------------------|-------------------|--------------------|---------------------|------------|--------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 343<br>345 | 329<br>340 | 368<br>302 | 440<br>430 | 1300 | 360 | 577 | 533 | 503 | 227 | 226 | 650<br>641 | | 4 | 306 | 340<br>325 | 302<br>382 | 410 | 600<br>350 | 330<br>360 | 557<br>535 | 492<br>484 | 362<br>340 | 239<br>228 | 220<br>226 | 434 | | 2<br>3<br>4 | 316 | 378 | 386 | 400 | 400 | 700 | 481 | 403 | 324 | 240 | 325 | 427 | | 5 | 304 | 381 | 334 | 420 | 500 | 600 | 462 | 493<br><b>479</b> | 307 | 206 | 638 | 348 | | 6<br>7 | 293 | 373 | 394<br>350<br>339<br>322 | 410<br>390 | 540 | 540<br>500<br>470 | 457<br>398<br>426<br>437 | 473 | 288 | 232 | 403 | 321 | | / | 288<br>289 | 355<br>332 | 350 | 390<br>370 | 600<br>560 | 500 | 398 | 464<br>423 | 281<br>280 | 199<br>203<br>215 | 306<br>297 | 297 | | 8<br>9 | 294 | 344 | 322 | 360 | 520 | 470<br>450 | 420<br>437 | 423<br>478 | 300 | 215 | 315 | 316<br>497 | | 10 | 326 | 399 | 303 | 350 | 500 | 1000 | 413 | 423 | 295 | 214 | 269 | 744 | | 11 | 286 | 368 | 280 | 370 | 480 | 3000 | 373 | 390 | <b>2</b> 67 | 215 | 243 | 568<br>526 | | 12 | 324 | 364 | 400 | 360 | 500 | 4490<br>3410 | 408 | 363 | 311 | 223 | 245 | 526 | | 13<br>14 | 297<br>278 | 405<br>380 | 360<br>3 <b>9</b> 0 | 350 | 520 | 3410 | 388 | 358 | 343<br>307<br>302 | 206 | 224 | 532<br>497 | | 15 | 304 | 390 | 390<br>350 | 330<br>350 | 500<br>470 | 2170<br>1690 | 379<br>357 | 430<br>340 | 307 | 212<br>212 | 252<br>245 | 497<br>473 | | | 304 | 390 | 330 | 330 | 470 | 1090 | 337 | 340 | 302 | 212 | 243 | | | 16 | 350 | 399 | 310 | 380 | 450 | 1530 | 366 | 347 | 277 | 222 | 221 | 468 | | 17 | 338 | 381 | 320 | 420 | 420 | 1300 | 408 | 364 | 273 | 207<br>263 | 230 | 467 | | 18<br>19 | 330<br>327 | 388 | 330 | 440 | 390 | 1110 | 385<br>374 | 356 | 259<br>261 | 263 | 228 | 469<br>373 | | 20 | 343 | 418<br>395 | 340<br>350 | 470<br>490 | 360<br>330 | 986<br><b>931</b> | 360 | 368<br><b>370</b> | 241 | 294<br>336 | 239<br>275 | 360 | | | 343 | | 330 | 490 | 330 | 931 | 300 | | | | | | | 21<br>22 | 348 | 372 | 370 | 510 | 320 | 843 | 350 | 356 | 248 | 283 | 284 | 324 | | 22 | 328 | 373 | 400 | 530 | 330 | 800 | 386 | 380 | 236 | 268 | 253 | 321 | | 23<br>24 | 361 | 365 | 430 | 540 | 300 | 767 | 460 | 367 | 229 | 245 | 226 | 290<br>291 | | 25 | 416<br>356 | 382<br>381 | 392<br>406 | 560<br>580 | 320<br>350 | 740<br>711 | 551<br>534 | 342<br>372 | <b>2</b> 27<br>258 | 366<br>280 | 269<br>268 | 289 | | | | 301 | 400 | 360 | 330 | /11 | 234 | 372 | | 200 | | | | 26 | 345 | 404 | 380 | 600 | 380 | 677 | 537 | 344 | 228 | 261 | 251 | 284 | | 27 | 355 | 409 | 500 | 600 | 360 | 656 | 502 | 323 | 227 | 255<br>233 | 256 | 290 | | 28<br>29 | 323<br>320 | 416<br>37 <b>5</b> | 450<br>420 | 620<br>700 | 380 | 696<br>666 | 521<br>519 | 320<br>315 | 264<br>226 | 233 | 232<br>220 | 270 | | 30 | 342 | 375<br>385 | 420 | 900 | | 635 | 507 | 326 | 239 | 236 | 231 | 286<br>257 | | 31 | 348 | | 420 | 1100 | | 602 | | 362 | 200 | 218 | 232 | | | TOTAL | 10123 | 11306 | 11478 | 15180 | 13030 | 33720 | 13408 | 12235 | 8503 | 7470 | 8349 | 12310 | | MEAN | 327 | 377 | 370 | 490 | 465 | 1088 | 447 | 395 | 283 | 241 | 269 | 410 | | MAX | 416 | 418 | 500 | 1100 | 1300 | 4490 | 577 | 53 <b>3</b> | 503 | <b>3</b> 6 <b>6</b> | 638 | 744 | | MIN | 278 | 325<br>22430 | 280<br>22770 | 330 | 300 | 330<br>66880 | 350<br>26590 | 315<br>24270 | 226 | 199 | 220 | 257<br>24420 | | AC-FT | 20080 | 22430 | 22770 | 30110 | 25850 | <b>66</b> 88 <b>0</b> | 26590 | 24270 | 16870 | 14820 | 16560 | 24420 | | CFSM | .21 | . 24 | . 24 | . 32 | .30 | . 70 | .29<br>.32 | .25 | .18 | .16 | . 17 | . 26<br>. 29 | | IN. | . 24 | .27 | . 27 | . 36 | .31 | .81 | . 32 | .29 | .20 | . 18 | . 20 | . 29 | CAL YR 1988 TOTAL 226304 MEAN 618 MAX 3900 MIN 278 AC-FT 448900 CFSM .40 IN. 5.42 WTR YR 1989 TOTAL 157112 MEAN 430 MAX 4490 MIN 199 AC-FT 311600 CFSM .28 IN. 3.76 #### 05420500 MISSISSIPPI RIVER AT CLINTON, IA LOCATION.--Lat 41°46'53", long 90°15'04", in NW1/4 sec.34, T.81 N., R.6 E., Clinton County, Hydrologic Unit 07080101, on right bank at foot of Seventh Avenue in Camanche, 5.0 mi upstream from Wapsipinicon River, 6.4 mi downstream from Clinton, 10.6 mi downstream from Lock and Dam 13, and at mile 511.8 upstream from Ohio River. Prior to June 6, 1969, at site 400 ft downstream. DRAINAGE AREA. -- 85,600 mi<sup>2</sup>, approximately, at Fulton-Lyons Bridge at Clinton. PERIOD OF RECORD.--June to August 1873 (fragmentary), October 1873 to current year (October 1932 to September 1939, published as "at Le Claire"). REVISED RECORDS. -- WDR IA-75-1: 1974. GAGE.--Water-stage recorder. Datum of gage is 562.68 ft above NGVD. Oct. 1, 1955, to June 5, 1969, water-stage recorder at site 400 ft downstream at same datum. Auxiliary water-stage recorder at Lock and Dam 13 since Oct. 1, 1958. See WSP 1728 for history of changes prior to Oct. 1, 1955. REMARKS.--Estimated daily discharges: Dec. 11 to Jan. 27 and Feb. 2 to Mar. 10. Records good except those for estimated daily discharges or discharges below 10,000 ft<sup>3</sup>/s, which are poor. Minor flow regulation caused by navigation dams. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers data collection platform and gageheight telemeter at station. AVERAGE DISCHARGE.--116 years, 47,600 ft3/s, 7.55 in/yr, 34,490,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 307,000 ft<sup>3</sup>/s Apr. 28, 1965; maximum gage height, 24.65 ft Apr. 28, 1965; minimum daily discharge, 6,500 ft<sup>3</sup>/s Dec. 25-27, 1933. EXTREMES OUTSIDE PERIOD OF RECORD. -- Maximum stage known since at least 1828, that of Apr. 28, 1965. EXTREMES FOR CURRENT YEAR.--Maximum daily discharge, 104,000 ft<sup>3</sup>/s Apr. 6; maximum gage height, 14.19 ft Apr. 6, minimum daily discharge, 11,400 ft<sup>3</sup>/s Aug. 15; minimum gage height, 8.57 ft Aug. 12, 13. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | | | DISCH | ARGE, CUB | IC FEET P | ER SECOND | , WATER Y<br>MEAN VALU | EAR OCTOBI<br>ES | ER 1988 T | O SEPTEMBE | K 1989 | | | |--------|---------|---------------|-----------|-----------|---------------|------------------------|------------------|---------------|------------|---------|---------|---------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 23400 | 18800 | 28500 | 25200 | 33000 | 22800 | 79400 | 52700 | 50800 | 31200 | 11900 | 22400 | | 2 | 25300 | 17600 | 27000 | 24500 | 32600 | 22400 | 86000 | 52600 | 54900 | 32200 | 12600 | 26600 | | 2<br>3 | 28500 | 17600 | 25600 | 23700 | 25200 | 22400 | 88500 | 51900 | 57700 | 32100 | 14600 | 27600 | | 4 | 29000 | 18700 | 25200 | 23000 | 19100 | 23300 | 94100 | 50700 | 60200 | 31000 | 19500 | 25400 | | 5 | 28100 | 21000 | 25800 | 22600 | 19300 | 24700 | 101000 | 49600 | 62100 | 29600 | 25400 | 24000 | | 6 | 26200 | 23000 | 26200 | 22600 | 2010 <b>0</b> | 24300 | 104000 | 51300 | 64500 | 28200 | 26900 | 23500 | | 7 | 23400 | 24200 | 25500 | 21800 | 20800 | 23600 | 103000 | 5260 <b>0</b> | 67600 | 27100 | 26600 | 28000 | | 8 | 22300 | 2500 <b>0</b> | 27200 | 20500 | 21300 | 22700 | 98200 | 52700 | 70600 | 27000 | 23300 | 32700 | | 9 | 22100 | 24100 | 28400 | 20200 | 21500 | 21500 | 89200 | 51700 | 69200 | 26500 | 16700 | 37200 | | 10 | 23200 | 23500 | 23800 | 20400 | 22200 | 22000 | 80900 | 50700 | 64400 | 24600 | 16700 | 39800 | | 11 | 21100 | 22100 | 18400 | 20400 | 23300 | 29000 | 75200 | 50800 | 52700 | 23500 | 15500 | 37500 | | 12 | 18100 | 21100 | 15200 | 20400 | 24100 | 37100 | 73200 | 50500 | 45600 | 23700 | 14400 | 32900 | | 13 | 17300 | 22500 | 14700 | 20300 | 24400 | 41000 | 72700 | 49800 | 41500 | 24000 | 13300 | 31900 | | 14 | 16900 | 20900 | 14300 | 20000 | 24400 | 44100 | 71600 | 49100 | 37000 | 22300 | 11800 | 29400 | | 15 | 16000 | 22000 | 14500 | 20000 | 24200 | 48500 | 72100 | 48500 | 28300 | 20500 | 11400 | 25900 | | 16 | 15700 | 27700 | 14000 | 20100 | 24200 | 49300 | 71900 | 46700 | 25000 | 19300 | 11700 | 21700 | | 17 | 17400 | 23900 | 13900 | 20200 | 24200 | 50700 | 70000 | 45200 | 25600 | 20000 | 13700 | 18700 | | 18 | 19900 | 27100 | 15400 | 20800 | 24200 | 50900 | 68700 | 45400 | 26900 | 19700 | 15500 | 18000 | | 19 | 22000 | 28500 | 16200 | 21200 | 24200 | 50000 | 67500 | 44900 | 31400 | 18200 | 17200 | 15700 | | 20 | 23200 | 31400 | 18500 | 21400 | 24200 | 51500 | 63700 | 43700 | 34300 | 16800 | 18200 | 14100 | | 21 | 22800 | 33900 | 19400 | 21700 | 24200 | 51100 | 60300 | 43500 | 34600 | 18500 | 17500 | 14400 | | 22 | 22700 | 35200 | 20500 | 21700 | 24400 | 45100 | 59300 | 41200 | 37100 | 21600 | 19800 | 19000 | | 23 | 23500 | 35800 | 22600 | 21700 | 24400 | 40200 | 56800 | 38000 | 36300 | 20500 | 19300 | 22600 | | 24 | 22900 | 35400 | 24900 | 21500 | 24300 | 37500 | 55200 | 35100 | 34900 | 17600 | 18700 | 21400 | | 25 | 22100 | 35000 | 24600 | 21600 | 24200 | 37300 | 55900 | 33000 | 30700 | 18200 | 18700 | 16800 | | 26 | 21000 | 33300 | 23900 | 22200 | 24000 | 40200 | 59300 | 33000 | 24000 | 16200 | 18700 | 14100 | | 27 | 21300 | 34600 | 25700 | 22900 | 23800 | 49400 | 54700 | 36200 | 26500 | 16800 | 18100 | 15200 | | 28 | 19700 | 31500 | 26200 | 23700 | 23300 | 59000 | 54700 | 37500 | 28100 | 13500 | 20900 | 16400 | | 29 | 19500 | 31100 | 25900 | 25800 | | 66100 | 55700 | 40600 | 27700 | 13100 | 21800 | 16000 | | 30 | 21400 | 29700 | 25700 | 30200 | | 69900 | 55500 | 43200 | 29500 | 11900 | 22700 | 16600 | | 31 | 23000 | | 25600 | 34400 | | 75300 | | 45300 | | 12000 | 22200 | | | TOTAL | 679000 | 796200 | 683300 | 696700 | 669100 | 1252900 | 2198300 | 1417700 | 1279700 | 677400 | 555300 | 705500 | | MEAN | 21900 | 26540 | 22040 | 22470 | 23900 | 40420 | 73280 | 45730 | 42660 | 21850 | 17910 | 23520 | | MAX | 29000 | 35800 | 28500 | 34400 | 33000 | 75300 | 104000 | 52700 | 70600 | 32200 | 26900 | 39800 | | MIN | 15700 | 17600 | 13900 | 20000 | 19100 | 21500 | 54700 | 33000 | 24000 | 11900 | 11400 | 14100 | | | 1347000 | 1579000 | 1355000 | 1382000 | 1327000 | 2485000 | 4360000 | 2812000 | | 1344000 | 1101000 | 1399000 | | CFSM | .26 | .31 | .26 | . 26 | .28 | . 47 | .86 | . 53 | .50 | .26 | .21 | . 27 | | IN. | .30 | .35 | .30 | .30 | .29 | . 54 | .96 | .62 | .56 | .29 | .24 | .31 | | | | | | | | | | | | | | | CAL YR 1988 TOTAL 9727100 MEAN 26580 MAX 65800 MIN 10700 AC-FT 19290000 CFSM .31 IN. 4.23 WTR YR 1989 TOTAL 11611100 MEAN 31810 MAX 104000 MIN 11400 AC-FT 23030000 CFSM .37 IN. 5.05 #### WAPSIPINICON RIVER BASIN #### 05420560 WAPSIPINICON RIVER NEAR ELMA, IA LOCATION.--Lat 43°14'34", long 92°31'48", in NW1/4 NW1/4 sec.8, T.97 N., R.14 W., Howard County, Hydrologic Unit 07080102, on right bank 10 ft downstream from bridge on county highway B17, 0.2 mi downstream from small left-bank tributary, 4.8 mi west of Elma, and at mile 217.9. DRAINAGE AREA. -- 95.2 mi2. PERIOD OF RECORD. -- October 1958 to current year. GAGE. -- Water-stage recorder. Datum of gage is 1,130.05 ft above NGVD. REMARKS.--Estimated daily discharges: Jan. 27 to Feb. 7, and Feb. 13 to Mar. 24. Records fair except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. AVERAGE DISCHARGE.--31 years, $65.2 \text{ ft}^3/\text{s}$ , 9.30 in/yr, 47,240 acre-ft/yr; median of yearly mean discharges, $56 \text{ ft}^3/\text{s}$ , 8.0 in/yr, 40,600 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 10,100 ft<sup>3</sup>/s June 4, 1974, gage height, 14.94 ft, from highwater mark in well; maximum gage height, 15.38 ft, from high-water mark in well, probably occurred Aug. 22, 1979 (backwater from vegetation); minimum daily discharge, 1.9 ft<sup>3</sup>/s Feb. 4-8, 1959. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 600 ft3/s and maximum (\*): Minimum daily discharge, 2.8 ft3/s Sept. 19. | | | DISCHARG | E, CUBIC | FEET PER | SECOND, | WATER YEAR<br>MEAN VALUES | OCTOBER | 1988 TO | SEPTEMBER | 1989 | | | |-----------------------------------------------------|-------------------------------------------|------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|---------------------------------------------|------------------------------------------|-------------------------------------------|------------------------------------------|-------------------------------------------------|------------------------------------------|------------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | 6.7<br>5.8<br>5.4<br>6.0<br>6.2 | 6.6<br>6.7<br>6.2<br>6.4<br>6.9 | 7.3<br>6.7<br>6.6<br>6.7 | 5.0<br>5.1<br>4.9<br>4.9<br>4.7 | 7.0<br>5.6<br>4.8<br>4.3<br>4.6 | 4.6<br>4.5<br>4.4<br>4.6<br>4.5 | 9.4<br>7.7<br>8.0<br>9.1<br>8.9 | 39<br>33<br>29<br>27<br>28 | 10<br>8.3<br>7.5<br>6.8<br>6.4 | 7.9<br>8.0<br>8.0<br>7.6<br>7.6 | 6.0<br>5.6<br>5.7<br>5.6<br>5.6 | 14<br>18<br>20<br>14<br>11 | | 6<br>7<br>8<br>9<br>10 | 6.2<br>6.2<br>6.3<br>6.3 | 6.7<br>6.4<br>6.2<br>6.2<br>6.5 | 6.8<br>6.8<br>6.2<br>5.7<br>6.0 | 4.7<br>4.7<br>4.8<br>4.8<br>4.8 | 4.6<br>4.8<br>4.9<br>4.7<br>5.0 | 4.6<br>4.9<br>5.6<br>6.0 | 7.5<br>6.6<br>6.4<br>5.5<br>5.2 | 27<br>24<br>22<br>22<br>21 | 6.2<br>5.8<br>5.9<br>5.9<br>5.7 | 7.8<br>7.9<br>7.9<br>8.1<br>8.3 | 5.0<br>5.0<br>6.3<br>8.6<br>8.1 | 8.1<br>6.5<br>6.6<br>6.2<br>8.9 | | 11<br>12<br>13<br>14<br>15 | 7.8<br>7.6<br>6.7<br>6.3<br>6.4 | 6.8<br>7.3<br>7.9<br>8.0<br>8.4 | 5.7<br>5.2<br>5.3<br>5.8<br>5.7 | 4.7<br>4.6<br>4.6<br>4.8<br>4.8 | 5.2<br>5.3<br>5.2<br>5.1<br>5.0 | 150<br>300<br>210<br>160<br>120 | 5.3<br>5.2<br>5.5<br>5.5<br>6.0 | 20<br>18<br>18<br>17<br>13 | 5.5<br>5.6<br>5.6<br>5.4<br>5.7 | 9.0<br>10<br>10<br>9.8<br>9.1 | 8.4<br>8.6<br>11<br>12<br>11 | 11<br>8.0<br>6.9<br>5.7<br>4.7 | | 16<br>17<br>18<br>19<br>20 | 7.4<br>5.9<br>5.3<br>6.1<br>6.0 | 11<br>11<br>8.7<br>7.6<br>6.5 | 5.4<br>5.2<br>5.4<br>5.9<br>7.1 | 4.9<br>5.1<br>5.3<br>5.5<br>5.8 | 4.8<br>4.7<br>4.9<br>4.8<br>4.7 | 68<br>52<br>45<br>41<br>43 | 6.9<br>7.3<br>7.8<br>7.8<br>8.6 | 8.9<br>8.2<br>8.2<br>11 | 5.7<br>5.6<br>5.6<br>5.6<br>5.9 | 10<br>9.8<br>31<br>41<br>15 | 9.8<br>8.8<br>8.4<br>9.3<br>8.9 | 4.2<br>4.1<br>3.8<br>3.7<br>3.5 | | 21<br>22<br>23<br>24<br>25 | 6.5<br>6.7<br>6.9<br>6.6<br>6.7 | 5.9<br>6.4<br>7.1<br>7.3<br>7.3 | 6.9<br>8.0<br>9.4<br>8.4<br>7.6 | 5.9<br>6.1<br>6.6<br>6.7<br>6.1 | 4.9<br>5.0<br>4.6<br>4.8<br>5.0 | 47<br>52<br>64<br>120<br>138 | 9.4<br>16<br>32<br>39<br>31 | 14<br>11<br>9.4<br>9.0<br>36 | 6.2<br>6.7<br>6.9<br>7.4<br>7.3 | 9.3<br>6.9<br>6.3<br>6.5 | 7.9<br>7.3<br>8.7<br>8.5<br>7.4 | 3.5<br>3.6<br>4.3<br>4.2<br>4.8 | | 26<br>27<br>28<br>29<br>30<br>31 | 7.0<br>7.1<br>7.7<br>7.1<br>6.6<br>6.9 | 8.0<br>7.6<br>5.5<br>7.6<br>7.3 | 6.6<br>6.2<br>6.0<br>5.4<br>4.9<br>4.8 | 6.2<br>6.0<br>6.6<br>6.4<br>6.0<br>6.6 | 5.2<br>4.7<br>4.9<br> | 80<br>63<br>52<br>35<br>20<br>14 | 29<br>37<br>47<br>64<br>48 | 21<br>14<br>12<br>10<br>10 | 8.7<br>11<br>10<br>9.3<br>8.8 | 8.6<br>6.3<br>6.0<br>6.0<br>6.2 | 7.0<br>7.5<br>8.9<br>15<br>13<br>9.1 | 4.5<br>5.0<br>5.4<br>5.4<br>5.2 | | TOTAL<br>MEAN<br>MAX<br>MIN<br>AC-FT<br>CFSM<br>IN. | 203.1<br>6.55<br>7.8<br>5.3<br>403<br>.07 | 218.0<br>7.27<br>11<br>5.5<br>432<br>.08 | 196.4<br>6.34<br>9.4<br>4.8<br>390<br>.07 | 167.7<br>5.41<br>6.7<br>4.6<br>333<br>.06 | 139.1<br>4.97<br>7.0<br>4.3<br>276<br>.05 | 1928.7<br>62.2<br>300<br>4.4<br>3830<br>.65 | 492.6<br>16.4<br>64<br>5.2<br>977<br>.17 | 567.7<br>18.3<br>39<br>8.2<br>1130<br>.19 | 207.0<br>6.90<br>11<br>5.4<br>411<br>.07 | 321.9<br>10.4<br>41<br>6.0<br>638<br>.11<br>.13 | 258.0<br>8.32<br>15<br>5.0<br>512<br>.09 | 214.8<br>7.16<br>20<br>3.5<br>426<br>.08 | CAL YR 1988 TOTAL 5990.9 MEAN 16.4 MAX 200 MIN 3.6 AC-FT 11880 CFSM .17 IN. 2.34 WTR YR 1989 TOTAL 4915.0 MEAN 13.5 MAX 300 MIN 3.5 AC-FT 9750 CFSM .14 IN. 1.92 Gage height (ft) Discharge $(ft^3/s)$ Time Date #### WAPSIPINICON RIVER BASIN #### 05421000 WAPSIPINICON RIVER AT INDEPENDENCE, IA LOCATION.--Lat 42°27'49", long 91°53'42", in SE1/4 sec.4, T.88 N., R.9 W., Buchanan County, Hydrologic Unit 07080102, on right bank at Sixth Street in Independence, 1,800 ft downstream from dam at abandoned hydroelectric plant, 4.9 mi downstream from Otter Creek, 9.7 mi upstream from Pine Creek, and at mile 142.5. DRAINAGE AREA. -- 1,048 mi2. Dat**e** Sept. 9 0115 CAL YR 1988 WTR YR 1989 PERIOD OF RECORD. -- July 1933 to current year. REVISED RECORDS. -- WSP 1438: Drainage area. WSP 1508: 1938-39, 1940 (M), 1947. GAGE.--Water-stage recorder and concrete control. Datum of gage is 882.85 ft above NGVD. Prior to May 24, 1941 nonrecording gage in tailrace of powerplant 1,800 ft upstream at datum 80.00 ft lower. REMARKS.-- No estimated daily discharges. Records good. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers data collection platform at station. AVERAGE DISCHARGE. -- 56 years, 610 ft3/s, 7.90 in/yr, 441,900 acre-ft/yr. Discharge (ft3/s) \*2,390 EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 26,800 ft<sup>3</sup>/s July 18, 1968, gage height, 21.11 ft; minimum daily discharge, 7.0 ft<sup>3</sup>/s for several days in 1934 and 1977. EXTREMES OUTSIDE PERIOD OF RECORD. -- Maximum stage since at least 1901, that of July 18, 1968. Gage height (ft) \*7.03 EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 4,000 ft3/s and maximum (\*): | Minim | um discha | rge, 17 ft <sup>3</sup> | /s Aug. | 18, 19, | 21, 22. | | | | | | | | |---------------------------------------|----------------------------------------------|----------------------------|-----------------------------------------------|-------------------------------------------------------|------------------------------------------------|---------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------|------------------------------------------------|----------------------------------------------|-----------------------------------------------------|--------------------------------------------------------| | | | DISCHARGE | , CUBIC | FEET PER | SECOND, | WATER YEAR<br>MEAN VALUES | OCTOBER | 1988 TO | SEPTEMBER | 1989 | | | | DAY | OCT | NOA | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 37 | 32 | 45 | 32 | 430 | 36 | 367 | 373 | 116 | 39 | 31 | 28 | | 2 | 35 | 28 | 49 | 32 | 240 | 37 | 335 | 341 | 124 | 38 | 29 | 34 | | 3 | 31 | 33 | 63 | 31 | 129 | 39 | 305 | 320 | 139 | 37 | 29 | 36 | | 4 | 30 | 42 | 54 | 29 | 123 | 38 | 279 | 307 | 124 | 33 | 29 | 40 | | 5 | 27 | 56 | 57 | 37 | 104 | 36 | 249 | 305 | 107 | 31 | 29 | 42 | | 6 | 27 | 34 | 58 | 50 | 96 | 34 | 238 | 268 | 93 | 31 | 27 | 42 | | 7 | 27 | 28 | 55 | 85 | 88 | 34 | 211 | 250 | 85 | 29 | 27 | 44 | | 8 | 27 | 34 | 41 | 61 | 81 | 34 | 229 | 235 | 84 | 27 | 26 | 826 | | 9 | 27 | 37 | 43 | 49 | 78 | 46 | 204 | 242 | <b>7</b> 2 | 27 | 25 | 1790 | | 10 | 29 | 45 | 47 | 45 | 61 | 223 | 185 | 223 | 62 | 27 | 25 | 947 | | 11 | 24 | 32 | 39 | 40 | 58 | 855 | 183 | 216 | 61 | 26 | 24 | 653 | | 12 | 21 | 46 | 36 | 37 | 55 | 941 | 173 | 197 | 76 | 25 | 23 | 453 | | 13 | 21 | 48 | 36 | 34 | 57 | 820 | 156 | 180 | 68 | 25 | 23 | 332 | | 14 | 21 | 46 | 39 | 34 | 53 | 701 | 164 | 166 | 62 | 25 | 22 | 263 | | 15 | 23 | 55 | 37 | 33 | 50 | 581 | 144 | 147 | 56 | 25 | 21 | 215 | | 16 | 28 | 89 | 33 | 32 | 43 | 661 | 140 | 132 | 55 | 24 | 19 | 182 | | 17 | 33 | 67 | 32 | 33 | 46 | 744 | 141 | 122 | 53 | 25 | 19 | 157 | | 18 | 31 | 60 | 32 | 34 | 47 | 713 | 130 | 124 | 51 | 28 | 18 | 137 | | 19 | 29 | 73 | 33 | 36 | 45 | 815 | 122 | 131 | 48 | 27 | 20 | 124 | | 20 | 28 | 70 | 44 | 45 | 45 | 858 | 119 | 131 | 41 | 26 | 20 | 105 | | 21 | 37 | 59 | 41 | 53 | 44 | 668 | 120 | 129 | 39 | 25 | 19 | 97 | | 22 | 31 | 56 | 41 | 51 | 39 | 547 | 135 | 133 | 43 | 25 | 18 | 101 | | 23 | 44 | 61 | 42 | 77 | 39 | 482 | 470 | 127 | 41 | 26 | 20 | 77 | | 24 | 33 | 58 | 50 | 115 | 42 | 492 | 496 | 129 | 36 | 25 | 20 | 73 | | 25 | 30 | 64 | 42 | 105 | 40 | 500 | 421 | 119 | 35 | 26 | 21 | 75 | | 26<br>27<br>28<br>29<br>30<br>31 | 25<br>31<br>32<br>29<br>28<br>32 | 69<br>74<br>51<br>58<br>62 | 43<br>46<br>40<br>36<br>34<br>32 | 90<br>90<br>101<br>189<br>367<br>427 | 39<br>37<br>38<br> | 523<br>529<br>541<br>516<br>489<br>420 | 414<br>416<br>453<br>452<br>415 | 114<br>97<br>91<br>91<br>96<br>101 | 43<br>46<br>41<br>37<br>38 | 27<br>29<br>29<br>30<br>31<br>30 | 21<br>21<br>21<br>21<br>21<br>21 | 69<br>65<br>65<br>62<br>61 | | TOTAL MEAN MAX MIN MED AC-FT CFSM IN. | 908<br>29.3<br>44<br>21<br>29<br>1800<br>.03 | 52.2<br>89<br>28<br>55 | 1320<br>42.6<br>63<br>32<br>41<br>2620<br>.04 | 2474<br>79.8<br>427<br>29<br>45<br>4910<br>.08<br>.09 | 2247<br>80.2<br>430<br>37<br>51<br>4460<br>.08 | 13953<br>450<br>941<br>34<br>516<br>27680<br>.43<br>.50 | 7866<br>262<br>496<br>119<br>220<br>15600<br>.25 | 5637<br>182<br>373<br>91<br>133<br>11180<br>.17<br>.20 | 1976<br>65.9<br>139<br>35<br>55<br>3920<br>.06 | 878<br>28.3<br>39<br>24<br>27<br>1740<br>.03 | 710<br>22.9<br>31<br>18<br>21<br>1410<br>.02<br>.03 | 7195<br>240<br>1790<br>28<br>87<br>14270<br>.23<br>.26 | TOTAL 86317 MEAN 236 MAX 1700 MIN 17 AC-FT 171200 CFSM .23 IN. 3.06 TOTAL 46731 MEAN 128 MAX 1790 MIN 18 AC-FT 92690 CFSM .12 IN. 1.66 #### WAPSIPINICON RIVER BASIN #### 05422000 WAPSIPINICON RIVER NEAR DE WITT, IA LOCATION.--Lat 41°46'01", long 90°32'05", in SW1/4 NE1/4 sec.6, T.80 N., R.4 E., Clinton County, Hydrologic Unit 07080103, on left bank 5 ft upstream from bridge on U.S. Highway 61, 0.9 mi downstream from Silver Creek, 4.0 mi south of water tower in De Witt, 6.2 mi upstream from Brophy Creek, and 18.2 mi upstream from mouth. DRAINAGE AREA. -- 2,330 mi2. PERIOD OF RECORD .-- June 1934 to current year. REVISED RECORDS.--WSP 1308: 1937 (M). WSP 1438: Drainage area. WSP 1708: 1951. GAGE. -- Water-stage recorder. Datum of gage is 598.81 ft above NGVD. REMARKS.--Estimated daily discharges: Dec. 9 to Mar. 11 and June 4, 5, 8-21. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers gage-height telemeter and data collection platform at station. AVERAGE DISCHARGE. -- 55 years, 1,526 ft3/s, 8.89 in/yr, 1,106,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 29,900 ft<sup>3</sup>/s May 17, 1974, gage height, 13.07 ft; minimum daily discharge, 46 ft<sup>3</sup>/s Jan. 22, 23, 1977. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 6,000 ft3/s and maximum (\*): | Date Time<br>Mar. 10 1730 | Discharge<br>(ft <sup>3</sup> /s)<br>ice jam | Gage height<br>(ft)<br>*8.60 | Date<br>Mar. 11 | Time<br>1745 | Discharge<br>(ft <sup>3</sup> /s)<br>*2,410 | Gage height<br>(ft)<br>8.03 | |---------------------------|----------------------------------------------|------------------------------|-----------------|--------------|---------------------------------------------|-----------------------------| | | | | | | | | DISCHARGE CHRIC FEFT PER SECOND WATER VEAR OCTORED 1988 TO SEPTEMBER 1989 (a) Ice jam Minimum discharge, 118 ft<sup>3</sup>/s July 31, Aug. 3. | | | DISCHARGE | , CUBIC | FEET PER | SECOND, | WATER YEAR<br>MEAN VALUES | OCTOBER | 1988 TO | SEPTEMBER | 1989 | | | |-------------|-------|------------|---------|----------|---------|---------------------------|------------|---------|-----------|-------|-------|-------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 149 | 181 | 229 | 200 | 700 | 240 | 872 | 881 | 384 | 200 | 130 | 337 | | 2 | 152 | 178 | 232 | 190 | 520 | 240 | 837 | 897 | 447 | 205 | 126 | 619 | | 1<br>2<br>3 | 152 | 177 | 210 | 185 | 430 | 245 | 798 | 862 | 495 | 193 | 131 | 341 | | ă | 148 | 182 | 226 | 180 | 400 | 270 | 753 | 806 | 700 | 186 | 386 | 248 | | 5 | 144 | 185 | 243 | 170 | 370 | 300 | 716 | 776 | 470 | 183 | 413 | 210 | | | 7.44 | 103 | 243 | 170 | 370 | 300 | /10 | 770 | 470 | 103 | 413 | 210 | | 6<br>7 | 144 | 194 | 244 | 200 | 350 | 450 | 674 | 726 | 434 | 190 | 369 | 197 | | 7 | 144 | 201 | 241 | 240 | 335 | 560 | 637 | 685 | 376 | 194 | 232 | 216 | | 8 | 145 | 206 | 228 | 350 | 325 | <b>70</b> 0 | 624 | 654 | 267 | 193 | 184 | 229 | | 9 | 146 | 211 | 160 | 320 | 315 | 900 | 590 | 639 | 265 | 197 | 165 | 421 | | 10 | 146 | 213 | 150 | 290 | 305 | 1400 | 587 | 608 | 244 | 192 | 153 | 856 | | 11 | 146 | 218 | 140 | 260 | 300 | 1500 | 576 | 575 | 252 | 192 | 145 | 677 | | 12 | 146 | 222 | 150 | 230 | 295 | 1610 | 558 | 551 | 268 | 210 | 140 | 506 | | 13 | 144 | 233 | 160 | 210 | 285 | 1720 | 537 | 522 | 368 | 243 | 136 | 931 | | 14 | 146 | 233 | 170 | 200 | 280 | 1810 | 488 | 504 | 335 | 219 | 137 | 1270 | | 15 | 146 | 234 | 160 | 190 | 275 | 1630 | 468 | 490 | 272 | 199 | 200 | 1110 | | 13 | 140 | 234 | 100 | 190 | 2/3 | 1630 | 400 | 490 | 212 | 199 | 200 | 1110 | | 16 | 147 | 237 | 150 | 180 | 270 | 1420 | 453 | 481 | 260 | 182 | 183 | 936 | | 17 | 157 | 234 | 170 | 180 | 265 | 1280 | 462 | 470 | 250 | 172 | 142 | 795 | | 18 | 163 | 233 | 180 | 190 | 260 | 1120 | 461 | 477 | 238 | 171 | 130 | 681 | | 19 | 163 | 240 | 190 | 200 | 255 | 940 | 451 | 471 | 230 | 248 | 126 | 597 | | 20 | 164 | 235 | 180 | 210 | 250 | 981 | 436 | 436 | 225 | 228 | 129 | 535 | | 21 | 173 | 238 | 170 | 220 | 245 | 1070 | 433 | 402 | 220 | 214 | 130 | 487 | | 22 | 175 | 238 | 180 | 230 | 240 | 1190 | 446 | 403 | 224 | 203 | 127 | 448 | | 23 | 190 | 245 | 170 | 240 | 240 | 1190 | 534 | 410 | 217 | 191 | 126 | 414 | | 23<br>24 | 194 | 245<br>227 | | | | | 534<br>607 | 401 | 216 | 250 | 130 | 384 | | 24 | | | 180 | 280 | 235 | 1170 | | | | | | 360 | | 25 | 191 | 229 | 190 | 270 | 235 | 1100 | 585 | 400 | 217 | 228 | 131 | 360 | | 26 | 188 | 260 | 200 | 240 | 235 | 1050 | 701 | 399 | 228 | 199 | 187 | 342 | | 27 | 196 | 278 | 220 | 210 | 240 | 970 | 945 | 385 | 231 | 170 | 267 | 324 | | 28 | 194 | 261 | 240 | 240 | 240 | 952 | 938 | 369 | 223 | 153 | 208 | 311 | | 29 | 191 | 255 | 230 | 300 | | 977 | 899 | 346 | 204 | 137 | 166 | 298 | | 30 | 185 | 248 | 220 | 400 | | 938 | 908 | 346 | 203 | 142 | 151 | 287 | | 31 | 183 | | 210 | 600 | | 905 | | 332 | | 135 | 145 | | | TOTAL | 5052 | 6726 | 6023 | 7605 | 8695 | 30828 | 18974 | 16704 | 8963 | 6019 | 5525 | 15367 | | MEAN | 163 | 224 | 194 | 245 | 311 | 994 | 632 | 539 | 299 | 194 | 178 | 512 | | MAX | 196 | 278<br>278 | 244 | 600 | 700 | 1810 | 945 | 897 | 700 | 250 | 413 | 1270 | | MIN | 144 | | | | | | 443 | 332 | 203 | 135 | 126 | 197 | | AC-FT | 10000 | 177 | 140 | 170 | 235 | 240 | 433 | | 17780 | 11940 | 10960 | 30480 | | | 10020 | | 1950 | 15080 | 17250 | | 37630 | 33130 | | | | .22 | | CFSM | .07 | .10 | .08 | . 11 | . 13 | . 43 | . 27 | . 23 | .13 | .08 | .08 | .25 | | IN. | .08 | . 11 | .10 | . 12 | . 14 | . 49 | .30 | . 27 | .14 | .10 | .09 | . 23 | CAL YR 1988 TOTAL 276178 MEAN 755 MAX 5800 MIN 120 AC-FT 547800 CFSM .32 IN. 4.41 WTR YR 1989 TOTAL 136481 MEAN 374 MAX 1810 MIN 126 AC-FT 270700 CFSM .16 IN. 2.18 #### CROW CREEK BASIN 77 #### 05422470 CROW CREEK AT BETTENDORF, IA LOCATION.--Lat 41°33'03", long 90°27'15", in NW1/4 NW1/4 sec.24, T.78 N., R.4 E., Scott County, Hydrologic Unit 07080101, on left bank 200 ft upstream from bridge on Valley Road (old U.S. Highway 67), 3.5 mi east of U.S. Highway 6, and 0.7 mi upstream from mouth. DRAINAGE AREA. -- 17.8 mi2. PERIOD OF RECORD. -- October 1977 to current year. GAGE. -- Water-stage recorder. Datum of gage is 576.23 ft above NGVD. REMARKS.--Estimated daily discharges: Dec. 22, 23, 30, Jan. 4-14, Feb. 4-20, and Feb. 22 to Mar. 6. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. AVERAGE DISCHARGE. -- 12 years, 14.3 ft3/s, 10.9 in/yr, 10,360 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 2,490 ft<sup>3</sup>/s June 15, 1982, gage height, 10.24 ft; minimum discharge, 0.06 ft<sup>3</sup>/s Aug. 18, 1988. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 250 ft3/s and maximum (\*): | | | Discharge | Gage height | | | Discharge | Gage height | |---------|------|----------------------|-------------|---------|------|----------------------|-------------| | Date | Time | (ft <sup>3</sup> /s) | (ft) | Date | Time | (ft <sup>3</sup> /s) | (ft) | | June 12 | 2115 | 367 | 5.31 | Sept. 1 | 0545 | *487 | *5.59 | Minimum discharge, 0.13 ft3/s Oct. 15. | | | DISCHA | RGE, CUBIC | FEET PER | SECOND 1 | , WATER YEAR<br>MEAN VALUES | OCTOBER | 1988 TO | SEPTEMBE | R 1989 | | | |-----------------------------------------------------|-----------------------------------------|------------------------------------------|------------------------------------------|-------------------------------------------------|-----------------------------------------|--------------------------------------------------|------------------------------------------|--------------------------------------------------|--------------------------------------------------|------------------------------------------|------------------------------------------|-------------------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | 1.0<br>.89<br>.32<br>.19<br>.19 | .88<br>.94<br>.99<br>1.4<br>1.4 | .74<br>.60<br>.58<br>.57 | .88<br>.80<br>.71<br>.74<br>1.4 | 1.6<br>1.2<br>.90<br>.85<br>.80 | .56<br>.58<br>.90<br>3.0<br>7.0 | 1.6<br>1.7<br>1.5<br>1.4<br>1.2 | 2.3<br>4.3<br>2.4<br>2.0<br>2.2 | 14<br>2.4<br>23<br>7.5<br>3.0 | .69<br>.66<br>.57<br>.52<br>.42 | .63<br>.56<br>.71<br>2.0<br>3.8 | 60<br>9.0<br>5.0<br>3.6<br>3.3 | | 6<br>7<br>8<br>9<br>10 | .19<br>.21<br>.28<br>.28<br>.28 | 1.1<br>.87<br>.80<br>1.2<br>2.6 | .57<br>.57<br>.51<br>.44<br>.47 | 3.5<br>2.0<br>1.4<br>1.2<br>1.1 | .75<br>.70<br>.65<br>.60<br>.64 | 6.0<br>5.1<br>3.9<br>9.2<br>15 | 1.2<br>1.2<br>1.9<br>1.7 | 1.7<br>1.6<br>1.4<br>4.3<br>1.9 | 2.1<br>1.8<br>1.8<br>2.0<br>1.6 | .37<br>.30<br>.31<br>.27<br>.25 | 1.5<br>.77<br>.60<br>.53<br>.46 | 9.7<br>6.1<br>10<br>40<br>15 | | 11<br>12<br>13<br>14<br>15 | .28<br>.28<br>.30<br>.31<br>.28 | .99<br>3.2<br>2.8<br>.93<br>.97 | . 44<br>. 43<br>. 50<br>. 54<br>. 56 | .95<br>.85<br>.80<br>.82<br>.86 | .68<br>.72<br>.76<br>.80<br>.85 | 9.1<br>5.4<br>3.4<br>2.8<br>2.6 | .99<br>.95<br>.83<br>.88<br>.87 | 1.7<br>1.5<br>1.7<br>1.5 | 1.5<br>49<br>92<br>62<br>51 | 3.9<br>22<br>2.4<br>1.3<br>.80 | .45<br>.38<br>.34<br>18<br>21 | 11<br>7.8<br>9.0<br>7.1<br>6.2 | | 16<br>17<br>18<br>19<br>20 | .19<br>.54<br>.69<br>.54<br>.47 | 3.1<br>1.0<br>.76<br>.78<br>.69 | .58<br>.62<br>.50<br>.53<br>.79 | .84<br>.85<br>.98<br>.87<br>.88 | .80<br>.70<br>.75<br>.80<br>.82 | 1.9<br>2.3<br>1.7<br>1.5 | .88<br>.99<br>1.6<br>1.6 | 1.5<br>1.5<br>2.5<br>2.3<br>1.3 | 35<br>23<br>8.0<br>9.6<br>8.8 | .71<br>.59<br>.86<br>3.0<br>6.2 | 3.1<br>1.9<br>1.5<br>1.4<br>2.8 | 5.6<br>5.0<br>4.1<br>3.3<br>3.3 | | 21<br>22<br>23<br>24<br>25 | 1.6<br>.91<br>4.4<br>1.2<br>.61 | .64<br>.57<br>.57<br>.57 | .89<br>1.0<br>1.1<br>.96<br>.69 | .82<br>.80<br>.80<br>.80 | .83<br>.70<br>.55<br>.50 | 1.1<br>1.1<br>1.1<br>1.2 | .88<br>1.2<br>19<br>5.1<br>3.2 | .81<br>.76<br>.74<br>1.7 | 5.5<br>4.5<br>8.3<br>2.6<br>2.3 | 4.7<br>2.8<br>1.4<br>2.5<br>1.3 | 1.4<br>1.4<br>3.2<br>2.2<br>1.6 | 3.1<br>3.0<br>2.8<br>2.7<br>2.6 | | 26<br>27<br>28<br>29<br>30<br>31 | .54<br>.58<br>.82<br>.83<br>.72<br>.85 | 3.9<br>4.6<br>1.3<br>.92<br>.87 | .60<br>7.6<br>3.2<br>1.8<br>1.3 | 1.8<br>1.6<br>1.5<br>5.3<br>3.0 | .60<br>.63<br>.60 | 1.2<br>1.5<br>6.5<br>4.4<br>2.5 | 3.0<br>4.8<br>3.2<br>2.5<br>1.9 | 1.1<br>.69<br>.57<br>.64<br>.79 | 2.1<br>2.4<br>1.3<br>.87<br>.71 | 1.1<br>.91<br>.70<br>.61<br>1.8<br>.80 | 5.2<br>3.2<br>2.5<br>2.0<br>1.7<br>3.0 | 2.6<br>2.5<br>2.5<br>2.4<br>2.4 | | TOTAL<br>MEAN<br>MAX<br>MIN<br>AC-FT<br>CFSM<br>IN. | 20.77<br>.67<br>4.4<br>.19<br>41<br>.04 | 41.91<br>1.40<br>4.6<br>.57<br>83<br>.08 | 31.24<br>1.01<br>7.6<br>.43<br>62<br>.06 | 41.95<br>1.35<br>5.3<br>.71<br>83<br>.08<br>.09 | 21.33<br>.76<br>1.6<br>.50<br>42<br>.04 | 106.94<br>3.45<br>15<br>.56<br>212<br>.19<br>.22 | 69.97<br>2.33<br>19<br>.83<br>139<br>.13 | 52.00<br>1.68<br>4.3<br>.57<br>103<br>.09<br>.11 | 429.68<br>14.3<br>92<br>.71<br>852<br>.80<br>.90 | 64.74<br>2.09<br>22<br>.25<br>128<br>.12 | 89.83<br>2.90<br>21<br>.34<br>178<br>.16 | 250.7<br>8.36<br>60<br>2.4<br>497<br>.47<br>.52 | CAL YR 1988 TOTAL 2338.80 MEAN 6.39 MAX 164 MIN .13 AC-FT 4640 CFSM .36 IN. 4.89 WTR YR 1989 TOTAL 1221.06 MEAN 3.35 MAX 92 MIN .19 AC-FT 2420 CFSM .19 IN. 2.55 #### 05449000 EAST BRANCH TOWA RIVER NEAR KLEMME. IA LOCATION.--Lat 43°00'31", long 93°37'42", in NE1/4 NW1/4 sec.36, T.95 N., R.24 W., Hancock County, Hydrologic Unit 07080207, on left bank 15 ft upstream from bridge on county highway B55, 1.2 mi west of Chicago, Rock Island and Pacific Railroad crossing in Klemme, 1.5 mi upstream from Drainage ditch 9, 18.2 mi upstream from confluence with West Branch Iowa River, and at mile 341.0. DRAINAGE AREA, -- 133 mi2. PERIOD OF RECORD.--April 1948 to September 1976, June 1977 to current year. Prior to October 1958, published as East Fork Iowa River near Klemme. REVISED RECORDS. -- WSP 1438: Drainage area. WDR IA-80-1: 1978. GAGE.--Water-stage recorder. Datum of gage is 1,179.33 ft above NGVD. Apr. 1, 1948, to Sept. 30, 1955, nonrecording gage at site 0.6 mi upstream at datum 0.80 ft higher. Oct. 1, 1955, to Sept. 30, 1969, at present site at datum 0.31 ft lower. REMARKS.--Estimated daily discharges: Nov. 16-18 and Nov. 25 to Mar. 26. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. AVERAGE DISCHARGE.--40 years (water years 1948-76, 1978-89), 64.6 ft<sup>3</sup>/s, 6.60 in/yr, 46,800 acre-ft/yr; median of yearly mean discharges, 53 ft<sup>3</sup>/s, 5.4 in/yr, 38,400 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5,960 ft<sup>3</sup>/s June 19, 1954, gage height, 11.2 ft, from flood-mark, site and datum then in use; maximum gage height, 10.67 ft Apr. 6, 1965 (corrected), backwater from ice; minimum daily discharge, 0.2 ft<sup>3</sup>/s Feb. 22-26, 1959. EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood in June 1944 reached a stage of about 10 ft, from information by local residents, former site and datum. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 700 ft3/s and maximum (\*): | | | Discharge | Gage height | | | Discharge | Gage height | |-----------------|--------------|------------------------------|-------------------|------|------|----------------------|-------------| | Date<br>Mar. 11 | Time<br>1115 | (ft <sup>3</sup> /s)<br>*150 | (ft)<br>(a) *6.40 | Date | Time | (ft <sup>3</sup> /s) | (ft) | (a) Ice jam. Minimum daily discharge, 1.3 ft3/s Jan. 19, 20. | | | DISCHARGE | , CUBIC | FEET PER | SECOND, | WATER YEAR<br>EAN VALUES | OCTOBER | 1988 TO | SEPTEMBER | 1989 | | | |-----------------------------------------------------|-------------------------------------------|---------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|----------------------------------------------------|------------------------------------------|------------------------------------------|-------------------------------------------|------------------------------------------|-------------------------------------------|------------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | 4.4<br>3.9<br>3.7<br>3.5<br>3.4 | 4.2<br>4.0<br>4.0<br>4.3<br>4.4 | 5.2<br>5.1<br>5.0<br>4.8<br>4.3 | 4.1<br>3.7<br>3.4<br>3.1<br>3.2 | 2.8<br>3.0<br>2.7<br>2.2<br>2.1 | 3.0<br>2.8<br>2.9<br>3.4<br>5.0 | 12<br>11<br>12<br>11<br>9.7 | 16<br>14<br>12<br>12<br>12 | 3.9<br>3.8<br>4.5<br>4.0<br>3.6 | 2.2<br>2.0<br>2.0<br>2.0<br>2.0 | 2.7<br>2.4<br>2.5<br>4.2<br>5.6 | 6.2<br>5.6<br>6.4<br>11<br>8.4 | | 6<br>7<br>8<br>9 | 3.6<br>3.5<br>3.5<br>3.5<br>3.4 | 4.8<br>4.6<br>4.0<br>4.0<br>3.4 | 4.4<br>4.1<br>3.8<br>3.9<br>3.9 | 3.2<br>3.0<br>2.8<br>2.5<br>2.4 | 1.9<br>1.8<br>1.9<br>2.0<br>2.1 | 10<br>16<br>25<br>37<br>68 | 9.2<br>9.2<br>11<br>9.5<br>9.6 | 10<br>9.5<br>9.2<br>9.0<br>7.8 | 3.9<br>4.0<br>4.3<br>3.5<br>3.3 | 2.0<br>2.0<br>1.8<br>1.6<br>1.6 | 5.1<br>4.8<br>4.7<br>4.9<br>5.0 | 4.1<br>3.7<br>3.9<br>3.5<br>3.4 | | 11<br>12<br>13<br>14<br>15 | 3.1<br>3.2<br>3.5<br>3.6<br>3.6 | 3.5<br>4.8<br>5.0<br>4.1<br>5.2 | 4.3<br>4.5<br>4.2<br>4.0<br>4.2 | 2.4<br>2.2<br>1.9<br>1.7 | 2.3<br>2.6<br>2.7<br>2.8<br>2.7 | 130<br>73<br>52<br>59<br>89 | 12<br>11<br>11<br>12<br>11 | 7.6<br>7.1<br>6.5<br>6.0<br>5.7 | 3.1<br>3.5<br>3.9<br>2.7<br>2.9 | 3.1<br>4.8<br>2.4<br>2.0<br>1.9 | 5.0<br>4.9<br>4.9<br>6.7<br>5.5 | 3.4<br>3.4<br>3.4<br>3.4 | | 16<br>17<br>18<br>19<br>20 | 3.5<br>3.9<br>4.1<br>3.7<br>3.8 | 4.9<br>5.0<br>5.2<br>5.3<br>4.5 | 4.9<br>5.3<br>5.2<br>5.1<br>6.2 | 1.6<br>1.5<br>1.4<br>1.3 | 2.6<br>2.7<br>2.6<br>2.5<br>2.6 | 82<br>68<br>72<br>58<br>56 | 9.6<br>9.6<br>8.4<br>7.5 | 5.5<br>5.9<br>6.5<br>6.4<br>5.6 | 2.4<br>2.7<br>3.1<br>2.7<br>3.1 | 1.8<br>1.8<br>3.6<br>4.6<br>3.0 | 5.3<br>5.3<br>5.3<br>3.4<br>3.3 | 3.2<br>3.2<br>3.2<br>3.2<br>3.2 | | 21<br>22<br>23<br>24<br>25 | 3.9<br>3.7<br>3.4<br>3.6<br>3.9 | 5.3<br>5.3<br>5.3<br>5.3<br>4.2 | 7.7<br>8.0<br>6.5<br>5.5<br>4.6 | 1.4<br>1.9<br>1.8<br>1.9 | 2.5<br>2.4<br>2.3<br>2.2<br>2.5 | 59<br>66<br>80<br>115<br>100 | 7.6<br>13<br>16<br>13 | 5.2<br>5.1<br>5.9<br>6.4<br>6.0 | 2.9<br>3.5<br>4.1<br>3.4<br>5.3 | 2.2<br>2.2<br>2.3<br>2.1<br>2.2 | 3.2<br>3.4<br>7.0<br>5.0<br>3.9 | 3.2<br>3.1<br>3.0<br>3.0<br>3.0 | | 26<br>27<br>28<br>29<br>30<br>31 | 4.4<br>4.9<br>4.9<br>4.0<br>3.8<br>4.5 | 4.4<br>3.5<br>3.9<br>5.0<br>5.0 | 4.5<br>4.6<br>4.5<br>4.5<br>4.6<br>4.3 | 1.9<br>1.8<br>1.8<br>1.7<br>1.8 | 2.9<br>3.1<br>2.9<br> | 71<br>64<br>49<br>32<br>17 | 12<br>22<br>29<br>30<br>21 | 4.7<br>4.3<br>4.6<br>5.1<br>4.8<br>4.3 | 6.9<br>5.9<br>3.2<br>2.6<br>2.3 | 2.4<br>2.5<br>2.5<br>2.7<br>4.1<br>3.3 | 7.2<br>9.0<br>7.0<br>4.1<br>3.5<br>5.7 | 3.0<br>3.0<br>3.0<br>2.9<br>2.8 | | TOTAL<br>MEAN<br>MAX<br>MIN<br>AC-FT<br>CFSM<br>IN. | 117.4<br>3.79<br>4.9<br>3.1<br>233<br>.03 | | 51.7<br>4.89<br>8.0<br>3.8<br>301<br>.04 | 68.2<br>2.20<br>4.1<br>1.3<br>135<br>.02 | 69.4<br>2.48<br>3.1<br>1.8<br>138<br>.02 | 1577.1<br>50.9<br>130<br>2.8<br>3130<br>.38<br>.44 | 382.9<br>12.8<br>30<br>7.5<br>759<br>.10 | 230.7<br>7.44<br>16<br>4.3<br>458<br>.06 | 109.0<br>3.63<br>6.9<br>2.3<br>216<br>.03 | 76.7<br>2.47<br>4.8<br>1.6<br>152<br>.02 | 150.5<br>4.85<br>9.0<br>2.4<br>299<br>.04 | 119.2<br>3.97<br>11<br>2.8<br>236<br>.03 | CAL YR 1988 TOTAL 6475.41 MEAN 17.7 MAX 273 MIN .34 AC-FT 12840 CFSM .13 IN. 1.81 WTR YR 1989 TOTAL 3189.2 MEAN 8.74 MAX 130 MIN 1.3 AC-FT 6330 CFSM .07 IN. .89 79 #### 05449500 IOWA RIVER NEAR ROWAN, IA LOCATION.--Lat 42°45'36", long 93°37'23", in NW1/4 NE1/4 sec.25, T.92 N., R.24 W., Wright County, Hydrologic Unit 07080207, on left bank 10 ft downstream from bridge on county highway C38, 0.9 mi downstream from drainage ditch 123, 3.8 mi northwest of Rowan, 10.7 mi downstream from confluence of East and West Branches, and at mile 316.4. DRAINAGE AREA. -- 429 mi2. PERIOD OF RECORD .-- October 1940 to September 1976, June 1977 to current year. REVISED RECORDS.--WSP 1308: 1942-43 (M). WSP 1438: Drainage area, WDR IA-80-1: 1978. GAGE.--Water-stage recorder. Datum of gage is 1,143.35 ft above NGVD. Prior to Oct. 14, 1948, nonrecording gage at same site and datum. REMARKS.--Estimated daily discharges: Oct. 1, 2, 12, 13, 15-20, Oct. 22 to Nov. 3, Nov 5, 6, 16-24, and Nov. 26 to Mar. 26. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. AVERAGE DISCHARGE.--48 years (water years 1941-76, 1978-89), 211 ft<sup>3</sup>/s, 6.68 in/yr, 152,900 acre-ft/yr; median of yearly mean discharges, 190 ft<sup>3</sup>/s, 6.0 in/yr, 138,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 8,460 ft<sup>3</sup>/s June 21, 1954, gage height, 14.88 ft; minimum daily discharge, 2.9 ft<sup>3</sup>/s Jan. 21-23, 1959. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 1,200 ft3/s and maximum (\*): | Date<br>Mar. 12 | Time<br>1030 | Discharge<br>(ft <sup>3</sup> /s)<br>*480 | Gage height<br>(ft)<br>(a) *8.24 | Date | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height<br>(ft) | |-----------------|--------------|-------------------------------------------|----------------------------------|------|------|-----------------------------------|---------------------| | | | | | | | | | DISCHARGE CURIC FEET DED SECOND WATER VEAD OCTOBER 1988 TO SERTEMBER 1989 (a) Ice jam Minimum discharge, 7.5 ft3/s Sept. 29, 30. | | | DISCHARGE | , CUBIC | FEET PER | SECOND, | WATER YEAR<br>EAN VALUES | OCTOBER | 1988 TO | SEPTEMBER | 1989 | , | | |-------------|------|-----------|---------|----------|---------|--------------------------|---------|---------|-----------|------|------|------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 17 | 23 | 16 | 13 | 23 | 17 | 57 | 106 | 24 | 16 | 15 | 13 | | 2 | 16 | 23 | 17 | 13 | 14 | 15 | 49 | 91 | 24 | 16 | 14 | 13 | | 2<br>3<br>4 | 15 | 24 | 16 | 14 | 12 | 16 | 47 | 80 | 30 | 16 | 14 | 15 | | 4 | 14 | 25 | 16 | 13 | 11 | 15 | 45 | 71 | 24 | 15 | 14 | 20 | | 5 | 14 | 23 | 15 | 16 | 11 | 18 | 45 | 67 | 21 | 14 | 14 | 19 | | 6<br>7 | 14 | 21 | 15 | 15 | 12 | 26 | 41 | 65 | 20 | 14 | 14 | 19 | | 7 | 14 | 19 | 15 | 15 | 13 | 30 | 40 | 58 | 19 | 14 | 15 | 20 | | 8<br>9 | 14 | 17 | 14 | 14 | 14 | 43 | 43 | 52 | 19 | 13 | 15 | 18 | | | 14 | 18 | 15 | 14 | 14 | 58 | 44 | 49 | 19 | 13 | 15 | 15 | | 10 | 14 | 18 | 14 | 14 | 14 | 170 | 39 | 48 | 19 | 13 | 14 | 14 | | 11 | 14 | 17 | 14 | 13 | 15 | 440 | 38 | 44 | 18 | 15 | 15 | 13 | | 12 | 14 | 19 | 14 | 14 | 16 | 470 | 42 | 41 | 18 | 16 | 15 | 12 | | 13 | 15 | 18 | 14 | 12 | 17 | 360 | 42 | 39 | 17 | 15 | 15 | 11 | | 14 | 15 | 19 | 13 | 13 | 16 | 310 | 40 | 37 | 18 | 18 | 16 | 11 | | 15 | 15 | 22 | 14 | 12 | 15 | 290 | 42 | 34 | 18 | 15 | 15 | 11 | | 16 | 16 | 22 | 14 | 12 | 16 | 240 | 42 | 33 | 17 | 14 | 16 | 11 | | 17 | 16 | 23 | 14 | 12 | 15 | 230 | 41 | 31 | 17 | 13 | 14 | 11 | | 18 | 16 | 23 | 14 | 12 | 16 | 240 | 41 | 30 | 16 | 19 | 14 | 10 | | 19 | 16 | 23 | 14 | 14 | 15 | 200 | 40 | 32 | 16 | 17 | 15 | 10 | | 20 | 17 | 22 | 16 | 17 | 14 | 150 | 40 | 31 | 16 | 18 | 16 | 9.9 | | 21 | 17 | 22 | 17 | 18 | 14 | 120 | 38 | 29 | 15 | 17 | 14 | 9.4 | | 22 | 18 | 22 | 16 | 19 | 13 | 105 | 48 | 27 | 16 | 15 | 14 | 9.5 | | 23 | 18 | 22 | 14 | 18 | 13 | 110 | 61 | 26 | 17 | 14 | 13 | 9.4 | | 24 | 17 | 22 | 13 | 19 | 15 | 125 | 98 | 40 | 16 | 14 | 13 | 9.0<br>8.9 | | 25 | 18 | 21 | 12 | 20 | 17 | 150 | 83 | 41 | 18 | 14 | 15 | 8.9 | | 26 | 19 | 20 | 11 | 18 | 19 | 190 | 70 | 29 | 21 | 14 | 18 | 8.7 | | 27 | 20 | 18 | 12 | 17 | 18 | 206 | 65 | 26 | 23 | 14 | 18 | 8.2 | | 28 | 21 | 17 | 12 | 16 | 18 | 191 | 84 | 23 | 22 | 13 | 17 | 7.9 | | 29 | 22 | 16 | 13 | 15 | | 13 <b>3</b> | 119 | 36 | 20 | 14 | 18 | 7.8 | | 30 | 22 | 16 | 14 | 18 | | 92 | 128 | 30 | 17 | 14 | 16 | 7.8 | | 31 | 23 | | 14 | 21 | | 71 | | 26 | | 14 | 15 | | | TOTAL | 515 | 615 | 442 | 471 | 420 | 4831 | 1652 | 1372 | 575 | 461 | 466 | 362.5 | | MEAN | 16.6 | | l4.3 | 15.2 | 15.0 | 156 | 55.1 | 44.3 | 19.2 | 14.9 | 15.0 | 12.1 | | MAX | 23 | 25 | 17 | 21 | 23 | 470 | 128 | 106 | 30 | 19 | 18 | _20 | | MIN | 14 | 16 | 11 | 12 | 11 | 15 | 38 | 23 | 15 | 13 | 13 | 7.8 | | AC-FT | 1020 | 1220 | 877 | 934 | 833 | 9580 | 3280 | 2720 | 1140 | 914 | 924 | 719 | | CFSM | .04 | .05 | .03 | .04 | .03 | .36 | . 13 | . 10 | .04 | .03 | . 04 | .03<br>.03 | | IN. | .04 | .05 | .04 | .04 | .04 | . 42 | . 14 | . 12 | .05 | .04 | .04 | .03 | | | | | | | | | | | | | | | CAL YR 1988 TOTAL 19097 MEAN 52.2 MAX 531 MIN 11 AC-FT 37880 CFSM .12 IN. 1.66 WTR YR 1989 TOTAL 12182.5 MEAN 33.4 MAX 470 MIN 7.8 AC-FT 24160 CFSM .08 IN. 1.06 #### 05451500 IOWA RIVER AT MARSHALLTOWN, IA LOCATION.--Lat 42°03'57", long 92°54'27", in SE1/4 SE1/4 Sec.23, T.84 N., R.18 W., Marshall County, Hydrologic Unit 07080208, on right bank 10 ft downstream from bridge on State Highway 14, 1,500 ft upstream from Burnett Creek, 2.2 mi upstream from Linn Creek, and at mile 222.8. DRAINAGE AREA. -- 1.564 mi2, including that of Burnett Creek. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--October 1902 to September 1903, October 1914 to September 1927, October 1932 to current year. Monthly discharge only for some periods, published in WSP 1308. REVISED RECORDS.--WSP 1438: Drainage area. WSP 1558: 1915-18, 1919 (M), 1920, 1921-23 (M), 1924-27, 1933, 1934 (M), 1936, 1938, 1947 (M). GAGE.--Water-stage recorder. Datum of gage is 853.10 ft above NGVD. See WSP 1728 for history of changes prior to Sept. 21, 1934. REMARKS.--Estimated daily discharges: Nov. 28, Dec. 1 to Mar. 22, Aug. 3-15, and Sept. 27-30. Records good except those for estimated daily discharges, which are poor. U.S. Army Corps of Engineers data collection platform at station. AVERAGE DISCHARGE.--71 years (water years 1903, 1915-27, 1933-89), 809 ft<sup>3</sup>/s, 7.02 in/yr, 586,100 acre-ft/yr; median of yearly mean discharges, 690 ft<sup>3</sup>/s, 6.0 in/yr, 500,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 42,000 ft<sup>3</sup>/s June 4, 1918, gage height, 17.74 ft, from flood-mark, from rating curve extended above 19,000 ft<sup>3</sup>/s on basis of velocity-area study; maximum gage height, 19.77 ft March 19, 1979; minimum daily discharge, 4.7 ft<sup>3</sup>/s Jan. 25, 1977. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 5,000 ft3/s and maximum (\*): | Date Time<br>Mar. 10 unknown | Discharge<br>(ft <sup>3</sup> /s)<br>*1,300 | Gage height<br>(ft)<br>(a) *13.90 | Date | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height<br>(ft) | |------------------------------|---------------------------------------------|-----------------------------------|------|------|-----------------------------------|---------------------| | | | | | | | | DISCHARGE CURIC FEET DED SECOND WATER VEAR OCTORED 1988 TO SEPTEMBER 1989 (a) HWM, ice jam Minimum discharge, 31 ft3/s Sept. 2, 3. | | | DISCHARGE | , CUBIC | FEET PER | SECOND, | WATER YEAR<br>EAN VALUES | OCTOBER | 1988 TO | SEPTEMBER | 1989 | | | |-----------------------------------------------------|------------------------------------------------|----------------------------|-----------------------------------------|-----------------------------------------|------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-----------------------------------------|------------------------------------------------|------------------------------------------|-----------------------------------------|------------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 40 | 50 | 80 | 70 | 88 | 43 | 299 | 160 | 277 | 160 | 64 | 38 | | 2 | 40 | 50 | 68 | 72 | 80 | 45 | 265 | 176 | 180 | 126 | 62 | 34 | | 3 | 39 | 51 | 71 | 70 | 76 | 45 | 238 | 185 | 145 | 116 | 60 | 33 | | 4 | 41 | 56 | 72 | 70 | 72 | 47 | 217 | 180 | 193 | 99 | 61 | 40 | | 5 | 42 | 50 | 74 | 68 | 68 | 48 | 198 | 170 | 255 | 80 | 58 | 38 | | 6 | 42 | 51 | 70 | 72 | 63 | 52 | 179 | 159 | 183 | 74 | 58 | 38 | | 7 | 41 | 51 | 62 | 75 | 58 | 58 | 170 | 147 | 149 | 75 | 58 | 47 | | 8 | 39 | 53 | 52 | 92 | 56 | 120 | 184 | 140 | 135 | 75 | 57 | 53 | | 9 | 39 | 60 | 45 | 110 | 54 | 400 | 179 | 134 | 227 | 73 | 57 | 182 | | 10 | 41 | 57 | 51 | 105 | 54 | 850 | 169 | 129 | 226 | 74 | 57 | 200 | | 11 | 39 | 54 | 62 | 110 | 54 | 540 | 161 | 122 | 162 | 70 | 55 | 144 | | 12 | 39 | 67 | 64 | 94 | 56 | 300 | 152 | 115 | 142 | 61 | 57 | 127 | | 13 | 38 | 70 | 66 | 98 | 54 | 230 | 146 | 110 | 124 | 61 | 56 | 103 | | 14 | 40 | 67 | 67 | 100 | 52 | 170 | 140 | 109 | 115 | 60 | 57 | 96 | | 15 | 39 | 78 | 71 | 94 | 50 | 110 | 135 | 105 | 109 | 60 | 58 | 90 | | 16 | 42 | 101 | 68 | 90 | 47 | 130 | 133 | 100 | 104 | 57 | 59 | 80 | | 17 | 46 | 117 | 66 | 84 | 44 | 170 | 133 | 95 | 98 | 53 | 55 | 75 | | 18 | 49 | 100 | 66 | 90 | 43 | 270 | 134 | 99 | 97 | 74 | 49 | 69 | | 19 | 49 | 85 | 70 | 110 | 41 | 460 | 131 | 104 | 93 | 61 | 58 | 64 | | 20 | 50 | 81 | 73 | 172 | 40 | 400 | 128 | 95 | 87 | 60 | 54 | 64 | | 21 | 52 | 85 | 75 | 155 | 38 | 380 | 127 | 88 | 84 | 62 | 47 | 65 | | 22 | 47 | 84 | 76 | 150 | 37 | 340 | 132 | 88 | 83 | 61 | 44 | 71 | | 23 | 49 | 84 | 74 | 140 | 36 | 341 | 132 | 83 | 82 | 60 | 45 | 67 | | 24 | 48 | 76 | 75 | 125 | 36 | 330 | 132 | 102 | 80 | 56 | 47 | 66 | | 25 | 48 | 70 | 73 | 110 | 37 | 333 | 130 | 204 | 93 | 56 | 47 | 63 | | 26<br>27<br>28<br>29<br>30<br>31 | 48<br>47<br>47<br>47<br>48<br>50 | 89<br>86<br>68<br>74<br>82 | 76<br>78<br>76<br>74<br>72<br>68 | 120<br>140<br>160<br>170<br>145<br>110 | 39<br>40<br>42<br> | 372<br>436<br>428<br>417<br>386<br>347 | 129<br>141<br>176<br>193<br>164 | 366<br>395<br>265<br>197<br>163<br>216 | 106<br>109<br>110<br>134<br>176 | 52<br>47<br>43<br>64<br>67<br>64 | 56<br>45<br>39<br>38<br>35<br>38 | 64<br>71<br>80<br>84<br>80 | | TOTAL<br>MEAN<br>MAX<br>MIN<br>AC-FT<br>CFSM<br>IN. | 1366<br>44.1<br>52<br>38<br>2710<br>.03<br>.03 | 71.6<br>117<br>50 | 2135<br>68.9<br>80<br>45<br>4230<br>.04 | 3371<br>109<br>172<br>68<br>6690<br>.07 | 1455<br>52.0<br>88<br>36<br>2890<br>.03<br>.03 | 8598<br>277<br>850<br>43<br>17050<br>.18<br>.20 | 4947<br>165<br>299<br>127<br>9810<br>.11<br>.12 | 4801<br>155<br>395<br>83<br>9520<br>.10 | 4158<br>139<br>277<br>80<br>8250<br>.09<br>.10 | 2201<br>71.0<br>160<br>43<br>4370<br>.05 | 1631<br>52.6<br>64<br>35<br>3240<br>.03 | 2326<br>77.5<br>200<br>33<br>4610<br>.05 | CAL YR 1988 TOTAL 106806 MEAN 292 MAX 2000 MIN 26 AC-FT 211800 CFSM .19 IN. 2.54 WTR YR 1989 TOTAL 39136 MEAN 107 MAX 850 MIN 33 AC-FT 77630 CFSM .07 IN. .93 # 05451500 IOWA RIVER AT MARSHALLTOWN, IA--Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD .-- April 1988 to current year. PERIOD OF DAILY RECORD. SPECIFIC CONDUCTANCE: April 1988 to current year. WATER TEMPERATURES: April 1988 to current year. SUSPENDED-SEDIMENT DISCHARGE: April 1988 to current year. REMARKS.--Records of specific conductance are obtained from suspended-sediment samples at times of analysis. ing periods of partial ice cover, sediment samples are collected in open water channel. Dur- EXTREMES FOR PERIOD OF DAILY RECORD .-- SPECIFIC CONDUCTANCE: Maximum daily, 780 microsiemens Aug. 8, 16, 18, 19, 21, 23, 1988; minimum daily, 380 microsiemens Sept. 10, 1989. WATER TEMPERATURES: Maximum daily, 34.0°C July 27, 1988; minimum daily, 0.0°C on many days during winter period. SEDIMENT CONCENTRATIONS: Maximum daily mean, 406 mg/L Mar. 10, 1988; minimum daily mean, 2 mg/L Aug. 8,16, 1988. SEDIMENT LOADS: Maximum daily, 932 tons Mar. 10, 1989; minimum daily, 0.20 ton Aug. 8,16, 1988. EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum daily, 725 microsiemens Jan. 14; minimum daily, 330 microsiemens Sept. 10. WATER TEMPERATURES: Maximum daily, 27.0°C July 30 to Aug. 1, Aug. 3, 4; minimum daily, 0.0°C on many days during winter period. SEDIMENT CONCENTRATIONS: Maximum daily mean, 406 mg/L Mar. 10; minimum daily mean, 8 mg/L Jan. 25-28. SEDIMENT LOADS: Maximum daily, 932 tons Mar. 10; minimum daily, 1.2 tons Feb. 19,21. | | | SPECIFIC | CONDUCTA | NCE MICRO | SIEMENS/C<br>INSTAN | M AT 25 I | DEG C, PER<br>VALUES | IOD APRIL | TO SEPTE | MBER 1988 | | | |-----|-----|----------|----------|-----------|---------------------|-----------|----------------------|-----------|-------------|-----------|-----|-------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | YAM | JUN | JUL | AUG | SEP | | 1 | | | | | | | 420 | 530 | 460 | 400 | 420 | | | 2 | | | | | | | | 380 | 490 | 440 | 469 | | | 3 | | | | | | | 440 | 590 | <b>5</b> 00 | 460 | | | | 4 | | | | | | | 440 | 460 | 500 | | 480 | | | 5 | | | | | | | 520 | | 500 | 400 | | | | 6 | | | | | | | 455 | | | | 480 | | | 7 | | | | | | | 500· | 490 | 50 <b>0</b> | 420 | 760 | | | 8 | | | | | | | 400 | 455 | 480 | 40₫ | 780 | | | 9 | | | | | | | | 520 | 450 | 420 | 500 | | | 10 | | | | | | | 420 | | 420 | | | | | 11 | | | | | | | 440 | 400 | 420 | 420 | 480 | | | 12 | | | | | | | 440 | 460 | 460 | 420 | | | | 13 | | | | | | | 440 | | | 420 | 520 | | | 14 | | | | | | | | 460 | 420 | | 760 | 490 | | 15 | | | | | | | | 460 | | | | | | 16 | | | | | | | 490 | | 440 | 440 | 780 | | | 17 | | | | | | | 420 | 460 | 440 | 440 | | | | 18 | | | | | | | 425 | 440 | 420 | 440 | 780 | | | 19 | | | | | | | 480 | 440 | | 420 | 780 | | | 20 | | | | | | | 380 | 460 | 440 | | | | | 21 | | | | | | | 460 | | | 410 | 780 | | | 22 | | | | | | | 420 | | 420 | 410 | | | | 23 | | | | | | | 530 | | 460 | | 780 | | | 24 | | | | | | | 500 | 440 | 440 | 420 | 500 | | | 25 | | | | | | | 520 | 440 | | 440 | 440 | 512 | | 26 | | | | | | | | 500 | 440 | 440 | | <b>51</b> 5 | | 27 | | | | | | | 520 | 450 | 440 | | | | | 28 | | | | | | | 420 | | | 440 | 480 | | | 29 | | | | | | | 410 | 490 | | 500 | 480 | 560 | | 30 | | | | | | | 480 | 490 | 420 | 440 | | 506 | | 21 | | | | | | | | | | | | | # 05451500 IOWA RIVER AT MARSHALLTOWN, IA--Continued WATER-QUALITY RECORDS | | SPECIF | C CONDUC | TANCE MIC | ROSIEMENS | | DEG C, W | | OCTOBER | 1988 TO | SEPTEMBER | 1989 | | |-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------|------------------|-----------|-----------------------|------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | | 570 | | 591 | | | | | | | 520 | | | 2 | 479 | 528 | 542 | | | | | 654 | | 507 | | | | 3 | 495 | | | | | | | | | | | | | 4 | 513 | 493 | 490 | | | | | 643 | 651 | | | | | 5 | 520 | | | | | | 607 | 643 | | | | | | 6 | 522 | 519 | 497 | | | | 618 | | | 436 | 542 | 500 | | 7 | 494 | | | | | | | | | | | | | 8<br>9 | | 513<br>510 | 466 | | 667 | | | | 588 | | 562 | | | 10 | | 540 | | | 007 | | | | J00<br> | | 362 | 330 | | | | 3.0 | | | | | | | | | | | | 11 | | | | | | | 632 | 660 | | 482 | | | | 12<br>13 | 506 | | | | | | 620 | | | | 586<br>594 | 460 | | 14 | | 491 | 536 | 725 | | | 629 | 618 | 669 | | J94<br> | 470 | | 15 | | | | 723 | | | | | | | | | | | | | | | | | | | | | | | | 16<br>17 | | 500 | | | | | | | | 547 | 532 | 480 | | 18 | | 500 | 610 | | | | 637 | 520 | | 450 | 578 | | | 19 | 527 | | 510 | | 679 | | 592 | 520 | | 430 | 576 | | | 20 | | | | | | | | | | 455 | 365 | 430 | | | | | | | | | | | | | | | | 21<br>22 | 492 | 526 | | | | | | | | 443 | | | | 23 | 495 | 624 | | 510 | | 474 | 626 | 573 | 573 | 441 | 516 | 465 | | 24 | 488 | | | | | 460 | | 540 | 5/5 | | 510 | | | 25 | 525 | | | | | | | | 478 | 473 | | | | 26 | 610 | | | | | | | | | | | 105 | | 26<br>27 | 510<br>535 | | | 629 | 636 | | | | | | | 485 | | 28 | | 507 | | | | | | | | 490 | | 485 | | 29 | | | | | | | 615 | 669 | 514 | | | | | 30 | | | | | | | | | | 485 | | 510 | | 31 | 540 | | | | | 487 | | | | | | | | | | | | | | | | | | | | | | | | TAW | ER TEMPER | ATURE, DE | | SIUS, PER | RIOD APRIL<br>VALUES | TO SEPTE | MBER 198 | 8 | | | | DAY | OCT | TAW<br>VON | ER TEMPER<br>DEC | ATURE, DE | | | | TO SEPTE | MBER 198<br>JUN | 8<br>JUL | AUG | SEP | | | OCT | | | · | INSTAN | ITANEÓUS V | APR | MAY | JUN | JUL | | SEP<br> | | 1 2 | | NOV | DEC | JAN | INSTAN<br>FEB | TANEÓUS V<br>MAR | APR 10.0 | , | JUN<br>27.0<br>24.0 | JUL<br>23.0<br>25.0 | AUG<br>32.0<br>28.0 | | | 1<br>2<br>3 | | NOV<br><br> | DEC | JAN | INSTAN<br>FEB<br><br> | MAR | APR 10.0 6.5 | MAY<br>19.0<br>19.0<br>19.0 | JUN<br>27.0<br>24.0<br>26.0 | JUL<br>23.0<br>25.0<br>20.0 | 32.0<br>28.0 | | | 1<br>2<br>3<br>4 | | NOV | DEC | JAN | INSTAN<br>FEB<br><br> | MAR | APR 10.0 6.5 14.5 | MAY<br>19.0<br>19.0<br>19.0 | JUN<br>27.0<br>24.0<br>26.0<br>27.0 | JUL<br>23.0<br>25.0<br>20.0 | 32.0<br>28.0<br><br>32.0 | | | 1<br>2<br>3 | | NOV<br><br> | DEC | JAN | INSTAN<br>FEB<br><br> | MAR | APR 10.0 6.5 | MAY<br>19.0<br>19.0<br>19.0 | JUN<br>27.0<br>24.0<br>26.0 | JUL<br>23.0<br>25.0<br>20.0 | 32.0<br>28.0 | | | 1<br>2<br>3<br>4<br>5 | | NOV | DEC | JAN | INSTAN | MAR | APR 10.0 6.5 14.5 13.0 8.0 | MAY<br>19.0<br>19.0<br>19.0<br>18.0<br>20.0 | JUN<br>27.0<br>24.0<br>26.0<br>27.0<br>22.0 | JUL 23.0 25.0 20.0 29.0 | 32.0<br>28.0<br><br>32.0<br> | | | 1<br>2<br>3<br>4<br>5 | | NOV | DEC | JAN | INSTAN | MAR | APR 10.0 6.5 14.5 13.0 8.0 14.5 | MAY 19.0 19.0 19.0 19.0 20.0 | JUN 27.0 24.0 26.0 27.0 22.0 | JUL 23.0 25.0 20.0 20.0 29.0 | 32.0<br>28.0<br>32.0<br><br>32.0<br>22.0 | | | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | | NOV | DEC | JAN | INSTAN FEB | MAR | APR 10.0 6.5 14.5 13.0 8.0 14.5 15.5 | MAY<br>19.0<br>19.0<br>19.0<br>18.0<br>20.0 | JUN 27.0 24.0 26.0 27.0 22.0 28.0 27.0 | JUL 23.0 25.0 20.0 29.0 30.0 30.0 | 32.0<br>28.0<br>32.0<br><br>32.0<br>22.0<br>28.0 | | | 1<br>2<br>3<br>4<br>5 | | NOV | DEC | JAN | INSTAN | MAR | ALUES APR 10.0 6.5 14.5 13.0 8.0 14.5 15.5 | MAY 19.0 19.0 19.0 19.0 20.0 | JUN 27.0 24.0 26.0 27.0 22.0 28.0 27.0 24.0 | JUL 23.0 25.0 20.0 20.0 29.0 | 32.0<br>28.0<br>32.0<br><br>32.0<br>22.0 | | | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | | NOV | DEC | JAN | INSTAN FEB | MAR | ALUES APR 10.0 6.5 14.5 13.0 8.0 14.5 15.5 9.5 | MAY 19.0 19.0 19.0 18.0 20.0 20.0 18.0 16.0 | JUN 27.0 24.0 26.0 27.0 22.0 28.0 27.0 24.0 26.0 | JUL 23.0 25.0 20.0 29.0 30.0 30.0 27.0 | 32.0<br>28.0<br><br>32.0<br><br>32.0<br>22.0<br>28.0<br>29.0 | | | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | | NOV | DEC | JAN | INSTAN FEB | MAR | ALUES APR 10.0 6.5 14.5 13.0 8.0 14.5 15.5 9.5 11.5 | MAY 19.0 19.0 19.0 18.0 20.0 20.0 18.0 16.0 | JUN 27.0 24.0 25.0 27.0 27.0 22.0 28.0 24.0 26.0 26.0 | JUL 23.0 25.0 20.0 20.0 29.0 30.0 30.0 27.0 26.0 | 32.0<br>28.0<br>32.0<br>32.0<br>22.0<br>28.0<br>29.0<br>29.0 | | | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | | NOV | DEC | JAN | INSTAN FEB | MAR | APR 10.0 6.5 14.5 13.0 8.0 14.5 15.5 9.5 | MAY 19.0 19.0 19.0 18.0 20.0 20.0 18.0 16.0 | JUN 27.0 24.0 26.0 27.0 22.0 28.0 27.0 24.0 26.0 | JUL 23.0 25.0 20.0 20.0 29.0 29.0 30.0 30.0 27.0 26.0 28.0 | 32.0<br>28.0<br>32.0<br>32.0<br>22.0<br>28.0<br>29.0<br>29.0 | | | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13 | | NOV | DEC | JAN | INSTAN | MAR | ALUES APR 10.0 6.5 14.5 13.0 8.0 14.5 15.5 9.5 11.5 | MAY 19.0 19.0 19.0 18.0 20.0 20.0 18.0 16.0 | JUN 27.0 24.0 26.0 27.0 22.0 28.0 27.0 24.0 26.0 26.0 26.0 | JUL 23.0 25.0 20.0 20.0 29.0 30.0 30.0 27.0 26.0 | 32.0<br>28.0<br>32.0<br>32.0<br>22.0<br>28.0<br>29.0<br>29.0<br>29.0 | | | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | | NOV | DEC | JAN | INSTAN FEB | MAR | ALUES APR 10.0 6.5 14.5 13.0 8.0 14.5 15.5 9.5 11.5 16.0 15.0 | MAY 19.0 19.0 19.0 20.0 20.0 18.0 16.0 19.0 22.0 | JUN 27.0 24.0 26.0 27.0 22.0 27.0 27.0 27.0 24.0 26.0 26.0 26.0 | JUL 23.0 25.0 20.0 29.0 30.0 30.0 27.0 26.0 28.0 30.0 | 32.0<br>28.0<br>32.0<br>32.0<br>22.0<br>28.0<br>29.0<br>29.0 | | | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15 | | NOV | DEC | JAN | INSTAN FEB | MAR | ALUES APR 10.0 6.5 14.5 13.0 8.0 14.5 15.5 9.5 11.5 16.0 15.0 | MAY 19.0 19.0 19.0 18.0 20.0 20.0 18.0 16.0 23.0 24.0 | JUN 27.0 24.0 26.0 27.0 22.0 28.0 27.0 24.0 26.0 26.0 26.0 29.0 | JUL 23.0 25.0 20.0 29.0 30.0 30.0 27.0 26.0 28.0 30.0 | 32.0<br>28.0<br>32.0<br>22.0<br>28.0<br>29.0<br>29.0<br>29.0<br>29.0<br>24.0<br>24.0 | | | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15 | | NOV | DEC | JAN | INSTAN FEB | MAR | APR 10.0 6.5 14.5 13.0 8.0 14.5 15.5 9.5 11.5 16.0 15.0 | MAY 19.0 19.0 19.0 18.0 20.0 20.0 18.0 16.0 19.0 22.0 24.0 | JUN 27.0 24.0 26.0 27.0 22.0 27.0 22.0 27.0 24.0 26.0 27.0 26.0 26.0 29.0 29.0 30.0 | JUL 23.0 25.0 20.0 20.0 29.0 30.0 30.0 27.0 26.0 28.0 30.0 | 32.0<br>28.0<br>32.0<br>22.0<br>28.0<br>29.0<br>29.0<br>32.0<br>29.0<br>24.0<br>24.0 | | | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15 | | NOV | DEC | JAN | INSTAN FEB | MAR | 7ALUES APR 10.0 6.5 14.5 13.0 8.0 14.5 15.5 9.5 11.5 16.0 15.0 15.0 16.0 | MAY 19.0 19.0 19.0 18.0 20.0 18.0 16.0 23.0 24.0 | JUN 27.0 24.0 26.0 27.0 22.0 27.0 24.0 26.0 27.0 26.0 26.0 29.0 29.0 30.0 21.0 | JUL 23.0 25.0 20.0 29.0 29.0 30.0 30.0 27.0 28.0 30.0 30.0 27.0 | 32.0<br>28.0<br>32.0<br>22.0<br>28.0<br>29.0<br>29.0<br>29.0<br>24.0<br>24.0<br>25.0 | | | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19 | | NOV | DEC | JAN | INSTAN FEB | MAR | APR 10.0 6.5 14.5 13.0 8.0 14.5 15.5 9.5 11.5 16.0 15.0 | MAY 19.0 19.0 19.0 18.0 20.0 20.0 18.0 16.0 19.0 22.0 24.0 | JUN 27.0 24.0 26.0 27.0 22.0 27.0 22.0 27.0 24.0 26.0 27.0 26.0 26.0 29.0 29.0 30.0 | JUL 23.0 25.0 20.0 20.0 29.0 30.0 30.0 27.0 26.0 28.0 30.0 | 32.0<br>28.0<br>32.0<br>22.0<br>28.0<br>29.0<br>29.0<br>32.0<br>29.0<br>24.0<br>24.0 | <br><br><br><br>21.0 | | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18 | | NOV | DEC | JAN | INSTAN FEB | MAR | ALUES APR 10.0 6.5 14.5 13.0 8.0 14.5 15.5 9.5 11.5 16.0 15.0 15.0 16.0 14.0 | MAY 19.0 19.0 19.0 18.0 20.0 20.0 18.0 16.0 23.0 24.0 20.0 22.0 | JUN 27.0 24.0 26.0 27.0 22.0 27.0 24.0 26.0 26.0 26.0 26.0 21.0 29.0 21.0 28.0 | JUL 23.0 25.0 20.0 29.0 30.0 30.0 27.0 26.0 28.0 30.0 30.0 27.0 | 32.0<br>28.0<br><br>32.0<br>22.0<br>28.0<br>29.0<br><br>32.0<br>29.0<br>29.0<br>24.0<br>25.0<br>26.0<br>25.0<br>26.0<br>25.0 | 21.0 | | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20 | | NOV | DEC | JAN | INSTAN FEB | MAR | ALUES APR 10.0 6.5 14.5 13.0 8.0 14.5 15.5 9.5 11.5 16.0 15.0 14.0 14.0 15.0 | MAY 19.0 19.0 19.0 20.0 20.0 18.0 16.0 19.0 22.0 24.0 20.0 22.0 18.0 | JUN 27.0 24.0 26.0 27.0 22.0 27.0 27.0 27.0 26.0 27.0 26.0 27.0 26.0 21.0 28.0 28.0 | JUL 23.0 25.0 20.0 29.0 29.0 27.0 26.0 28.0 30.0 27.0 26.0 28.0 30.0 27.0 | 32.0<br>28.0<br><br>32.0<br>22.0<br>28.0<br>29.0<br><br>32.0<br>24.0<br><br>26.0<br>24.0<br>25.0<br>26.0<br>24.0 | 21.0 | | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22 | | NOV | DEC | JAN | INSTAN FEB | MAR MAR | APR 10.0 6.5 14.5 13.0 8.0 14.5 15.5 9.5 11.5 16.0 15.0 16.0 14.0 14.0 | MAY 19.0 19.0 19.0 18.0 20.0 18.0 22.0 22.0 24.0 22.0 22.0 | JUN 27.0 24.0 26.0 27.0 22.0 27.0 24.0 26.0 26.0 26.0 26.0 21.0 29.0 21.0 21.0 21.0 21.0 21.0 | JUL 23.0 25.0 20.0 20.0 29.0 30.0 30.0 27.0 26.0 28.0 30.0 27.0 30.0 28.0 30.0 27.0 | 32.0<br>28.0<br>32.0<br>22.0<br>28.0<br>29.0<br>29.0<br>24.0<br>26.0<br>24.0<br>26.0<br>24.0<br>24.0<br>24.0 | 21.0 | | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23 | | NOV | DEC | JAN | INSTAN FEB | MAR | ALUES APR 10.0 6.5 14.5 13.0 8.0 14.5 15.5 9.5 11.5 16.0 15.0 14.0 14.0 15.0 11.0 8.0 8.0 | MAY 19.0 19.0 19.0 18.0 20.0 20.0 18.0 16.0 23.0 24.0 20.0 18.0 22.0 18.0 | JUN 27.0 24.0 26.0 27.0 22.0 27.0 24.0 26.0 26.0 26.0 26.0 21.0 29.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21 | JUL 23.0 25.0 20.0 29.0 29.0 30.0 27.0 26.0 28.0 30.0 27.0 27.0 28.0 27.0 27.0 27.0 28.0 | 32.0<br>28.0<br><br>32.0<br>22.0<br>28.0<br>29.0<br>29.0<br><br>26.0<br>24.0<br>25.0<br>26.0<br>24.0<br>24.0<br>25.0<br>24.0<br>25.0<br>26.0<br>24.0 | 21.0 | | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24 | | NOV | DEC | JAN | INSTAN FEB | MAR | 7ALUES APR 10.0 6.5 14.5 13.0 8.0 14.5 15.5 9.5 11.5 16.0 15.0 14.0 14.0 15.0 11.0 8.0 8.0 13.0 | MAY 19.0 19.0 19.0 18.0 20.0 20.0 18.0 22.0 23.0 24.0 20.0 22.0 25.0 | JUN 27.0 24.0 26.0 27.0 22.0 27.0 27.0 24.0 26.0 27.0 26.0 27.0 26.0 27.0 26.0 27.0 26.0 27.0 26.0 27.0 28.0 29.0 21.0 28.0 29.0 21.0 21.0 21.0 21.0 21.0 | JUL 23.0 25.0 20.0 29.0 29.0 30.0 30.0 27.0 28.0 30.0 29.0 27.0 28.0 27.0 28.0 | 32.0<br>28.0<br>32.0<br>22.0<br>28.0<br>29.0<br>29.0<br>24.0<br>25.0<br>26.0<br>24.0<br>25.0<br>24.0<br>24.0<br>25.0<br>24.0<br>25.0<br>26.0 | 21.0 | | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23 | | NOV | DEC | JAN | INSTAN FEB | MAR | ALUES APR 10.0 6.5 14.5 13.0 8.0 14.5 15.5 9.5 11.5 16.0 15.0 14.0 14.0 15.0 11.0 8.0 8.0 | MAY 19.0 19.0 19.0 18.0 20.0 20.0 18.0 16.0 23.0 24.0 20.0 18.0 22.0 18.0 | JUN 27.0 24.0 26.0 27.0 22.0 27.0 24.0 26.0 26.0 26.0 26.0 21.0 29.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21 | JUL 23.0 25.0 20.0 29.0 29.0 30.0 27.0 26.0 28.0 30.0 27.0 27.0 28.0 27.0 27.0 27.0 28.0 | 32.0<br>28.0<br><br>32.0<br>22.0<br>28.0<br>29.0<br>29.0<br><br>26.0<br>24.0<br>25.0<br>26.0<br>24.0<br>24.0<br>25.0<br>24.0<br>25.0<br>26.0<br>24.0 | 21.0 | | 1 2 3 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | | NOV | DEC | JAN | INSTAN FEB | MAR | 7ALUES APR 10.0 6.5 14.5 13.0 8.0 14.5 15.5 9.5 11.5 16.0 15.0 14.0 14.0 15.0 11.0 8.0 8.0 13.0 | MAY 19.0 19.0 19.0 18.0 20.0 20.0 18.0 22.0 23.0 24.0 20.0 22.0 25.0 | JUN 27.0 24.0 26.0 27.0 22.0 27.0 27.0 26.0 27.0 26.0 27.0 26.0 27.0 26.0 27.0 26.0 27.0 28.0 29.0 29.0 29.0 21.0 28.0 29.0 31.0 31.0 31.0 33.0 | JUL 23.0 25.0 20.0 29.0 29.0 30.0 30.0 27.0 28.0 30.0 29.0 27.0 28.0 27.0 28.0 | 32.0<br>28.0<br>32.0<br>22.0<br>28.0<br>29.0<br>29.0<br>24.0<br>25.0<br>26.0<br>24.0<br>24.0<br>24.0<br>25.0<br>24.0<br>25.0<br>26.0<br>24.0 | 21.0 | | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27 | | NOV | DEC | JAN | INSTAN FEB | MAR | ALUES APR 10.0 6.5 14.5 13.0 8.0 14.5 15.5 9.5 11.5 16.0 15.0 14.0 14.0 14.0 15.0 11.0 8.0 8.0 13.0 17.0 | MAY 19.0 19.0 19.0 19.0 18.0 20.0 18.0 22.0 22.0 24.0 22.0 22.0 22.0 22.0 24.0 22.0 | JUN 27.0 24.0 26.0 27.0 22.0 27.0 24.0 26.0 27.0 26.0 26.0 26.0 21.0 28.0 29.0 21.0 28.0 29.0 31.0 31.0 31.0 31.0 | JUL 23.0 25.0 20.0 29.0 29.0 30.0 30.0 27.0 28.0 30.0 29.0 27.0 28.0 27.0 28.0 29.0 27.0 28.0 29.0 27.0 | 32.0<br>28.0<br>32.0<br>22.0<br>28.0<br>29.0<br>29.0<br>24.0<br>26.0<br>24.0<br>24.0<br>24.0<br>24.0<br>24.0<br>24.0<br>24.0 | 21.0 | | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28 | | NOV | DEC | JAN | INSTAN FEB | MAR | ALUES APR 10.0 6.5 14.5 13.0 8.0 14.5 15.5 9.5 11.5 16.0 15.0 14.0 14.0 15.0 11.0 8.0 8.0 13.0 17.0 | MAY 19.0 19.0 19.0 18.0 20.0 20.0 18.0 16.0 23.0 24.0 25.0 22.0 24.0 22.0 | JUN 27.0 24.0 26.0 27.0 22.0 27.0 24.0 26.0 26.0 26.0 29.0 29.0 29.0 21.0 29.0 21.0 23.0 31.0 31.0 31.0 31.0 | JUL 23.0 25.0 20.0 29.0 29.0 30.0 27.0 28.0 29.0 27.0 28.0 27.0 28.0 28.0 29.0 27.0 28.0 28.0 29.0 21.0 | 32.0<br>28.0<br>32.0<br>22.0<br>28.0<br>29.0<br>29.0<br>24.0<br>26.0<br>24.0<br>26.0<br>24.0<br>24.0<br>24.0<br>24.0<br>24.0<br>25.0<br>24.0<br>26.0<br>24.0 | 21.0 | | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>29<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | | NOV | DEC | JAN | INSTAN FEB | MAR | 7ALUES APR 10.0 6.5 14.5 13.0 8.0 14.5 15.5 9.5 11.5 16.0 15.0 14.0 14.0 15.0 11.0 8.0 8.0 17.0 | MAY 19.0 19.0 19.0 19.0 18.0 20.0 20.0 18.0 16.0 23.0 24.0 25.0 22.0 24.0 23.0 24.0 22.0 | JUN 27.0 24.0 26.0 27.0 22.0 27.0 27.0 26.0 27.0 26.0 27.0 26.0 27.0 26.0 27.0 26.0 27.0 28.0 29.0 29.0 29.0 31.0 31.0 31.0 31.0 34.0 | JUL 23.0 25.0 20.0 29.0 29.0 30.0 30.0 27.0 28.0 30.0 27.0 28.0 29.0 27.0 28.0 29.0 28.0 29.0 27.0 28.0 30.0 | 32.0<br>28.0<br>32.0<br>22.0<br>28.0<br>29.0<br>29.0<br>24.0<br>25.0<br>26.0<br>24.0<br>24.0<br>25.0<br>24.0<br>25.0<br>24.0<br>25.0<br>26.0<br>24.0 | 21.0<br><br>21.0<br><br>13.0 | | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28 | | NOV | DEC | JAN | INSTAN FEB | MAR | ALUES APR 10.0 6.5 14.5 13.0 8.0 14.5 15.5 9.5 11.5 16.0 15.0 14.0 14.0 15.0 11.0 8.0 8.0 13.0 17.0 | MAY 19.0 19.0 19.0 18.0 20.0 20.0 18.0 16.0 23.0 24.0 25.0 22.0 24.0 22.0 | JUN 27.0 24.0 26.0 27.0 22.0 27.0 24.0 26.0 26.0 26.0 29.0 29.0 29.0 21.0 29.0 21.0 23.0 31.0 31.0 31.0 31.0 | JUL 23.0 25.0 20.0 29.0 29.0 30.0 27.0 28.0 29.0 27.0 28.0 27.0 28.0 28.0 29.0 27.0 28.0 28.0 29.0 21.0 | 32.0<br>28.0<br>32.0<br>22.0<br>28.0<br>29.0<br>29.0<br>24.0<br>26.0<br>24.0<br>26.0<br>24.0<br>24.0<br>24.0<br>24.0<br>24.0<br>25.0<br>24.0<br>26.0<br>24.0 | 21.0 | 83 # 05451500 IOWA RIVER AT MARSHALLTOWN, IA--Continued WATER-QUALITY RECORDS | | | WATER | TEMPERATURE, | DEGREES | | WATER Y<br>TANEOUS | | 1988 | TO SEPTEMBER | 1989 | | | |----------------------------------|---------------------------|-------------------|--------------|---------|------------|--------------------|-------------|------------------|------------------|----------------------|----------------------|----------------------| | DAY | OCT | NOA | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3 | 16.5<br>14.5 | 7.0<br>6.5 | 2.0 | .0<br> | | | | 14.0 | | 30.0 | 29.0 | | | 5 | 11.5<br>12.0 | 10.0 | .0 | | | | 10.0 | 15.0 | 22.0 | 31.0 | | | | 6<br>7 | 13.0<br>12.0 | | 1.0 | | | | 11.0 | | | | 22.0 | 26.0 | | 8<br>9<br>10 | 9.0 | 6.0<br>5.0<br>4.0 | .0<br> | | .0 | | | | 18.0 | | 26.0 | 17.0 | | 11<br>12<br>13<br>14<br>15 | 13.0<br>12.0<br><br>16.5 | 6.5 | .0 | .0 | | | 10.0 | 20.0<br><br>17.0 | 16.0 | 28.0 | 27.0<br>24.0 | 16.0<br>17.0 | | 16<br>17<br>18<br>19<br>20 | 15.5<br>13.5<br>9.5 | 3.5 | .0 | | <br><br>.0 | | 9.0<br>16.0 | 20.0 | | 21.0<br>25.0<br>25.0 | 26.0<br>27.0<br>23.0 | 20.0 | | 21<br>22<br>23<br>24<br>25 | 10.5<br>9.5<br>7.0<br>7.0 | 1 0<br>.0 | | .0 | | 5.0 | 17.0 | 20.0<br>20.0 | 29.0<br><br>23.0 | 23.0 | 27.0 | 15.0 | | 26<br>27<br>28<br>29<br>30<br>31 | 8.0<br>8.0<br><br>9.0 | .0 | <br><br> | .0 | .0 | 6.5 | 13.0 | 26.0 | 26.0 | 25.0<br>28.0 | | 16.0<br>18.0<br>21.0 | SEDIMENT, SUSPENDED CONCENTRATION (MG/L), PERIOD APRIL TO SEPTEMBER 1988 | DAY | MEAN<br>CONCEN-<br>TRATION<br>(MG/L) | LOAD<br>(TONS/<br>DAY) | |----------------------------------|--------------------------------------|---------------------------------|----------------------------------------|-----------------------------------|--------------------------------------|------------------------------|--------------------------------------|----------------------------------------|--------------------------------------|----------------------------------------|--------------------------------------|---------------------------------| | | APR | IL | MAY | | JUN | E | JUL | Y | AUGU | ST | SEPTEM | BER | | 1<br>2<br>3<br>4<br>5 | 149<br>183<br>303<br>290<br>328 | 218<br>277<br>553<br>576<br>708 | 201<br>230<br>176<br>148<br>161 | 397<br>479<br>348<br>256<br>255 | 152<br>145<br>134<br>110<br>127 | 107<br>101<br>93<br>72<br>77 | 26<br>35<br>38<br>54<br>66 | 7.2<br>9.4<br>9.7<br>14<br>17 | 39<br>44<br>42<br>37<br>42 | 5.1<br>5.1<br>4.5<br>4.0<br>4.8 | 20<br>16<br>20<br>22<br>18 | 2.4<br>1.9<br>2.3<br>2.9<br>2.1 | | 6<br>7<br>8<br>9<br>10 | 250<br>189<br>185<br>175<br>153 | 557<br>415<br>396<br>361<br>299 | 149<br>109<br>102<br>308<br>239 | 216<br>147<br>138<br>525<br>387 | 111<br>74<br>65<br>68<br>69 | 64<br>41<br>36<br>35<br>34 | 70<br>86<br>72<br>75<br>73 | 17<br>20<br>17<br>16<br>19 | 27<br>6<br>2<br>26<br>45 | 2.8<br>.60<br>.20<br>2.8<br>4.9 | 16<br>18<br>18<br>18 | 1.7<br>1.7<br>1.7<br>1.7 | | 11<br>12<br>13<br>14<br>15 | 130<br>114<br>110<br>98<br>89 | 238<br>202<br>185<br>154<br>133 | 163<br>205<br>180<br>145<br>133 | 254<br>312<br>265<br>197<br>169 | 68<br>80<br>62<br>50<br>45 | 34<br>39<br>29<br>22<br>20 | 66<br>55<br>57<br>44<br>49 | 15<br>14<br>15<br>9.5<br>12 | 51<br>52<br>51<br>27<br>4 | 5.6<br>5.8<br>6.3<br>3.0<br>.41 | 18<br>17<br>18<br>18<br>16 | 1.7<br>1.5<br>1.6<br>1.6 | | 16<br>17<br>18<br>19<br>20 | 75<br>105<br>98<br>74<br>72 | 106<br>144<br>129<br>93<br>89 | 134<br>136<br>145<br>131<br>143 | 161<br>155<br>156<br>134<br>148 | 66<br>102<br>105<br>105<br>113 | 28<br>42<br>47<br>44<br>46 | 48<br>49<br>61<br>67<br>74 | 12<br>13<br>18<br>20<br>24 | 2<br>4<br>5<br>7<br>6 | .20<br>.37<br>.45<br>.68<br>.57 | 16<br>14<br>16<br>31<br>13 | 1.3<br>.98<br>1.2<br>4.2<br>1.6 | | 21<br>22<br>23<br>24<br>25 | 65<br>38<br>40<br>41<br>52 | 80<br>46<br>48<br>47<br>59 | 165<br>151<br>136<br>140<br>142 | 162<br>146<br>128<br>125<br>119 | 109<br>134<br>118<br>71<br>63 | 41<br>50<br>41<br>23<br>20 | 60<br>58<br>55<br>54<br>46 | 17<br>16<br>14<br>13<br>9.9 | 7<br>25<br>35<br>49<br>59 | .62<br>4.7<br>6.5<br>8.9 | 16<br>20<br>16<br>16<br>15 | 2.3<br>3.6<br>2.4<br>2.5<br>2.1 | | 26<br>27<br>28<br>29<br>30<br>31 | 59<br>57<br>79<br>95<br>152 | 67<br>72<br>101<br>137<br>256 | 115<br>125<br>124<br>110<br>130<br>150 | 93<br>97<br>92<br>85<br>97<br>107 | 65<br>58<br>51<br>53<br>49 | 20<br>18<br>16<br>16<br>14 | 44<br>45<br>46<br>43<br>37<br>34 | 6.9<br>6.7<br>6.7<br>6.0<br>5.2<br>4.6 | 52<br>51<br>59<br>42<br>32<br>25 | 8.8<br>8.3<br>9.4<br>6.5<br>4.3<br>3.2 | 13<br>10<br>9<br>11<br>12 | 1.7<br>1.3<br>1.0<br>1.3<br>1.5 | | TOTA | ւ | 6746 | | 6350 | | 1270 | | 404.8 | | 130.40 | | 56.88 | 05451500 IOWA RIVER AT MARSHALLTOWN, IA--Continued # WATER-QUALITY RECORDS SEDIMENT, SUSPENDED CONCENTRATION (MG/L), WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DAY | MEAN<br>CONCEN-<br>TRATION<br>(MG/L) | LOAD<br>(TONS/<br>DAY) | |-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------| | | OCTO | BER | NOVEM | BER | DECEM | BER | JANUA | RY | FEBRU | ARY | MARC | H | | 1<br>2<br>3<br>4<br>5 | 12<br>32<br>28<br>30<br>25 | 1.3<br>3.5<br>2.9<br>3.3<br>2.8 | 18<br>17<br>23<br>55<br>50 | 2.4<br>2.3<br>3.2<br>8.3<br>6.7 | 46<br>47<br>47<br>48<br>48 | 9.9<br>8.6<br>9.0<br>9.3<br>9.6 | 58<br>56<br>54<br>53<br>56 | 11<br>11<br>10<br>10 | 13<br>16<br>17<br>22<br>23 | 3.1<br>3.5<br>3.5<br>4.3<br>4.2 | 29<br>18<br>16<br>15<br>14 | 3.4<br>2.2<br>1.9<br>1.9 | | 6<br>7<br>8<br>9<br>10 | 33<br>37<br>37<br>36<br>37 | 3.7<br>4.1<br>3.9<br>3.8<br>4.1 | 27<br>28<br>52<br>58<br>48 | 3.7<br>3.9<br>7.4<br>9.4<br>7.4 | 49<br>57<br>71<br>64<br>56 | 9.3<br>9.5<br>10<br>7.8<br>7.7 | 54<br>62<br>57<br>66<br>58 | 10<br>13<br>14<br>20<br>16 | 30<br>38<br>37<br>33<br>20 | 5.1<br>6.0<br>5.6<br>4.8<br>2.9 | 10<br>11<br>18<br>102<br>406 | 1.4<br>1.7<br>5.8<br>110<br>932 | | 11<br>12<br>13<br>14<br>15 | 37<br>29<br>30<br>42<br>34 | 3.9<br>3.1<br>3.1<br>4.5<br>3.6 | 37<br>34<br>28<br>24<br>29 | 5.4<br>6.2<br>5.3<br>4.3<br>6.1 | 53<br>51<br>50<br>48<br>47 | 8.9<br>8.8<br>8.9<br>8.7<br>9.0 | 55<br>53<br>52<br>53<br>52 | 16<br>13<br>14<br>14<br>13 | 15<br>16<br>14<br>14<br>14 | 2.2<br>2.4<br>2.0<br>2.0<br>1.9 | 290<br>140<br>55<br>41<br>38 | 423<br>113<br>34<br>19<br>11 | | 16<br>17<br>18<br>19<br>20 | 31<br>33<br>32<br>21<br>19 | 3.5<br>4.1<br>4.2<br>2.8<br>2.6 | 40<br>47<br>37<br>35<br>36 | 11<br>15<br>10<br>8.0<br>7.9 | 46<br>47<br>47<br>47<br>46 | 8.4<br>8.4<br>8.9<br>9.1 | 52<br>52<br>56<br>62<br>58 | 13<br>12<br>14<br>18<br>27 | 15<br>13<br>13<br>11<br>13 | 1.9<br>1.5<br>1.5<br>1.2<br>1.4 | 35<br>33<br>57<br>141<br>117 | 12<br>15<br>42<br>175<br>126 | | 21<br>22<br>23<br>24<br>25 | 33<br>12<br>10<br>12<br>25 | 4.6<br>1.5<br>1.3<br>1.6<br>3.2 | 55<br>44<br>37<br>37<br>37 | 13<br>10<br>8.4<br>7.6<br>7.0 | 47<br>46<br>64<br>54<br>49 | 9.5<br>9.4<br>13<br>11<br>9.7 | 41<br>28<br>18<br>13<br>8 | 17<br>11<br>6.8<br>4.4<br>2.4 | 12<br>13<br>14<br>13<br>14 | 1.2<br>1.3<br>1.4<br>1.3 | 95<br>73<br>53<br>52<br>57 | 97<br>67<br>49<br>46<br>51 | | 26<br>27<br>28<br>29<br>30<br>31 | 32<br>31<br>27<br>22<br>17<br>16 | 4.1<br>3.9<br>3.4<br>2.8<br>2.2<br>2.2 | 46<br>48<br>75<br>64<br>47 | 11<br>11<br>14<br>13<br>10 | 48<br>49<br>42<br>43<br>54<br>55 | 9.8<br>10<br>8.6<br>8.6<br>10 | 8<br>8<br>18<br>20<br>10 | 2.6<br>3.0<br>3.5<br>8.3<br>7.8<br>3.0 | 29<br>43<br>41<br> | 3.1<br>4.6<br>4.6 | 66<br>93<br>98<br>73<br>45<br>38 | 66<br>109<br>113<br>82<br>47<br>36 | | TOTAL | L | 99.6 | | 238.9 | | 287.8 | | 348.8 | | 79.9 | | 2795.1 | | DAY | MEAN<br>CONCEN-<br>TRATION | LOAD<br>(TONS/ | MEAN<br>CONCEN-<br>TRATION | LOAD<br>(TONS/ | MEAN<br>CONCEN-<br>TRATION | LOAD | MEAN<br>CONCEN-<br>TRATION | LOAD<br>(TONS/ | MEAN<br>CONCEN-<br>TRATION | LOAD<br>(TONS/ | MEAN<br>CONCEN-<br>TRATION | LOAD<br>(TONS/ | | ~ | (MG/L) | DAY) | | | APR | IL | (MG/L)<br>MAY | DAY) | | DAY) | (MG/L) | DAY) | (MG/L)<br>AUGU: | DAY) | (MG/L)<br>SEPTEM | DAY)<br>BER | | 1<br>2<br>3<br>4<br>5 | • | • | (MG/L) | | (MG/L) | DAY) | (MG/L) | DAY) | (MG/L) | DAY) | (MG/L) | DAY) | | 1<br>2<br>3<br>4 | APR<br>34<br>24<br>19<br>17 | 27<br>17<br>12<br>10 | (MG/L)<br>MAY<br>56<br>56<br>65<br>57 | 24<br>27<br>32<br>28 | (MG/L) JUN 252 168 135 178 | DAY) E 188 82 53 93 | (MG/L) JUL 127 78 53 46 | DAY)<br>Y<br>55<br>27<br>17<br>12 | (MG/L)<br>AUGU:<br>50<br>47<br>40<br>36 | DAY)<br>ST<br>8.6<br>7.9<br>6.5<br>5.9 | (MG/L)<br>SEPTEM<br>45<br>41<br>42<br>44 | DAY) BER 4.6 3.8 3.7 4.8 | | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | APR 34 24 19 17 16 16 15 14 | 27<br>17<br>12<br>10<br>8.6<br>7.7<br>6.9<br>7.0<br>6.8 | (MG/L) MAY 56 56 65 57 48 47 43 43 43 | 24<br>27<br>32<br>28<br>22<br>20<br>17<br>16<br>16 | (MG/L) JUN 252 168 135 178 237 119 79 67 224 | DAY) E 188 82 53 93 163 59 32 24 137 | (MG/L) JUL' 127 78 53 46 46 46 45 45 50 | DAY) Y 55 27 17 12 9.9 9.0 9.1 9.9 9.9 | (MG/L) AUGUS 50 47 40 36 34 33 33 33 | DAY) 8.6 7.9 6.5 5.9 5.3 5.2 5.1 | (MG/L) SEPTEM 45 41 42 44 44 45 49 55 154 | DAY) BER 4.6 3.8 3.7 4.8 4.5 4.6 6.2 7.9 76 | | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | APR 34 29 17 16 16 15 14 | 27<br>17<br>12<br>10<br>8.6<br>7.7<br>6.9<br>7.0<br>6.8<br>5.5 | (MG/L) MAY 56 56 55 57 48 47 43 43 43 | 24<br>27<br>32<br>28<br>22<br>20<br>17<br>16<br>16<br>15 | (MG/L) JUN 252 168 135 178 237 119 67 224 173 | DAY) E 188 82 53 93 163 59 32 24 137 106 37 26 18 | (MG/L) JUL 127 78 53 46 46 45 45 49 50 32 61 47 28 26 | DAY) Y 55 27 17 12 9.9 9.0 9.1 9.9 6.4 12 7.7 4.6 | (MG/L) AUGU: 50 47 40 36 34 33 33 33 33 32 31 33 50 | DAY) ST 8.6 7.9 6.5 5.3 5.2 5.1 4.9 4.6 5.1 7.4 | (MG/L) SEPTEM 45 41 42 44 44 45 49 55 154 140 69 51 48 | DAY) BER 4.6 3.8 3.7 4.8 4.5 4.6 6.2 7.9 76 76 | | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15 | APR 34 24 19 17 16 16 15 14 12 12 22 23 22 21 20 20 | 27<br>17<br>12<br>10<br>8.6<br>7.7<br>6.9<br>7.0<br>6.8<br>5.5<br>5.2<br>6.6<br>8.7<br>8.7 | (MG/L) MAY 56 55 57 48 47 43 43 43 43 44 47 42 45 59 43 18 27 72 87 | 24<br>27<br>32<br>28<br>22<br>20<br>17<br>16<br>15<br>13<br>13<br>17<br>12 | (MG/L) JUN 252 168 135 178 237 119 67 224 173 85 69 55 45 39 | DAY) E 188 82 53 93 163 59 32 24 137 106 37 26 18 14 11 10 8.7 7.9 | (MG/L) JUL 127 78 53 46 46 45 49 50 32 61 47 28 26 28 29 | DAY) Y 55 27 17 12 9.9 9.0 9.1 9.9 6.4 12 7.7 4.6 4.5 | (MG/L) AUGU: 50 47 40 36 34 33 33 33 32 31 350 61 54 | DAY) ST 8.69 6.5 5.9 5.3 5.2 5.11 4.9 4.6 5.11 7.64 8.5 | (MG/L) SEPTEM 45 41 42 44 44 45 45 150 169 51 48 51 52 | DAY) BER 4.6 3.8 3.7 4.8 4.5 4.6 6.2 7.9 76 76 77 17 13 13 13 13 9.9 9.3 8.9 | | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20 | APR 34 24 19 17 16 16 15 14 12 12 23 22 21 20 19 19 22 30 | 1L 27 17 12 10 8.6 7.7 6.9 7.0 6.8 5.5 5.2 68.7 8.7 8.0 7.9 7.5 2 7.1 6.6 6.5 7.8 11 | (MG/L) MAY 56 565 57 48 47 43 43 43 44 47 42 45 59 43 18 27 72 87 46 42 57 59 98 | DAY) 24 27 32 28 22 20 17 16 16 15 13 13 17 12 4.9 6.9 19 24 12 10 14 13 27 | (MG/L) JUN 252 168 135 178 237 119 67 224 173 85 69 55 39 36 33 30 48 65 37 224 44 | DAY) E 188 82 53 93 163 59 32 24 137 106 37 26 18 14 11 10 8.7 7 9 15 8.4 9 9 7 14 | (MG/L) JUL 127 78 53 46 46 45 45 49 50 32 61 47 28 26 28 29 35 68 50 33 39 37 36 | DAY) Y 55 27 17 12 9.9 9.0 9.11 9.9 9.4 12 7.4.62 4.5 5.0 14 8.5 6.18 5.7 | MG/L) AUGU: 50 47 40 366 34 333 333 32 31 50 61 54 48 | DAY) ST 8.69 6.59 5.3 5.11 4.61 6.7 6.50 7.66 8.7 6.55 7.66 7.66 7.66 7.66 7.66 7.66 7. | (MG/L) SEPTEM 45 41 42 44 45 49 55 154 140 69 51 48 48 45 43 45 43 | DAY) BER 4.6 3.8 3.7 4.8 4.5 4.6 6.2 7.9 76 76 76 27 13 13 13 13 9.9 9.3 8.9 7.8 7.4 7.9 9.0 | 85 # 05451500 IOWA RIVER AT MARSHALLTOWN, IA--Continued WATER-QUALITY RECORDS | PARTICLE-SIZE DISTRIBUTION | OF | SUSPENDED | SEDIMENT. | PERIOD | APRIL | TO | SEPTEMBER | 1988 | |----------------------------|----|-----------|-----------|--------|-------|----|-----------|------| |----------------------------|----|-----------|-----------|--------|-------|----|-----------|------| | DATE | TIME | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | SEDI-<br>MENT,<br>SUS-<br>PENDED<br>(MG/L)<br>(80154) | SEDI-<br>MENT,<br>DIS-<br>CHARGE,<br>SUS-<br>PENDED<br>(T/DAY)<br>(80155) | SED.<br>SUSP.<br>SIEVE<br>DIAM.<br>Z FINER<br>THAN<br>.062 MM<br>(70331) | |------------------|------|-------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------| | MAY<br>11 | 1010 | 19.0 | 579 | 128 | 200 | 90 | | JUN<br>23<br>AUG | 1050 | 23.0 | 129 | 95 | 33 | 98 | | 02 | 1125 | 28.0 | 46 | 27 | 3.4 | 90 | # PARTICLE-SIZE DISTRIBUTION OF SUSPENDED SEDIMENT, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | TIME | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | SEDI-<br>MENT,<br>SUS-<br>PENDED<br>(MG/L)<br>(80154) | SEDI-<br>MENT,<br>DIS-<br>CHARGE,<br>SUS-<br>PENDED<br>(T/DAY)<br>(80155) | SED.<br>SUSP.<br>SIEVE<br>DIAM.<br>7 FINER<br>THAN<br>.062 MM<br>(70331) | |------------------|------|-------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------| | APR<br>18<br>AUG | 1430 | 25.0 | 132 | 15 | 5.3 | 96 | | 16 | 1425 | 25.0 | <b>5</b> 5 | 44 | 6.5 | 97 | # PARTICLE-SIZE DISTRIBUTION OF SURFACE BED MATERIAL, PERIOD APRIL TO SEPTEMBER 1988 | DATE | TIME | NUMBER OF SAM- PLING POINTS (COUNT) (00063) | BED<br>MAT.<br>SIEVE<br>DIAM.<br>Z FINER<br>THAN<br>.062 MM<br>(80164) | BED<br>MAT.<br>SIEVE<br>DIAM.<br>Z FINER<br>THAN<br>.125 MM<br>(80165) | BED<br>MAT.<br>SIEVE<br>DIAM.<br>Z FINER<br>THAN<br>.250 MM<br>(80166) | BED<br>MAT.<br>SIEVE<br>DIAM.<br>7 FINER<br>THAN<br>.500 MM<br>(80167) | BED<br>MAT.<br>SIEVE<br>DIAM.<br>Z FINER<br>THAN<br>1.00 MM<br>(80168) | BED<br>MAT.<br>SIEVE<br>DIAM.<br>I FINER<br>THAN<br>2.00 MM<br>(80169) | BED<br>MAT.<br>SIEVE<br>DIAM.<br>Z FINER<br>THAN<br>4.00 MM<br>(80170) | BED<br>MAT.<br>SIEVE<br>DIAM.<br>Z FINER<br>THAN<br>8.00 MM<br>(80171) | |------------------|------|---------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------| | MAY<br>11<br>JUN | 0945 | 5 | 1 | 1 | 14 | 59 | 85 | 94 | 98 | 100 | | 23<br>AUG | 1020 | 5 | 1 | 2 | 11 | 64 | 92 | 98 | 99 | 100 | | 02 | 1140 | 5 | 1 | 2 | 12 | 52 | 82 | 94 | 98 | 100 | # PARTICLE-SIZE DISTRIBUTION OF SURFACE BED MATERIAL, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | TIME | NUMBER OF SAM- PLING POINTS (COUNT) (00063) | BED<br>MAT.<br>SIEVE<br>DIAM.<br>Z FINER<br>THAN<br>.062 MM<br>(80164) | BED<br>MAT.<br>SIEVE<br>DIAM.<br>7 FINER<br>THAN<br>.125 MM<br>(80165) | BED<br>MAT.<br>SIEVE<br>DIAM.<br>7 FINER<br>THAN<br>.250 MM<br>(80166) | BED<br>MAT.<br>SIEVE<br>DIAM.<br>7 FINER<br>THAN<br>.500 MM<br>(80167) | BED<br>MAT.<br>SIEVE<br>DIAM.<br>7 FINER<br>THAN<br>1.00 MM<br>(80168) | BED<br>MAT.<br>SIEVE<br>DIAM.<br>Z FINER<br>THAN<br>2.00 MM<br>(80169) | BED<br>MAT.<br>SIEVE<br>DIAM.<br>Z FINER<br>THAN<br>4.00 MM<br>(80170) | BED<br>MAT.<br>SIEVE<br>DIAM.<br>Z FINER<br>THAN<br>8.00 MM<br>(80171) | BED<br>MAT.<br>SIEVE<br>DIAM.<br>Z FINER<br>THAN<br>16.0 MM<br>(80172) | |-----------|------|---------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------| | APR<br>18 | 1445 | 5 | 0 | 1 | 11 | 64 | 88 | 96 | 99 | 100 | | | AUG<br>16 | 1440 | 5 | 0 | 1 | 9 | 48 | 81 | 95 | 97 | 98 | 100 | #### 05451700 TIMBER CREEK NEAR MARSHALLTOWN, IA LOCATION.--Lat 42°00'25", long 92°51'15", in SE1/4 SW1/4 sec.8, T.83 N., R.17 W., Marshall County, Hydrologic Unit 07080208, on left bank 20 ft downstream from bridge on U.S. Highway 30, 3.5 mi upstream from mouth, and 4.1 mi southeast of court house in Marshalltown. DRAINAGE AREA. -- 118 mi2. PERIOD OF RECORD. -- October 1949 to current year. REVISED RECORDS. -- WSP 1708: 1950-55, 1957-59. GAGE. -- Water-stage recorder. Datum of gage is 849.44 ft above NGVD. REMARKS.--Estimated daily discharges: Nov. 26 to Jan. 27 and Feb. 1 to Mar. 25. Records good except for those Oct. 1 to Nov. 13, which are fair due to backwater from beaver dam and estimated periods, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain-gage and data collection platform at station. AVERAGE DISCHARGE. -- 40 years, 72.7 ft3/s, 8.37 in/yr, 52.670 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 12,000 ft<sup>3</sup>/s Aug. 16, 1977, gage height, 17.69 ft; no flow for a few days in 1956 and 1977. EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood in June 1947 reached a stage of 16.8 ft, discharge, 5,700 ft3/s. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 1,000 ft3/s and maximum (\*): | | | Discharge | Gage height | | | Discharge | Gage height | |---------|------|----------------------|-------------|----------|------------|----------------------|-------------| | Date | Time | (ft <sup>3</sup> /s) | (ft) | Date | Time | (ft <sup>3</sup> /s) | (ft) | | Jan. 29 | 1200 | *1,070 | *9.94 | No other | peak above | peak base. | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 Minimum discharge, 0.55 ft<sup>3</sup>/s Aug. 12. | | | 2100 | | .0 1111 11 | M. DECOMB, | EAN VALUE | 3 | | | | | | |-----------------------------------------------------|------------------------------------------|------------------------------------------|-------------------------------------------|----------------------------------------------------|-------------------------------------------|--------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|-------------------------------------------|--------------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | 2.9<br>2.3<br>2.2<br>2.4<br>1.7 | 2.0<br>2.3<br>1.9<br>2.8<br>3.5 | 6.0<br>5.0<br>4.5<br>5.4<br>4.7 | 4.7<br>4.7<br>4.7<br>4.7 | 100<br>60<br>30<br>20<br>13 | 3.2<br>3.3<br>3.3<br>3.3<br>3.5 | 7.8<br>7.8<br>7.7<br>7.3<br>6.6 | 15<br>30<br>40<br>43<br>28 | 5.5<br>4.6<br>4.3<br>4.2<br>3.8 | 2.1<br>1.8<br>1.6<br>1.5 | .64<br>.69<br>.93<br>1.1<br>2.0 | 5.7<br>4.5<br>3.3<br>3.3<br>3.1 | | 6<br>7<br>8<br>9<br>10 | 1.6<br>1.7<br>1.8<br>1.7 | 3.1<br>2.1<br>1.9<br>1.8<br>1.5 | 4.5<br>6.9<br>6.4<br>5.8<br>6.2 | 3.7<br>3.0<br>2.6<br>2.2<br>2.0 | 8.6<br>7.0<br>6.0<br>5.0<br>4.5 | 3.7<br>3.8<br>12<br>35<br>120 | 6.2<br>5.7<br>10<br>11<br>8.8 | 5.1<br>4.2<br>3.7<br>3.8<br>3.2 | 3.3<br>2.8<br>3.7<br>3.1<br>3.1 | 1.0<br>1.0<br>1.1<br>.77<br>.75 | 2.9<br>2.1<br>1.9<br>1.7 | 2.9<br>13<br>80<br>155<br>111 | | 11<br>12<br>13<br>14<br>15 | 1.5<br>1.5<br>1.3<br>1.5 | 1.4<br>3.8<br>8.6<br>3.2<br>6.4 | 6.6<br>7.0<br>8.0<br>8.0<br>4.2 | 1.9<br>1.9<br>1.8<br>1.8 | 4.2<br>4.0<br>3.8<br>3.7<br>3.7 | 80<br>60<br>42<br>30<br>24 | 7.4<br>7.0<br>6.3<br>5.5<br>5.2 | 3.4<br>3.2<br>2.9<br>2.7<br>2.3 | 3.0<br>5.8<br>4.8<br>4.0<br>3.7 | .75<br>.87<br>.90<br>.81<br>.79 | .78<br>.71<br>2.0<br>12<br>9.1 | 51<br>28<br>19<br>15<br>12 | | 16<br>17<br>18<br>19<br>20 | 1.5<br>1.9<br>3.0<br>1.5<br>1.7 | 19<br>14<br>5.4<br>5.2<br>4.3 | 4.5<br>4.8<br>4.9<br>4.9 | 1.7<br>2.0<br>3.0<br>4.0<br>4.0 | 3.6<br>3.5<br>3.5<br>3.5<br>3.4 | 19<br>15<br>12<br>10<br>8.0 | 5.2<br>5.6<br>5.4<br>4.7<br>4.5 | 2.4<br>2.5<br>3.1<br>5.2<br>4.3 | 3.3<br>2.5<br>2.0<br>2.5<br>1.8 | .90<br>.87<br>11<br>22<br>8.7 | 3.0<br>1.5<br>1.4<br>2.4<br>5.8 | 10<br>8.6<br>7.2<br>6.7<br>5.9 | | 21<br>22<br>23<br>24<br>25 | 2.5<br>3.5<br>2.6<br>2.3<br>2.2 | 3.5<br>3.8<br>2.8<br>2.8<br>2.7 | 4.9<br>4.9<br>4.8<br>4.8 | 4.0<br>3.9<br>3.5<br>3.0<br>2.6 | 3.4<br>3.4<br>3.3<br>3.3 | 9.0<br>13<br>15<br>14<br>13 | 4.5<br>5.2<br>6.3<br>5.8<br>4.9 | 2.7<br>1.9<br>1.8<br>82<br>42 | 1.4<br>1.1<br>1.3<br>1.3<br>2.4 | 3.8<br>2.4<br>1.2<br>1.0 | 7.5<br>3.1<br>3.9<br>3.7<br>1.9 | 4.9<br>4.5<br>3.5<br>3.4<br>2.7 | | 26<br>27<br>28<br>29<br>30<br>31 | 3.0<br>2.7<br>2.3<br>3.4<br>3.0<br>2.1 | 4.1<br>3.7<br>3.6<br>4.5<br>5.4 | 4.7<br>4.7<br>4.7<br>4.7<br>4.7 | 3.3<br>15<br>104<br>756<br>286<br>152 | 3.3<br>3.3<br>3.3 | 13<br>13<br>12<br>12<br>10<br>8.8 | 4.5<br>4.4<br>5.9<br>7.4<br>5.2 | 15<br>9.0<br>7.0<br>6.8<br>6.1<br>5.7 | 5.9<br>20<br>7.0<br>3.8<br>2.8 | 1.0<br>.94<br>.88<br>.86<br>.80 | 29<br>98<br>26<br>13<br>9.6<br>9.3 | 2.6<br>2.6<br>2.9<br>3.2<br>3.2 | | TOTAL<br>MEAN<br>MAX<br>MIN<br>AC-FT<br>CFSM<br>IN. | 66.0<br>2.13<br>3.5<br>1.2<br>131<br>.02 | 131.1<br>4.37<br>19<br>1.4<br>260<br>.04 | 165.6<br>5.34<br>8.0<br>4.2<br>328<br>.05 | 1393.9<br>45.0<br>756<br>1.7<br>2760<br>.38<br>.44 | 317.7<br>11.3<br>100<br>3.3<br>630<br>.10 | 623.9<br>20.1<br>120<br>3.2<br>1240<br>.17 | 189.8<br>6.33<br>11<br>4.4<br>376<br>.05 | 388.0<br>12.5<br>82<br>1.8<br>770<br>.11 | 118.8<br>3.96<br>20<br>1.1<br>236<br>.03 | 75.05<br>2.42<br>22<br>.75<br>149<br>.02 | 258.95<br>8.35<br>98<br>.64<br>514<br>.07 | 578.7<br>19.3<br>155<br>2.6<br>1150<br>.16 | CAL YR 1988 TOTAL 8074.3 MEAN 22.1 MAX 330 MIN 1.1 AC-FT 16020 CFSM .19 IN. 2.55 WTR YR 1989 TOTAL 4307.50 MEAN 11.8 MAX 756 MIN .64 AC-FT 8540 CFSM .10 IN. 1.36 87 #### 05451900 RICHLAND CREEK NEAR HAVEN, IA LOCATION.--Lat 41°53'58", long 92°28'27", in SE1/4 NE1/4 sec.21, T.82 N., R.14 W., Tama County, Hydrologic Unit 07080208, on right bank 5 ft upstream from bridge on county highway, 0.6 mi northeast of Haven, and 2.8 mi upstream from mouth. DRAINAGE AREA. -- 56.1 mi2. PERIOD OF RECORD. -- October 1949 to current year. REVISED RECORDS.--WSP 1708: 1950-55, 1956 (M), 1957, 1958 (M), 1959. GAGE.--Water-stage recorder. Datum of gage is 788.69 ft above NGVD. Prior to Oct. 1, 1971, at datum 10.00 ft higher. REMARKS.--Estimated daily discharges: Dec. 7 to Jan. 5, Jan. 8-28, and Feb. 2 to Mar. 9. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corp of Engineers data collection platform at station. AVERAGE DISCHARGE.--40 years, $35.5 \text{ ft}^3/\text{s}$ , 8.59 in/yr, 25,720 acre-ft/yr; median of yearly mean discharges, $31 \text{ ft}^3/\text{s}$ , 7.5 in/yr, 22,500 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 7,000 ft<sup>3</sup>/s May 28, 1974, gage height, 24.00 ft; no flow Jan. 22 to Feb. 2, 1977, and July 9, 10, 1989. EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood in June 1918 reached a stage of 24.3 ft, discharge not determined. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 1,000 ft3/s and maximum (\*): | | | Discharge | Gage height | | | Discharge | Gage height | |-------|------|----------------------|-------------|------|------|----------------------|-------------| | Date | Time | (ft <sup>3</sup> /s) | (ft) | Date | Time | (ft <sup>3</sup> /s) | (ft) | | Mar Q | 2100 | *720° | (a) #16 57 | | | • | | (a) Ice jam No flow, July 9, 10. | | | DISCHAR | GE, CUBIC | FEET PER | | WATER YEAR<br>EAN VALUES | OCTOBER | 1988 TO | SEPTEMBER | 1989 | | | |-----------------------------------------------------|------------------------------------------|------------------------------------------|-----------------------------------------|----------------------------------------------------|----------------------------------------|---------------------------------------------|-----------------------------------------|--------------------------------------------|------------------------------------------------|-------------------------------------------------|------------------------------------------|---------------------------------------------------| | DAY | OCT | NOA | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | .66<br>.68<br>.59<br>.52<br>.53 | .96<br>1.0<br>1.0<br>1.2<br>1.0 | .93<br>1.1<br>1.1<br>1.0<br>1.1 | .39<br>.36<br>.40<br>.50 | 3.0<br>1.0<br>.70<br>.30<br>.15 | .05<br>.05<br>.05<br>.50<br>.40 | 1.5<br>1.6<br>1.5<br>1.4 | 1.3<br>1.4<br>1.1<br>1.1 | 1.9<br>1.6<br>1.7<br>1.4 | .22<br>.18<br>.16<br>.16 | .56<br>.52<br>.50<br>.51<br>.68 | 1.3<br>.83<br>.98<br>1.1<br>.86 | | 6<br>7<br>8<br>9<br>10 | . 57<br>. 53<br>. 51<br>. 56<br>. 56 | .85<br>.82<br>.79<br>.94<br>.92 | 1.1<br>1.0<br>.84<br>.70<br>.60 | 63<br>24<br>4.5<br>2.3<br>1.6 | .16<br>.20<br>.24<br>.30<br>.35 | .20<br>.25<br>10<br>180<br>208 | 1.2<br>1.4<br>2.7<br>2.6<br>1.9 | .92<br>.83<br>.77<br>.75<br>.73 | .88<br>.80<br>.65<br>.58<br>.62 | .08<br>.08<br>.04<br>.00 | . 54<br>. 48<br>. 47<br>. 46<br>. 36 | .68<br>76<br>103<br>105<br>25 | | 11<br>12<br>13<br>14<br>15 | . 44<br>. 44<br>. 48<br>. 64<br>. 41 | .96<br>1.3<br>1.3<br>1.3 | .46<br>.40<br>.45<br>.60<br>.58 | 1.1<br>.90<br>.80<br>.85 | .27<br>.23<br>.20<br>.18<br>.17 | 69<br>24<br>7.2<br>5.4<br>3.9 | 1.6<br>1.5<br>1.5<br>1.3 | .71<br>.56<br>.52<br>.55 | .67<br>2.2<br>1.4<br>.98<br>.69 | .04<br>.14<br>.10<br>.08<br>.07 | .37<br>.37<br>.35<br>.51<br>.52 | 5.8<br>4.1<br>3.2<br>2.8<br>2.4 | | 16<br>17<br>18<br>19<br>20 | .46<br>.76<br>.78<br>.73<br>.79 | 1.6<br>1.2<br>1.2<br>1.1 | .50<br>.46<br>.40<br>.54 | .64<br>.74<br>1.5<br>4.5<br>3.0 | .16<br>.15<br>.15<br>.14<br>.14 | 3.2<br>1.8<br>2.2<br>1.9<br>2.1 | 1.4<br>1.6<br>1.6<br>1.5 | .44<br>.34<br>.65<br>1.3<br>.85 | .56<br>.52<br>.44<br>.52<br>.56 | .05<br>.10<br>28<br>13<br>2.9 | .34<br>.33<br>.30<br>1.5<br>.72 | 2.0<br>1.5<br>1.2<br>1.2 | | 21<br>22<br>23<br>24<br>25 | .86<br>.82<br>1.8<br>1.3 | .93<br>.87<br>.95<br>1.0 | .60<br>.62<br>.80<br>.90<br>.70 | 1.5<br>1.3<br>1.0<br>.90<br>.84 | .14<br>.13<br>.08<br>.08 | 1.6<br>1.7<br>1.9<br>1.8<br>2.1 | 1.3<br>1.6<br>1.9<br>1.7 | .47<br>.40<br>.28<br>105<br>91 | .56<br>.49<br>.49<br>.44<br>.75 | 1.2<br>1.0<br>1.0<br>.90 | .37<br>.32<br>2.7<br>.73<br>.70 | .85<br>.99<br>.93<br>.79<br>.68 | | 26<br>27<br>28<br>29<br>30<br>31 | .52<br>.92<br>.85<br>.85<br>.94 | 1.8<br>1.7<br>1.1<br>1.2<br>1.2 | .66<br>.70<br>.50<br>.47<br>.44<br>.42 | .80<br>.76<br>75<br>351<br>32<br>9.3 | .08<br>.07<br>.06 | 2.3<br>2.6<br>2.9<br>2.8<br>2.1 | 1.3<br>1.4<br>2.0<br>1.7<br>1.3 | 10<br>4.2<br>3.2<br>2.9<br>2.4<br>2.8 | 5.0<br>11<br>1.7<br>.37<br>.24 | .71<br>.65<br>.57<br>.52<br>.56 | 5.0<br>5.5<br>10<br>50<br>9.8<br>2.7 | .59<br>.75<br>.99<br>.86<br>.73 | | TOTAL<br>MEAN<br>MAX<br>MIN<br>AC-FT<br>CFSM<br>IN. | 23.00<br>.74<br>1.8<br>.41<br>.46<br>.01 | 33.69<br>1.12<br>1.8<br>.79<br>67<br>.02 | 21.57<br>.70<br>1.1<br>.40<br>43<br>.01 | 587.24<br>18.9<br>351<br>.36<br>1160<br>.34<br>.39 | 8.92<br>.32<br>3.0<br>.06<br>18<br>.01 | 543.70<br>17.5<br>208<br>.05<br>1080<br>.31 | 47.5<br>1.58<br>2.7<br>1.2<br>94<br>.03 | 238.94<br>7.71<br>105<br>.28<br>474<br>.14 | 40.81<br>1.36<br>11<br>.24<br>81<br>.02<br>.03 | 53.85<br>1.74<br>28<br>.00<br>107<br>.03<br>.04 | 98.21<br>3.17<br>50<br>.30<br>195<br>.06 | 348.21<br>11.6<br>105<br>.59<br>691<br>.21<br>.23 | CAL YR 1988 TOTAL 4615.73 MEAN 12.6 MAX 570 MIN .40 AC-FT 9160 CFSM .22 IN. 3.06 WTR YR 1989 TOTAL 2045.64 MEAN 5.60 MAX 351 MIN .00 AC-FT 4060 CFSM .10 IN. 1.36 #### 05452000 SALT CREEK NEAR ELBERON, IA LOCATION.--Lat 41°57'51", long 92°18'47", in NW1/4 NW1/4 sec.36, T.83 N., R.13 W., Tama County, Hydrologic Unit 07080208, at left downstream end of bridge on U.S. Highway 30, 2.0 mi upstream from Hog Run, 3.0 mi south of Elberon, and 9.0 mi upstream from mouth. DRAINAGE AREA. -- 201 mi2. PERIOD OF RECORD. -- October 1945 to current year. REVISED RECORDS. -- WSP 1438: Drainage area. WSP 1558: 1946. GAGE.--Water-stage recorder. Datum of gage is 781.58 ft above NGVD (Iowa Highway Commission bench mark). Prior to Oct. 15, 1945 and June 14, 1947 to Feb. 10, 1949, nonrecording gage on upstream side of bridge at present datum. REMARKS.--Estimated daily discharges: Dec. 8 to Mar 10, Mar. 15-22, 25-27, Apr. 2, 8,9, 15, 16, 22, 23. Records good except those for estimated daily discharge, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain-gage and data collection platform at station. AVERAGE DISCHARGE.--44 years, 130 $\rm ft^3/s$ , 8.78 in/yr, 94,180 acre-ft/yr; median of yearly mean discharges, 110 $\rm ft^3/s$ , 7.4 in/yr, 79,700 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge observed, 35,000 ft<sup>3</sup>/s June 13, 1947, gage height, 17.6 ft from rating curve extended above 17,000 ft<sup>3</sup>/s; maximum gage height, 20.00 ft June 15, 1982; minimum daily discharge, 0.85 ft<sup>3</sup>/s Jan. 31, 1977. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 16, 1944 reached a stage of 19.9 ft, from floodmark at downstream side of bridge, discharge, about 30,000 ft<sup>3</sup>/s. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 1,500 ft3/s and maximum (\*): | | | Discharge | Gage height | | | Discharge | Gage height | |---------|------|------------|-------------|---------|------|----------------------|-------------| | Date | Time | $(ft^3/s)$ | (ft) | Date | Time | (ft <sup>3</sup> /s) | (ft) | | Mar. 10 | 1330 | ice jam | *15.46 | Sept. 8 | 0845 | *2,420 | 14.75 | Minimum discharge, 2.6 ft3/s July 11. | | | DISCHARGE | , CUBIC | FEET PER | SECOND, | WATER YEAR<br>EAN VALUES | OCTOBER | 1988 TO | SEPTEMBER | 1989 | | | |-----------------------------------|-------------------------------------------|---------------------------------|------------------------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------------------------|------------------------------------------|---------------------------------------------------|------------------------------------------|------------------------------------------|-------------------------------------------------|----------------------------------------------| | DAY | OCT | NOA | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | 4.9<br>4.6<br>4.7<br>5.0<br>5.1 | 6.6<br>6.4<br>6.1<br>6.7<br>7.2 | 6.8<br>6.9<br>7.2<br>6.4<br>6.6 | 3.6<br>3.4<br>3.5<br>3.8<br>5.0 | 110<br>30<br>21<br>17<br>14 | 7.4<br>7.8<br>9.0<br>150<br>80 | 14<br>16<br>13<br>12 | 9.2<br>8.6<br>8.1<br>8.1<br>9.0 | 19<br>12<br>10<br>9.2<br>8.1 | 4.0<br>3.9<br>3.8<br>3.7<br>3.4 | 3.1<br>3.2<br>3.1<br>2.9<br>3.2 | 29<br>14<br>11<br>11 | | 6<br>7<br>8<br>9 | 5.3<br>5.4<br>5.8<br>5.7<br>5.7 | 7.9<br>6.6<br>6.1<br>6.1<br>6.9 | 7.8<br>6.6<br>4.0<br>5.0<br>4.3 | 35<br>20<br>13<br>10<br>8.7 | 13<br>11<br>10<br>9.0<br>8.5 | 43<br>23<br>30<br>70<br>900 | 11<br>11<br>17<br>13 | 7.6<br>7.1<br>7.1<br>7.8<br>7.3 | 7.4<br>6.5<br>5.8<br>5.6<br>5.7 | 3.2<br>3.1<br>3.0<br>2.9<br>2.8 | 3.7<br>3.2<br>3.3<br>3.2<br>3.5 | 9.9<br>59<br>1290<br>357<br>145 | | 11<br>12<br>13<br>14<br>15 | 5.9<br>4.9<br>4.8<br>5.8<br>5.5 | 5.8<br>7.3<br>9.4<br>7.8<br>8.7 | 3.8<br>4.2<br>4.5<br>4.3<br>3.6 | 8.0<br>7.8<br>7.4<br>7.2<br>7.5 | 8.0<br>8.6<br>9.4<br>8.4<br>8.0 | 231<br>124<br>61<br>39<br>20 | 10<br>11<br>9.9<br>9.6<br>9.8 | 6.5<br>6.1<br>6.0<br>5.8<br>5.7 | 5.7<br>14<br>21<br>11<br>7.7 | 2.8<br>2.9<br>3.1<br>3.0<br>3.1 | 3.8<br>3.5<br>3.5<br>4.4<br>4.2 | 77<br>49<br>48<br>53<br>34 | | 16<br>17<br>18<br>19<br>20 | 5.6<br>6.1<br>6.7<br>6.0<br>5.9 | 16<br>10<br>8.9<br>7.1<br>6.5 | 3.2<br>3.4<br>3.7<br>3.9<br>4.4 | 7.6<br>9.0<br>25<br>90<br>50 | 7.6<br>7.2<br>7.2<br>7.4<br>7.8 | 15<br>13<br>15<br>14<br>12 | 10<br>10<br>9.7<br>9.3<br>9.5 | 5.6<br>5.1<br>5.2<br>6.8<br>7.1 | 6.8<br>6.5<br>5.7<br>5.3<br>5.1 | 3.2<br>3.1<br>5.8<br>11<br>7.7 | 4.2<br>4.3<br>4.4<br>8.6<br>15 | 20<br>17<br>16<br>15 | | 21<br>22<br>23<br>24<br>25 | 6.9<br>6.7<br>8.8<br>7.3<br>6.3 | 4.5<br>4.7<br>7.4<br>7.0<br>6.4 | 4.2<br>4.3<br>5.0<br>4.3<br>3.7 | 30<br>20<br>25<br>17<br>15 | 8.0<br>7.4<br>6.8<br>7.2<br>9.0 | 11<br>12<br>18<br>21<br>19 | 8.8<br>9.4<br>10<br>12 | 5.3<br>4.5<br>4.4<br>22<br>449 | 4.7<br>4.3<br>4.3<br>4.4<br>4.6 | 4.7<br>4.1<br>4.1<br>3.8<br>3.5 | 6.6<br>4.2<br>7.3<br>8.2<br>8.1 | 12<br>12<br>10<br>9.4<br>9.3 | | 26<br>27<br>28<br>29<br>30<br>31 | 5.9<br>6.2<br>6.6<br>5.9<br>5.3<br>7.0 | 9.0<br>9.8<br>6.3<br>6.2<br>7.0 | 3.9<br>3.7<br>3.4<br>3.2<br>3.7<br>3.6 | 13<br>20<br>60<br>400<br>320<br>200 | 9.4<br>8.4<br>8.0<br> | 17<br>17<br>18<br>18<br>16 | 8.7<br>8.4<br>13<br>12<br>9.5 | 48<br>21<br>16<br>14<br>13 | 11<br>18<br>8.7<br>5.4<br>4.3 | 3.1<br>3.0<br>2.9<br>3.4<br>3.9<br>3.1 | 11<br>21<br>7.8<br>31<br>11 | 8.5<br>7.8<br>8.0<br>7.6<br>7.1 | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 182.3<br>5.88<br>8.8<br>4.6<br>362<br>.03 | | 43.6<br>4.63<br>7.8<br>3.2<br>285<br>.02 | 1445.5<br>46.6<br>400<br>3.4<br>2870<br>.23<br>.27 | 387.3<br>13.8<br>110<br>6.8<br>768<br>.07 | 2045.2<br>66.0<br>900<br>7.4<br>4060<br>.33<br>.38 | 329.6<br>11.0<br>17<br>8.4<br>654<br>.05 | 753.0<br>24.3<br>449<br>4.4<br>1490<br>.12<br>.14 | 247.8<br>8.26<br>21<br>4.3<br>492<br>.04 | 119.1<br>3.84<br>11<br>2.8<br>236<br>.02 | 215.5<br>6.95<br>31<br>2.9<br>427<br>.03<br>.04 | 2370.6<br>79.0<br>1290<br>7.1<br>4700<br>.39 | CAL YR 1988 TOTAL 14947.4 MEAN 40.8 MAX 559 MIN 3.2 AC-FT 29650 CFSM .20 IN. 2.77 WTR YR 1989 TOTAL 8461.9 MEAN 23.2 MAX 1290 MIN 2.8 AC-FT 16780 CFSM .12 IN. 1.57 #### 05452200 WALNUT CREEK NEAR HARTWICK, IA LOCATION.--Lat 41°50'06", long 92°23'10", in SE1/4 SW1/4 sec.8, T.81 N, R.13 W., Poweshiek County, Hydrologic Unit 07080208, on right bank 5 ft downstream from bridge on county highway V21, 1.2 mi downstream from North Walnut Creek, 4.0 mi northwest of Hartwick, and 6.5 mi upstream from mouth. DRAINAGE AREA. -- 70.9 mi2. PERIOD OF RECORD. -- October 1949 to current year. REVISED RECORDS. -- WSP 1558: 1950 (P), 1951-57. GAGE. -- Water-stage recorder. Datum of gage is 786.59 ft above NGVD. REMARKS.--Estimated daily discharges: Oct. 1-3, 10-19, Dec. 8 to Jan. 5, Jan. 8-29, Feb. 2 to Mar. 9, and Mar. 15-22. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers data collection platform at station. AVERAGE DISCHARGE. -- 40 years, 44.1 ft3/s, 8.45 in/yr, 31.950 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 7,100 ft<sup>3</sup>/s July 2, 1983, gage height, 16.65 ft, from rating curve extended above 2,600 ft<sup>3</sup>/s on basis of contracted-opening and flow-over-embankment measurement of peak flow; no flow at times most years. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in June 1947 reached a stage of 17.7 ft, from information by local residents, discharge not determined. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 1,000 ft3/s and maximum (\*): | | | Discharge | Gage height | | | Discharge | Gage height | |---------|------|----------------------|---------------|---------|------|------------|-------------| | Date | Time | (ft <sup>3</sup> /s) | (ft) | Date | Time | $(ft^3/s)$ | (ft) | | Jan. 29 | | Ice jam | <b>*</b> 9.36 | Sept. 7 | 2215 | *607 | 8.42 | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 Minimum daily discharge, 0.34 ft3/s Aug. 17, 18. | | | DISCHA | RGE, CUB. | IC FEET FE | K SECOND,<br>M | EAN VALUES | K OCTOBE | K 1900 IO | SEFIEMBE | K 1909 | | | |-----------------------------------------------------|-----------------------------------------|------------------------------------------|-----------------------------------------|----------------------------------------------------|------------------------------------------|---------------------------------------------------|------------------------------------------|-------------------------------------------|-----------------------------------------|-------------------------------------------------|-------------------------------------------|----------------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | .70<br>.72<br>.64<br>.59 | .72<br>.72<br>.76<br>.82<br>.82 | .88<br>.88<br>.86<br>.85 | .78<br>.72<br>.80<br>.84<br>7.0 | 9.9<br>7.0<br>5.4<br>4.0<br>3.1 | 2.5<br>2.7<br>7.0<br>40<br>50 | 1.4<br>1.5<br>1.5<br>1.3 | 2.2<br>2.3<br>2.0<br>1.9 | 2.3<br>1.7<br>2.4<br>1.4<br>1.2 | .61<br>.61<br>.61<br>.59 | .40<br>.38<br>.40<br>.59 | 9.6<br>3.9<br>1.6<br>2.8 | | 6<br>7<br>8<br>9<br>10 | .59<br>.59<br>.59<br>.60<br>.62 | .82<br>.82<br>.77<br>1.3<br>.92 | .94<br>.82<br>.70<br>.60 | 118<br>80<br>20<br>6.0<br>4.0 | 2.6<br>2.4<br>2.5<br>2.6<br>2.8 | 15<br>9.0<br>30<br>85<br>190 | 1.2<br>1.3<br>5.1<br>3.3<br>1.8 | 1.7<br>1.6<br>1.6<br>1.6 | 1.0<br>.91<br>.91<br>.90 | . 53<br>. 53<br>. 53<br>. 51<br>. 49 | 3.0<br>.50<br>.41<br>.38<br>.38 | .70<br>67<br>215<br>306<br>141 | | 11<br>12<br>13<br>14<br>15 | .60<br>.58<br>.62<br>.80<br>.56 | .71<br>1.3<br>1.3<br>.93<br>6.4 | .58<br>.50<br>.56<br>.68 | 3.0<br>2.7<br>2.5<br>2.9<br>2.4 | 3.1<br>3.2<br>3.0<br>2.8<br>2.9 | 61<br>25<br>11<br>7.8<br>5.0 | 1.7<br>1.7<br>1.6<br>1.6 | 1.2<br>1.2<br>1.2<br>1.1 | 1.1<br>2.6<br>1.6<br>1.0<br>.89 | .77<br>5.0<br>.70<br>.56 | .36<br>.36<br>.37<br>.42<br>.43 | 81<br>53<br>41<br>33<br>26 | | 16<br>17<br>18<br>19<br>20 | .60<br>.66<br>.68<br>.70<br>.66 | 6.2<br>1.5<br>1.1<br>.93<br>.98 | .58<br>.60<br>.62<br>.66 | 2.1<br>1.9<br>15<br>10<br>8.0 | 2.7<br>2.6<br>2.5<br>2.7<br>2.8 | 2.5<br>1.4<br>2.2<br>1.7<br>1.4 | 1.7<br>1.9<br>1.9<br>2.0<br>1.9 | 1.0<br>.99<br>1.4<br>4.4<br>1.6 | .79<br>.73<br>.71<br>.71<br>.66 | .54<br>.51<br>30<br>16<br>.67 | .39<br>.34<br>.34<br>17<br>3.0 | 21<br>17<br>14<br>11<br>8.9 | | 21<br>22<br>23<br>24<br>25 | .66<br>.73<br>7.5<br>2.3<br>.91 | .67<br>.79<br>.88<br>.87 | .80<br>.82<br>.98<br>.80 | 3.5<br>3.0<br>2.5<br>2.3<br>2.1 | 2.8<br>2.5<br>2.3<br>2.4<br>2.9 | 1.5<br>1.4<br>1.5<br>1.6<br>1.7 | 1.8<br>2.2<br>2.4<br>2.1<br>2.0 | 1.1<br>1.1<br>.99<br>85<br>58 | .64<br>.66<br>.66<br>.67<br>.98 | . 43<br>. 51<br>. 57<br>. 53<br>. 50 | .52<br>.45<br>.84<br>1.4<br>1.8 | 7.3<br>6.6<br>3.6<br>3.4<br>3.5 | | 26<br>27<br>28<br>29<br>30<br>31 | .84<br>.77<br>.69<br>.68<br>.72<br>.73 | 2.8<br>1.7<br>1.1<br>1.2<br>.82 | .72<br>.78<br>1.2<br>.90<br>.80 | 2.0<br>1.9<br>30<br>200<br>51 | 3.2<br>2.9<br>2.6 | 2.0<br>2.7<br>4.1<br>2.6<br>1.8<br>1.5 | 2.8<br>6.6<br>4.8<br>3.1<br>2.0 | 12<br>3.7<br>2.8<br>3.1<br>2.3<br>2.1 | 16<br>2.1<br>.91<br>.71<br>.63 | .59<br>.60<br>.43<br>.41<br>.42<br>.41 | 6.4<br>27<br>6.4<br>13<br>20<br>11 | 2.9<br>2.4<br>2.3<br>2.3<br>2.7 | | TOTAL<br>MEAN<br>MAX<br>MIN<br>AC-FT<br>CFSM<br>IN. | 29.22<br>.94<br>7.5<br>.56<br>58<br>.01 | 41.46<br>1.38<br>6.4<br>.67<br>82<br>.02 | 23.96<br>.77<br>1.2<br>.50<br>48<br>.01 | 603.94<br>19.5<br>200<br>.72<br>1200<br>.27<br>.32 | 92.2<br>3.29<br>9.9<br>2.3<br>183<br>.05 | 572.6<br>18.5<br>190<br>1.4<br>1140<br>.26<br>.30 | 67.2<br>2.24<br>6.6<br>1.2<br>133<br>.03 | 205.38<br>6.63<br>85<br>.99<br>407<br>.09 | 48.40<br>1.61<br>16<br>.63<br>96<br>.02 | 66.27<br>2.14<br>30<br>.41<br>131<br>.03<br>.03 | 139.26<br>4.49<br>27<br>.34<br>276<br>.06 | 1091.40<br>36.4<br>306<br>.70<br>2160<br>.51 | CAL YR 1988 TOTAL 5023.18 MEAN 13.7 MAX 176 MIN .47 AC-FT 9960 CFSM .19 IN. 2.64 WTR YR 1989 TOTAL 2981.29 MEAN 8.17 MAX 306 MIN .34 AC-FT 5910 CFSM .12 IN. 1.56 #### 05453000 BIG BEAR CREEK AT LADORA, IA LOCATION.--Lat 41°44′58", long 92°10′55", in SW1/4 SW1/4 sec.7, T.80 N., R.11 W., Iowa County, Hydrologic Unit 07080208, on left bank 10 ft downstream from bridge on county highway V52, 0.4 mi south of Ladora, 1.2 mi downstream from Coats Creek, 2.8 mi upstream from Little Bear Creek, and 8.1 mi upstream from mouth. DRAINAGE AREA. -- 189 mi2. PERIOD OF RECORD. --October 1945 to current year. Prior to October 1966, published as Bear Creek at Ladora. REVISED RECORDS.--WSP 1308: 1947 (M). WSP 1438: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 744.94 ft above NGVD. Oct. 1945 to June 26, 1946, non-recording gage and June 27, 1946 to Sept. 30, 1980, water-stage recorder at datum 10.00 ft higher. REMARKS.--Estimated daily discharges: Dec. 8 to Jan. 29, Feb. 2 to Mar. 10 and Mar. 15-21. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers data collection platform at station. AVERAGE DISCHARGE.--44 years, 121 $ft^3/s$ , 8.69 in/yr, 87,660 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 10,500 ft<sup>3</sup>/s Mar. 30, 1960, gage height, 14.60 ft, datum then in use; maximum gage height, 15.32 ft, datum then in use, Sept. 18, 1977; no flow for several days in 1956 and 1977. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 2,000 ft3/s and maximum (\*): | | | Discharge | Gage height | | | Discharge | Gage height | |---------|------|----------------------|--------------------|----------|--------------|----------------------|-------------| | Date | Time | (ft <sup>3</sup> /s) | (ft) | Date | Time | (ft <sup>3</sup> /s) | (ft) | | Jan. 29 | 0700 | *1,400 | (a) <b>*1</b> 7.62 | No other | peak greate: | r than base disch | arge. | (a) Ice jam Minimum discharge, 0.90 ft3/s Aug. 9, 10. | | | DISCHARG | E, CUBIC | FEET PER | | WATER YEAR<br>EAN VALUES | OCTOBER | 1988 TO | sept <b>em</b> ber | 1989 | | | |-----------------------------------------------------|-------------------------------------------|------------------------------------------|-------------------------------------------|----------------------------------------------------|------------------------------------------|----------------------------------------------------|------------------------------------------|--------------------------------------------|-------------------------------------------------|-------------------------------------------|------------------------------------------|---------------------------------------------| | DAY | OCT | NOA | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | 4.0<br>3.5<br>2.9<br>2.7<br>2.8 | 5.7<br>2.9<br>3.9<br>4.1<br>3.3 | 7.1<br>4.2<br>4.6<br>3.6<br>3.9 | 3.4<br>3.1<br>3.5<br>3.7<br>15 | 26<br>17<br>9.0<br>6.0<br>5.4 | 5.8<br>6.0<br>15<br>200<br>100 | 8.8<br>8.3<br>8.0<br>7.7<br>7.3 | 9.7<br>9.7<br>8.4<br>8.4<br>8.1 | 10<br>8.9<br>17<br>16<br>11 | 3.7<br>3.3<br>3.2<br>2.8<br>2.6 | 1.5<br>1.3<br>1.4<br>1.6<br>1.7 | 156<br>40<br>13<br>9.0<br>8.9 | | 6<br>7<br>8<br>9<br>10 | 3.1<br>3.0<br>4.0<br>3.6<br>2.5 | 3.4<br>3.7<br>3.6<br>4.2<br>4.6 | 4.5<br>3.8<br>3.5<br>3.1<br>3.3 | 60<br>45<br>50<br>20<br>9.0 | 4.9<br>4.5<br>4.2<br>4.0<br>4.5 | 45<br>50<br>70<br>700<br>500 | 6.7<br>6.7<br>11<br>13<br>9.9 | 8.3<br>7.5<br>7.2<br>7.2<br>6.8 | 5.8<br>4.8<br>30<br>5.7<br>5.0 | 2.3<br>2.1<br>2.0<br>1.8<br>1.7 | 1.4<br>1.4<br>1.2<br>1.0 | 6.5<br>11<br>172<br>601<br>224 | | 11<br>12<br>13<br>14<br>15 | 2.4<br>2.3<br>2.8<br>3.1<br>3.0 | 4.3<br>6.2<br>6.8<br>6.6<br>7.5 | 2.7<br>3.2<br>4.0<br>4.3<br>3.2 | 7.6<br>6.6<br>6.1<br>6.6<br>6.8 | 5.1<br>5.8<br>6.2<br>5.8<br>5.6 | 198<br>63<br>22<br>13<br>8.0 | 7.8<br>6.9<br>6.3<br>5.8<br>5.6 | 6.2<br>5.9<br>5.6<br>5.4<br>5.2 | 5.9<br>12<br>11<br>7.3<br>6.0 | 1.8<br>23<br>9.2<br>5.8<br>5.1 | 1.1<br>1.0<br>1.1<br>3.8<br>1.7 | 130<br>68<br>49<br>35<br>27 | | 16<br>17<br>18<br>19<br>20 | 2.7<br>4.7<br>3.9<br>3.4<br>3.8 | 20<br>14<br>7.8<br>5.8<br>5.1 | 2.5<br>2.8<br>3.5<br>5.0<br>4.6 | 6.2<br>6.5<br>7.4<br>7.0<br>6.6 | 5.2<br>5.0<br>5.4<br>5.6<br>5.8 | 6.8<br>6.2<br>5.8<br>6.6<br>7.7 | 5.9<br>6.1<br>6.3<br>6.2<br>6.4 | 5.0<br>5.0<br>4.9<br>7.1<br>8.7 | 5.1<br>4.5<br>4.2<br>3.9<br>3.2 | 4.7<br>3.8<br>34<br>116<br>26 | 1.3<br>1.7<br>1.1<br>4.8 | 22<br>19<br>16<br>14<br>12 | | 21<br>22<br>23<br>24<br>25 | 3.6<br>3.9<br>5.3<br>8.5<br>6.7 | 4.5<br>4.4<br>5.4<br>5.8<br>4.8 | 3.5<br>3.7<br>4.0<br>3.6<br>3.2 | 6.0<br>8.0<br>8.4<br>7.0<br>6.4 | 5.8<br>5.4<br>5.0<br>5.4<br>6.0 | 8.9<br>11<br>11<br>11<br>10 | 5.9<br>6.2<br>7.5<br>7.1<br>5.8 | 5.5<br>5.5<br>5.8<br>203<br>191 | 2.9<br>2.7<br>3.1<br>2.6<br>5.2 | 10<br>6.7<br>9.1<br>5.3<br>3.1 | 4.6<br>2.1<br>3.7<br>19<br>8.1 | 11<br>10<br>9.9<br>9.0<br>8.6 | | 26<br>27<br>28<br>29<br>30<br>31 | 4.6<br>4.0<br>3.3<br>3.8<br>3.1 | 7.7<br>11<br>7.9<br>5.8<br>5.5 | 3.7<br>6.0<br>4.5<br>3.5<br>3.7<br>3.5 | 6.2<br>8.0<br>20<br>400<br>198<br>55 | 6.2<br>5.8<br>6.0 | 11<br>11<br>12<br>12<br>11<br>9.5 | 5.5<br>16<br>13<br>16<br>9.7 | 56<br>19<br>14<br>13<br>11<br>8.8 | 22<br>11<br>5.8<br>5.1<br>4.2 | 2.8<br>2.3<br>2.3<br>1.9<br>1.8<br>1.6 | 16<br>8.0<br>6.6<br>5.5<br>4.1 | 8.3<br>7.6<br>7.4<br>7.1<br>7.1 | | TOTAL<br>MEAN<br>MAX<br>MIN<br>AC-FT<br>CFSM<br>IN. | 114.6<br>3.70<br>8.5<br>2.3<br>227<br>.02 | 186.3<br>6.21<br>20<br>2.9<br>370<br>.03 | 120.3<br>3.88<br>7.1<br>2.5<br>239<br>.02 | 1003.1<br>32.4<br>400<br>3.1<br>1990<br>.17<br>.20 | 186.6<br>6.66<br>26<br>4.0<br>370<br>.04 | 2147.3<br>69.3<br>700<br>5.8<br>4260<br>.37<br>.42 | 243.4<br>8.11<br>16<br>5.5<br>483<br>.04 | 672.9<br>21.7<br>203<br>4.9<br>1330<br>.11 | 241.9<br>8.06<br>30<br>2.6<br>480<br>.04<br>.05 | 301.8<br>9.74<br>116<br>1.6<br>599<br>.05 | 136.8<br>4.41<br>19<br>1.0<br>271<br>.02 | 1719.4<br>57.3<br>601<br>6.5<br>3410<br>.30 | CAL YR 1988 TOTAL 11205.7 MEAN 30.6 MAX 1000 MIN 1.6 AC-FT 22230 CFSM .16 IN. 2.21 WTR YR 1989 TOTAL 7074.4 MEAN 19.4 MAX 700 MIN 1.0 AC-FT 14030 CFSM .10 IN. 1.39 91 #### 05453100 IOWA RIVER AT MARENGO, IA LOCATION.-- Lat 41°48′48″ long 92°03′51″, in SE1/4 NE1/4 sec.24, T.81 N., R.11 W., Iowa County, Hydrologic Unit 07080208, on left bank 5 ft upstream from bridge on State Highway 411, 1.0 mi downstream from Big Bear Creek, 0.8 mi north of Marengo, 4.6 mi upstream from Hilton Creek, and at mile 139.1. DRAINAGE AREA. -- 2,794 mi2. PERIOD OF RECORD. --October 1956 to current year. Monthly discharge only for some periods, published in WSP 1728. REVISED RECORDS. --WSP 1558: 1957. GAGE. -- Water-stage recorder. Datum of gage is 720.52 ft above NGVD. REMARKS.--Estimated daily discharges: Dec. 8 to Mar. 21 and Mar. 23. Records good except those for estimated daily discharges, which are fair. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers data collection platform at station. AVERAGE DISCHARGE. -- 33 years, 1,779 ft3/s, 8.65 in/yr, 1,289,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 30,800 ft<sup>3</sup>/s Mar. 31, 1960, gage height, 19.21 ft; maximum gage height, 19.79 ft July 12, 1969; minimum daily discharge, 24 ft<sup>3</sup>/s Jan. 29 to Feb. 1, 1977. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 5,000 ft3/s and maximum (\*): | Date<br>Mar. 11 | Time<br>2030 | Discharge<br>(ft <sup>3</sup> /s)<br>3.260 | Gage height<br>(ft)<br>(a) *14.97 | Date<br>Sept. 9 | Time<br>1130 | Discharge<br>(ft <sup>3</sup> /s)<br>*3.310 | Gage height<br>(ft)<br>10.67 | |-----------------|--------------|--------------------------------------------|-----------------------------------|-----------------|--------------|---------------------------------------------|------------------------------| | Mar. II | 2030 | .3,200 | (a) ~14.9/ | Sept. 9 | 1130 | -3,310 | 10.07 | DISCUADOR CUETO PER DECIONO LIATED VEAD OCTOBED 1000 TO SEPTEMBED 1000 (a) Ice jam Minimum discharge, 74 ft3/s Aug. 12, 13. | | | DISCHARGE | , CUBIC | FEET PER | SECOND, | , WATER YEAR<br>ÆAN VALUES | OCTOBER | 1988 TO | SEPTEMBER | 1989 | | | |------------------|------|------------|---------|----------|--------------|----------------------------|---------|--------------|-----------|------|------|-------| | YAC | OCT | NOV | DEC | Jan | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 105 | 90 | 103 | 81 | 700 | 120 | 614 | 290 | 311 | 172 | 102 | 206 | | 2 | 100 | 90 | 105 | 79 | 569 | 123 | 582 | 297 | 288 | 179 | 99 | 193 | | 3 | 97 | 90 | 115 | 78 | 505 | 126 | 528 | 271 | 349 | 196 | 97 | 144 | | 2<br>3<br>4<br>5 | 90 | 92 | 112 | 77 | 475 | 138 | 478 | 277 | 338 | 192 | 96 | 134 | | 5 | 89 | 94 | 109 | 95 | 374 | 148 | 425 | 288 | 288 | 178 | 94 | 126 | | 6 | 88 | 95 | 115 | 452 | 300 | 157 | 386 | 283 | 266 | 190 | 101 | 121 | | 7<br>8 | 89 | 95 | 118 | 359 | 249 | 160 | 362 | 279 | 309 | 157 | 101 | 126 | | 8 | 89 | 95 | 82 | 343 | 246 | 172 | 375 | 275 | 319 | 152 | 96 | 1220 | | 9 | 90 | 92 | 92 | 262 | 237 | 486 | 381 | 260 | 250 | 147 | 90 | 2790 | | 10 | 94 | 93 | 93 | 209 | 226 | 1870 | 376 | 246 | 231 | 140 | 84 | 1580 | | 11 | 92 | 93 | 104 | 168 | 211 | 2500 | 358 | 235 | 233 | 137 | 81 | 863 | | 12 | 88 | 98 | 105 | 136 | 201 | 2610 | 341 | 222 | 305 | 148 | 77 | 668 | | 13 . | 86 | 104 | 96 | 126 | 195 | 2360 | 326 | 216 | 297 | 144 | 80 | 537 | | 14 | 84 | 105 | 94 | 126 | 186 | 2050 | 324 | 208 | 270 | 138 | 90 | 429 | | 15 | 85 | 113 | 102 | 124 | 172 | 1600 | 301 | 200 | 234 | 136 | 92 | 356 | | 16 | 86 | 137 | 99 | 122 | 162 | 1320 | 292 | 195 | 222 | 135 | 86 | 302 | | 17 | 88 | 143 | 96 | 122 | 155 | 1150 | 284 | 189 | 197 | 133 | 92 | 255 | | 18 | 87 | 135 | 93 | 123 | 153 | 2050 | 277 | 190 | 192 | 184 | 86 | 226 | | 19 | 84 | 141 | 90 | 128 | 148 | 2190 | 259 | 191 | 188 | 250 | 90 | 201 | | 20 | 85 | 140 | 90 | 197 | 148 | 1870 | 253 | 197 | 184 | 222 | 137 | 181 | | 21 | 88 | 132 | 89 | 356 | 146 | 1600 | 247 | 194 | 178 | 185 | 122 | 162 | | 22 | 87 | 121 | 87 | 286 | 142 | 1040 | 244 | 187 | 171 | 161 | 111 | 151 | | 23 | 96 | <b>117</b> | 85 | 261 | 135 | 779 | 246 | 180 | 167 | 155 | 112 | 142 | | 24 | 101 | 117 | 87 | 254 | 132 | 769 | 245 | 231 | 158 | 147 | 115 | 133 | | 25 | 103 | 117 | 94 | 261 | 128 | 646 | 238 | 670 | 160 | 131 | 122 | 127 | | 26 | 97 | 127 | 89 | 237 | 127 | 584 | 228 | 740 | 184 | 123 | 113 | 122 | | 27 | 93 | 130 | 95 | 233 | 123 | 572 | 231 | 397 | 224 | 122 | 112 | 123 | | 28 | 91 | 121 | 101 | 258 | 123 | 604 | 237 | 363 | 210 | 113 | 132 | 119 | | 29 | 90 | 120 | 95 | 1350 | | 673 | 247 | 444 | 191 | 109 | 153 | 115 | | 30 | 90 | 123 | 88 | 1470 | | 677 | 258 | 422 | 176 | 105 | 183 | 115 | | 31 | 90 | | 84 | 1140 | | 645 | | 352 | | 103 | 191 | | | TOTAL | 2822 | 3360 | 3007 | 9513 | <b>6</b> 668 | 31789 | 9943 | 898 <b>9</b> | 7090 | 4784 | 3337 | 11967 | | MEAN | 91.0 | | 97.0 | 307 | 238 | 1025 | 331 | 290 | 236 | 154 | 108 | 399 | | MAX | 105 | 143 | 118 | 1470 | 700 | 2610 | 614 | 740 | 349 | 250 | 191 | 2790 | | MIN | 84 | 90 | 82 | 77 | 123 | 120 | 228 | 180 | 158 | 103 | 77 | 115 | | AC-FT | 5600 | | 5960 | 18870 | 13230 | | 19720 | 17830 | 14060 | 9490 | 6620 | 23740 | | CFSM | .03 | .04 | .03 | .11 | .09 | .37 | . 12 | .10 | .08 | .06 | .04 | . 14 | | IN. | .04 | . 04 | .04 | .13 | .09 | .42 | .13 | .12 | .09 | .06 | .04 | . 16 | CAL YR 1988 TOTAL 213876 MEAN 584 MAX 4360 MIN 81 AC-FT 424200 CFSM .21 IN. 2.85 WTR YR 1989 TOTAL 103269 MEAN 283 MAX 2790 MIN 77 AC-FT 204800 CFSM .10 IN. 1.37 #### 05453510 CORALVILLE LAKE NEAR CORALVILLE, IA LOCATION.--Lat 41°43'29", long 91°31'40", in SW1/4 NE1/4 sec.22, T.80 N., R.6 W., Johnson County, Hydrologic Unit 07080208, at outlet works at left end of Coralville Dam on Iowa River, 2.3 mi upstream from Rapid Creek, 4.3 mi northeast of Coralville Post Office and at mile 83.3. DRAINAGE AREA, -- 3.115 mi2. PERIOD OF RECORD. -- October 1958 to current year. GAGE. -- Water-stage recorder. Datum of gage is at NGVD (levels by U.S. Army Corps of Engineers). REMARKS.--Reservoir is formed by earthfill dam completed in 1957. Storage began in September 1958. Releases controlled by three gates, 8.33 ft wide and 20 ft high, into forechamber of 23-ft diameter concrete conduit through dam. Inlet invert elevation at 646.0 ft. No dead storage. Maximum design discharge through gates is 20,000 ft<sup>3</sup>/s. Ungated spillway is concrete overflow section 500 ft in length at elevation 712 ft above NGVD, contents, 469,000 acre-ft, surface area, 24,800 acres. Reservoir is used for flood control, low-flow augmentation, conservation and recreation. Normal operation will maintain an elevation of 670 ft Feb. 15 to June 15, surface area, 1,820 acres, 680 ft June 15 to Sept. 25, surface area, 4,900 acres, 683 ft Sep. 25 to Dec. 15, and 680 ft December 15 to Feb. 1 with a minimum release of 150 ft<sup>3</sup>/s and maximum release of 10,000 ft<sup>3</sup>/s Dec. 15 to May 1 and 6,000 ft<sup>3</sup>/s May 1 to Dec. 15. Storage tables for water years 1985-1986 published as day second-feet instead of acre-feet storage. COOPERATION. -- Records provided by U.S. Army Corps of Engineers. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 472,000 acre-ft July 21, 1969, elevation, 711.85 ft; minimum daily contents, 456 acre-ft Jan. 15, 1975; minimum elevation, 658.77 ft Mar. 10, 1959. EXTREMES FOR CURRENT YEAR.--Maximum daily contents, 48,600 acre-ft Sept. 10; maximum elevation, 648.10 ft Sept. 9-11; minimum daily contents, 22,600 acre-ft March 1; minimum elevation, 677.90 ft Nov. 11, 12. | Capacity | table | (elevation. | in | feet. | and | contents | in | acre-ft. | ١ | |----------|-------|-------------|----|-------|-----|----------|----|----------|---| | | | | | | | | | | | | 655 | 5.000 | 683 | 55.000 | 70 <b>0</b> | 232,000 | |-----|--------|-----|---------|-------------|---------| | 670 | 10,600 | 685 | 69,000 | 705 | 327,000 | | 675 | 21,000 | 690 | 108.000 | 710 | 427,000 | | 680 | 40,300 | 695 | 162.000 | 712 | 469,000 | # RESERVOIR STORAGE (ACRE-FEET), WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 OBSERVATION AT 24:00 VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--------|------------------------|----------------|----------------|-----------------------|----------------|------------------------|------------------------|------------------------|----------------|------------------------|------------------------|----------------| | 1 | 25900 | 23700 | 24600 | 23600 | 31300 | 22600 | 23700 | 33300 | 45800 | 44700 | 43900 | 42300 | | 2 | 25700<br>2560 <b>0</b> | 23800<br>23700 | 24700 | 23600 | 30700 | 22700 | 23800 | 33900 | 46100<br>46700 | 44700<br>44800 | 43900<br>43600 | 42300<br>42200 | | 3<br>4 | 256 <b>0</b> 0 | 23700 | 24600<br>24600 | 23500<br>23400 | 30700<br>30900 | 23100<br>23800 | 2390 <b>0</b><br>23900 | 3430 <b>0</b><br>35100 | 46700<br>47100 | 44800 | 43600<br>4330 <b>0</b> | 42400 | | 5 | 25500 | 23400 | 24700 | 23600 | 31000 | 24100 | 23800 | 35300 | 47300 | 44800 | 43300 | 42400 | | , | 23300 | 25400 | 24700 | 25000 | 31000 | 24100 | 23000 | 33300 | 47300 | 44000 | 45500 | 72700 | | 6 | 25400 | 22900 | 24700 | 24100 | 31000 | 2420 <b>0</b> | 23900 | 35600 | 4710 <b>0</b> | 44800 | 43300 | 42300 | | 7 | 25300 | 22800 | 24600 | 24700 | 31000 | 24400 | 24100 | 3590 <b>0</b> | 46600 | 44900 | 43300 | 42900 | | 8 | 25200 | 22800 | 24500 | 25200 | 31000 | 24600 | 24500 | 36300 | 46500 | 44900 | 43300 | 46100 | | 9 | 25200 | 23000 | 24400 | 25300 | 31100 | 25100 | 24700 | 36900 | 46000 | 44700 | 42200 | 48200 | | 10 | 25200 | 22900 | 24400 | 25600 | 31000 | 25300 | 24800 | 37100 | 45700 | 44500 | 4190 <b>0</b> | 48600 | | | | | | | | | | | | | | | | 11 | 25200 | 22700 | 24200 | <b>2620</b> 0 | 30900 | 2550 <b>0</b> | <b>24900</b> | 37500 | 45600 | 44500 | 41700 | 47200 | | 12 | 24400 | 22700 | 24100 | 26300 | 30800 | 2560 <b>0</b> | 24900 | 37800 | 45900 | 44400 | 41500 | 44700 | | 13 | 24200 | 22700 | 24100 | 26500 | 30800 | 2620 <b>0</b> | 24600 | 37800 | 44800 | 44200 | 41300 | 44300 | | 14 | 24300 | 22900 | 24000 | 26600 | 30600 | 26400 | 24600 | 38000 | 44600 | 43900 | 41600 | 44300 | | 15 | 24100 | 23100 | 23900 | 26600 | 30000 | 25800 | 24400 | 38100 | 44500 | <b>44</b> 00 <b>0</b> | 41600 | 44600 | | 16 | 24000 | 23500 | 23800 | 26800 | 28900 | 2520 <b>0</b> | 24400 | 3820 <b>0</b> | 44500 | 43900 | 41500 | 44700 | | 17 | 24200 | 23700 | 23600 | 2680 <b>0</b> | 28100 | 23900 | 24400 | 38200 | 44300 | 43700 | 41200 | 44800 | | 18 | 24100 | 23900 | 2360 <b>0</b> | 26900 | 27500 | 23600 | 24700 | 3850 <b>0</b> | 44300 | 44300 | 41000 | 44700 | | 19 | 24100 | 23900 | 23500 | 27000 | 26900 | 24000 | 25000 | 3850 <b>0</b> | 44300 | 44600 | 41200 | 44600 | | 20 | 24100 | 23900 | 23500 | 26900 | 26300 | 24200 | 25200 | 38500 | 44200 | 44500 | 41200 | 44500 | | | | | | | | | | | , | | | | | 21 | 24000 | 23900 | 23400 | 27100 | 2570 <b>0</b> | 23900 | 25400 | 386 <b>0</b> 0 | 4400 <b>0</b> | 44700 | 41300 | 44600 | | 22 | 24200 | 24100 | 23400 | 27400 | 25000 | 24400 | 2600 <b>0</b> | 3870 <b>0</b> | 44100 | 44 <b>7</b> 0 <b>0</b> | 41400 | 45800 | | 23 | 24400 | 24100 | 23400 | <b>279</b> 00 | 24500 | 24500 | 27100 | 38800 | 44000 | 44900 | 41400 | 44700 | | 24 | 24100 | 24100 | <b>23500</b> | 28100 | 24100 | 24600 | 2890 <b>0</b> | 39200 | 4390 <b>0</b> | 44900 | 41400 | 44000 | | 25 | 24200 | 24200 | 23400 | <b>2</b> 850 <b>0</b> | 23500 | 2420 <b>0</b> | 29400 | 39200 | 43900 | 4500 <b>0</b> | 41300 | 43900 | | 26 | 24200 | 24400 | 23500 | 28900 | 23000 | 24200 | 3030 <b>0</b> | 4060 <b>0</b> | 44100 | 45000 | 41700 | 44000 | | 27 | 24500 | 24800 | 23500 | 29500 | 22800 | 24200 | 3080 <b>0</b> | 41400 | 44600 | 44700 | 41600 | 44100 | | 28 | 24100 | 24500 | 23600 | 30000 | 22700 | 24400 | 31900 | 41900 | 44600 | 44500 | 41800 | 43900 | | 29 | 24000 | 24700 | 23700 | 31100 | | 23900 | 32300 | 42400 | 44600 | 44300 | 41700 | 43900 | | 30 | 23800 | 24800 | 23700 | 32000 | | 23900 | 32700 | 43400 | 44700 | 44300 | 41700 | 43900 | | 31 | 23700 | | 23600 | 32300 | | 23600 | | 44400 | | 44000 | 42000 | | | MEAN | 24600 | 23600 | 24000 | 26800 | 20200 | 24400 | 26100 | 3820 <b>0</b> | 4510 <b>0</b> | 4450 <b>0</b> | 42000 | 44400 | | MAX | 24600<br>25900 | 24800 | 24000 | 32300 | 28300<br>31300 | 26400 | 32700 | 38200<br>44400 | 47300 | 45000 | 42000 | 48600 | | MIN | 23700 | 24800<br>22700 | 23400 | 23400 | 22700 | 26400<br>2260 <b>0</b> | 23700 | 33300 | 47300 | 4370 <b>0</b> | 41000 | 42200 | | CITI | 23/00 | 22/00 | 23400 | 23400 | 22/00 | 22000 | 23/00 | 33300 | 43800 | 43700 | 41000 | 72200 | CAL YR 1988 MEAN 25500 MAX 35100 MIN 14700 WTR YR 1989 MEAN 32700 MAX 48600 MIN 22600 93 #### 05454000 RAPID CREEK NEAR IOWA CITY, IA LOCATION.--Lat 41°41'19", long 91°29'15", in NE1/4 NE1/4 sec.36. T.80 N., R.6 W., Johnson County, Hydrologic Unit 07080209, on left bank 80 ft upstream from bridge on State Highway 1, 3.5 mi northeast of Iowa City, and 4.7 mi upstream from mouth. DRAINAGE AREA. -- 25.3 mi2. PERIOD OF RECORD. --October 1937 to current year. Monthly discharge only for some periods, published in WSP 1308. REVISED RECORDS.--WSP 1558: 1941 (M), 1943 (P), 1944 (M), 1946. WSP 1708: 1951 (P), 1952. WDR IOWA 1967: Drainage GAGE.--Water-stage recorder and concrete control with sharp-crested weir. Datum of gage is 673.72 ft above NGVD. REMARKS.--Estimated daily discharges: Oct. 1 to Jan. 4, Jan 14-28, and Feb. 2 to Mar. 9. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. AVERAGE DISCHARGE. -- 52 years, 15.9 ft3/s, 8.53 in/yr, 11,520 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 6,100 ft<sup>3</sup>/s May 23, 1965, gage height, 14.10 ft, from contract-ed-opening measurement of peak flow; maximum gage height, 14.93 ft July 17, 1972; no flow at times most years. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 600 ft3/s and maximum (\*): | | | Discharge | Gage height | | Discharge | Gage height | |----------------|--------------|-----------------------------|-------------------|------------------------|-------------------------------------|--------------| | Date<br>Mar. 9 | Time<br>2105 | (ft <sup>3</sup> /s)<br>310 | (ft)<br>(a) *6.80 | Date Tim<br>Sept. 9 01 | ne (ft <sup>3</sup> /s)<br>500 *317 | (ft)<br>6.63 | | | 2103 | 010 | (4) 0.00 | Depo. o o. | ,,, | 0.00 | DISCHARGE, CUBIC FEET PER SECOND. WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 (a) Ice jam. No flow many days during year. | | | DISCHARG | E, CUBIC | C FEET PER | SECOND, | , WATER YE.<br>ÆAN VALUE: | AR OCTOBER<br>S | 1988 TO | SEPTEMBER | 1989 | | | |-----------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|-----------------------------------------|----------------------------------------|-------------------------------------------|------------------------------------------|-------------------------------------------|-------------------------------------------|------------------------------------------|-----------------------------------------|-------------------------------------------| | DAY | ост | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | .00<br>.00<br>.00<br>.00 | .00<br>.00<br>.00<br>.20 | .06<br>.06<br>.05<br>.04<br>.04 | .00<br>.00<br>.00<br>.00 | 2.2<br>.70<br>.25<br>.18<br>.20 | .11<br>.10<br>5.0<br>20 | . 55<br>. 57<br>. 54<br>. 53<br>. 48 | 4.5<br>6.0<br>4.5<br>4.0<br>4.1 | 9.2<br>3.3<br>3.3<br>2.6<br>1.5 | .34<br>.32<br>.29<br>.23<br>.13 | .00<br>.00<br>1.9<br>6.2<br>.57 | 3.5<br>.90<br>.42<br>.23<br>.15 | | 6<br>7<br>8<br>9<br>10 | .00<br>.00<br>.00<br>.00 | .13<br>.14<br>.11<br>.10 | .04<br>.05<br>.04<br>.03<br>.02 | .00<br>.00<br>.00<br>.00 | .15<br>.12<br>.10<br>.11<br>.12 | 6.0<br>3.0<br>5.0<br>50 | . 45<br>. 43<br>. 82<br>. 78<br>. 62 | 2.9<br>2.4<br>2.1<br>3.7<br>2.8 | .98<br>.78<br>.60<br>.54 | .01<br>.00<br>.00<br>.00 | .21<br>.07<br>.01<br>.00 | .12<br>.15<br>6.1<br>71<br>7.7 | | 11<br>12<br>13<br>14<br>15 | .00<br>.00<br>.00<br>.00 | .09<br>.25<br>.30<br>.20 | .02<br>.02<br>.02<br>.02<br>.01 | .00<br>.00<br>.00<br>.01 | .10<br>.10<br>.12<br>.11 | 13<br>4.6<br>1.9<br>1.5<br>1.4 | .52<br>.49<br>.44<br>.43<br>.41 | 2.0<br>1.7<br>1.5<br>1.3 | .51<br>3.6<br>7.5<br>3.0<br>2.0 | .00<br>.00<br>.00<br>.00 | .00<br>.00<br>.00<br>.02<br>.43 | 3.5<br>2.0<br>1.6<br>1.2<br>.84 | | 16<br>17<br>18<br>19<br>20 | .00<br>.00<br>.00<br>.00 | .17<br>.12<br>.09<br>.06 | .01<br>.01<br>.01<br>.00 | .15<br>.17<br>.25<br>.35 | .14<br>.13<br>.12<br>.11 | .89<br>.71<br>.56<br>.50 | .40<br>.41<br>.44<br>.45<br>.43 | .98<br>.86<br>.92<br>1.1<br>.89 | 1.4<br>1.1<br>.84<br>.72<br>.57 | .00<br>.00<br>.00<br>.00 | .01<br>.00<br>.00<br>.00 | .65<br>.52<br>.43<br>.33 | | 21<br>22<br>23<br>24<br>25 | .00<br>.00<br>.50<br>.07 | .03<br>.02<br>.01<br>.00 | .00<br>.00<br>.00<br>.00 | . 28<br>. 24<br>. 22<br>. 21<br>. 22 | .13<br>.11<br>.10<br>.10 | . 50<br>. 48<br>. 51<br>. 56<br>. 59 | .39<br>.72<br>42<br>10<br>5.8 | .84<br>.81<br>.73<br>.81<br>4.1 | .47<br>.38<br>.30<br>.24<br>.20 | .00<br>.00<br>.00<br>.00 | .00<br>.03<br>6.6<br>1.3<br>.47 | .24<br>.17<br>.13<br>.13 | | 26<br>27<br>28<br>29<br>30<br>31 | .00<br>.00<br>.00<br>.00<br>.00 | .04<br>.08<br>.04<br>.07<br>.06 | .00<br>.00<br>.00<br>.00<br>.00 | .23<br>.21<br>3.5<br>28<br>7.5<br>3.3 | .13<br>.11<br>.12 | .63<br>.74<br>.96<br>1.1<br>.85 | 4.7<br>4.9<br>4.1<br>3.3<br>2.5 | 1.6<br>.74<br>.57<br>.60<br>.59 | .22<br>1.7<br>2.3<br>.68<br>.40 | .00<br>.00<br>.00<br>.00<br>.00 | 1.0<br>.80<br>.39<br>.31<br>.14 | .09<br>.08<br>.05<br>.08<br>.06 | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 0.59<br>.019<br>.50<br>.00<br>1.2<br>.00 | 2.75<br>.092<br>.30<br>.00<br>5.5<br>.00 | 0.55<br>.018<br>.06<br>.00<br>1.1<br>.00 | 45.25<br>1.46<br>28<br>.00<br>90<br>.06 | 6.22<br>.22<br>2.2<br>.10<br>12<br>.01 | 201.36<br>6.50<br>69<br>.10<br>399<br>.26 | 88.60<br>2.95<br>42<br>.39<br>176<br>.12 | 61.29<br>1.98<br>6.0<br>.55<br>122<br>.08 | 51.44<br>1.71<br>9.2<br>.20<br>102<br>.07 | 1.32<br>.043<br>.34<br>.00<br>2.6<br>.00 | 20.59<br>.66<br>6.6<br>.00<br>41<br>.03 | 102.76<br>3.43<br>71<br>.05<br>204<br>.14 | CAL YR 1988 TOTAL 2154.15 MEAN 5.89 MAX 250 MIN .00 AC-FT 4270 CFSM .23 IN. 3.17 WTR YR 1989 TOTAL 582.72 MEAN 1.60 MAX 71 MIN .00 AC-FT 1160 CFSM .06 IN. .86 #### 05454300 CLEAR CREEK NEAR CORALVILLE, IA LOCATION.--Lat 41°40'36", long 91°35'55", in NE1/4 SE1/4 sec.1, T.79 N., R.7 W., Johnson County, Hydrologic Unit 07080209, on left bank about 100 ft upstream from bridge on county highway, 1.1 mi west of post office in Coralville, 1.5 mi downstream from Deer Creek and 2.7 mi upstream from mouth. DRAINAGE AREA .-- 98.1 mi2. PERIOD OF RECORD. --October 1952 to current year. Monthly discharge only for some periods, published in WSP 1728. GAGE.--Water-stage recorder. Datum of gage is 647.48 ft above NGVD (levels by U.S. Army Corps of Engineers). Prior to Jan. 7, 1957, nonrecording gage at same site and datum. REMARKS.--Estimated daily discharges: Dec. 8 to Mar. 22 and June 30 to July 18. Records good except those for period with ice effect, Dec. 8 to Mar. 22, which is fair, and those for period of no gage height record, June 30 to July 18, which is poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers data collection platform at station. AVERAGE DISCHARGE.--37 years, 65.4 $ft^3/s$ , 9.05 in/yr, 47,380 acre-ft/yr; median of yearly mean discharges, 52 $ft^3/s$ , 7.2 in/yr, 37,700 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 9,900 ft<sup>3</sup>/s June 15, 1982, gage height, 14.61 ft; no flow Jan. 18 to Feb. 4, 1977. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 1,000 ft3/s and maximum (\*): Discharge Gage height Date Time $(ft^3/s)$ (ft) Date Time $(ft^3/s)$ (ft) Sept. 9 0815 \*1,040 \*7.99 No other peak greater than base discharge. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 Minimum discharge, 1.10 ft<sup>3</sup>/s Oct. 15, 16. | | | | , | | M | EAN VALUE | S | | | | | | |-----------------------------------------------------|------------------------------------------|------------------------------------------|-------------------------------------------------|-------------------------------------------|------------------------------------------|---------------------------------------------------|-------------------------------------------|--------------------------------------------------|--------------------------------------------|-----------------------------------------|------------------------------------------|---------------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | 1.4<br>1.4<br>1.3<br>1.2 | 1.6<br>1.6<br>1.7<br>2.0<br>2.1 | 3.5<br>3.2<br>2.9<br>3.3<br>3.1 | 2.6<br>2.2<br>2.0<br>1.7<br>2.7 | 26<br>11<br>8.0<br>4.2<br>3.4 | 2.8<br>2.9<br>6.7<br>94 | 5.6<br>5.4<br>6.5<br>5.5<br>5.0 | 9.6<br>8.4<br>5.4<br>5.2<br>4.9 | 277<br>45<br>120<br>47<br>23 | 3.5<br>3.0<br>2.8<br>2.6<br>2.6 | 1.8<br>1.7<br>2.2<br>2.4<br>1.7 | 32<br>11<br>4.1<br>3.0<br>2.8 | | 6<br>7<br>8<br>9<br>10 | 1.3<br>1.3<br>1.3<br>1.3 | 2.1<br>2.2<br>2.1<br>2.8<br>3.0 | 3.4<br>2.5<br>2.0<br>1.9<br>2.0 | 16<br>8.3<br>6.4<br>6.0<br>6.4 | 3.0<br>2.7<br>2.5<br>2.1<br>2.2 | 25<br>24<br>27<br>96<br>115 | 4.7<br>4.1<br>11<br>11<br>7.2 | 3.5<br>3.1<br>2.8<br>11<br>5.0 | 16<br>12<br>10<br>8.9<br>8.0 | 2.4<br>2.3<br>2.3<br>2.5<br>2.4 | 1.7<br>1.7<br>1.7<br>1.5<br>1.5 | 3.2<br>5.8<br>478<br>650<br>162 | | 11<br>12<br>13<br>14<br>15 | 1.2<br>1.3<br>1.3<br>1.2<br>1.3 | 2.5<br>4.6<br>3.0<br>3.0<br>3.1 | 2.5<br>3.2<br>3.2<br>2.8<br>2.7 | 5.7<br>4.6<br>4.3<br>4.4<br>5.0 | 2.4<br>2.6<br>2.8<br>2.8<br>3.1 | 44<br>31<br>18<br>12<br>10 | 5.3<br>4.8<br>4.1<br>3.4<br>3.7 | 3.0<br>2.5<br>2.2<br>2.2<br>2.2 | 6.0<br>26<br>12<br>7.1<br>5.2 | 2.3<br>2.2<br>2.2<br>2.1<br>2.0 | 1.6<br>1.6<br>1.6<br>18<br>23 | 64<br>40<br>33<br>27<br>22 | | 16<br>17<br>18<br>19<br>20 | 1.2<br>1.5<br>1.3<br>1.5<br>2.2 | 36<br>21<br>6.2<br>3.8<br>2.9 | 2.2<br>2.1<br>2.3<br>3.0<br>3.9 | 4.5<br>5.1<br>5.7<br>5.5<br>5.6 | 2.7<br>2.4<br>3.2<br>3.1<br>3.6 | 10<br>10<br>9.0<br>9.5 | 3.4<br>3.8<br>4.7<br>4.5<br>4.7 | 2.1<br>1.9<br>2.0<br>2.0<br>1.8 | 4.4<br>3.8<br>3.4<br>3.1<br>2.9 | 1.9<br>1.9<br>2.0<br>20<br>6.7 | 8.6<br>3.1<br>2.5<br>3.0<br>5.6 | 17<br>14<br>11<br>9.5<br>7.8 | | 21<br>22<br>23<br>24<br>25 | 1.9<br>1.9<br>7.7<br>3.5<br>2.6 | 2.6<br>2.9<br>2.7<br>2.8<br>2.7 | 2.9<br>3.3<br>3.5<br>2.9<br>2.6 | 5.7<br>7.5<br>7.8<br>6.3<br>7.2 | 3.5<br>2.6<br>2.0<br>2.1<br>2.6 | 9.4<br>9.0<br>6.7<br>6.6<br>6.7 | 4.3<br>7.0<br>116<br>29<br>13 | 1.7<br>1.7<br>1.5<br>2.5<br>211 | 2.8<br>2.6<br>2.5<br>2.4<br>2.4 | 3.6<br>3.3<br>4.1<br>3.4<br>2.6 | 4.3<br>2.9<br>38<br>11<br>5.5 | 6.2<br>5.2<br>4.8<br>4.6<br>4.3 | | 26<br>27<br>28<br>29<br>30<br>31 | 1.9<br>1.8<br>1.7<br>1.7<br>1.7 | 4.1<br>4.9<br>4.2<br>2.9<br>2.6 | 3.4<br>4.7<br>2.7<br>3.0<br>3.6<br>3.2 | 7.3<br>6.4<br>9.0<br>109<br>82<br>37 | 3.1<br>3.2<br>3.0<br> | 7.1<br>7.5<br>11<br>11<br>8.3<br>6.9 | 9.0<br>9.3<br>6.8<br>6.6<br>4.7 | 29<br>8.6<br>4.9<br>3.9<br>3.4<br>3.1 | 2.3<br>59<br>57<br>13<br>6.0 | 2.3<br>2.1<br>2.0<br>1.9<br>2.0<br>2.1 | 21<br>20<br>6.9<br>3.9<br>3.1 | 4.6<br>3.7<br>3.5<br>3.4<br>3.2 | | TOTAL<br>MEAN<br>MAX<br>MIN<br>AC-FT<br>CFSM<br>IN. | 55.1<br>1.78<br>7.7<br>1.2<br>109<br>.02 | 139.7<br>4.66<br>36<br>1.6<br>277<br>.05 | 91.5<br>2.95<br>4.7<br>1.9<br>181<br>.03<br>.03 | 389.9<br>12.6<br>109<br>1.7<br>773<br>.13 | 115.9<br>4.14<br>26<br>2.0<br>230<br>.04 | 688.1<br>22.2<br>115<br>2.8<br>1360<br>.23<br>.26 | 314.1<br>10.5<br>116<br>3.4<br>623<br>.11 | 352.1<br>11.4<br>211<br>1.5<br>698<br>.12<br>.13 | 790.8<br>26.4<br>277<br>2.3<br>1570<br>.27 | 99.1<br>3.20<br>20<br>1.9<br>197<br>.03 | 215.1<br>6.94<br>38<br>1.5<br>427<br>.07 | 1640.7<br>54.7<br>650<br>2.8<br>3250<br>.56 | CAL YR 1988 TOTAL 8103.67 MEAN 22.1 MAX 816 MIN .98 AC-FT 16070 CFSM .23 IN. 3.07 WTR YR 1989 TOTAL 4892.1 MEAN 13.4 MAX 650 MIN 1.2 AC-FT 9700 CFSM .14 IN. 1.86 95 05454500 IOWA RIVER AT IOWA CITY, IA CATION.--Lat 41°39'24", long 91°32'27", in SE1/4 SE1/4 sec.9, T.79 N., R.6 W., Johnson County, Hydrologic Unit 07080209, on right bank 25 ft downstream from Hydraulics Laboratory of University of Iowa in Iowa City, 175 ft downstream from University Dam, 0.8 mi upstream from Ralston Creek, 3.6 mi downstream from Clear Creek, and at LOCATION .-- Lat 41°39'24" DRAINAGE AREA. -- 3,271 mi2. PERIOD OF RECORD. -- June 1903 to current year. Monthly discharge only for some periods, published in WSP 1308. GAGE.--Water-stage recorder. Datum of gage is 29.00 ft above Iowa City datum, and 617.27 ft above NGVD. Oct. 1, 1934 to Sept. 30, 1972, at datum 10.00 ft higher. See WSP 1708 for history of changes prior to Oct. 1, 1984. MARKS.--Estimated daily discharges: Jan. 31 to Feb. 1, and Feb. 4-27. Records good except those for estimated daily discharges, which are fair. Slight fluctuation at low stages caused by powerplant above station. Flow regulated by Coralville Lake (station 05453510), 9.1 mi upstream, since Sept. 17, 1958. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers data collection platform at station. REMARKS. -- Estimated AVERAGE DISCHARGE. --86 years, 1,712 $ft^3/s$ , 7.11 in/yr, 1,240,000 acre-ft/yr; median of yearly mean discharges, 1,450 $ft^3/s$ , 6.1 in/yr, 1,060,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 42,500 ft<sup>3</sup>/s June 8, 1918, gage height, 19.6 ft, from graph based on gage readings, site and datum then in use; minimum daily discharge, 29 ft<sup>3</sup>/s Oct. 21, 22, 1916, regulated. EXTREMES OUTSIDE PERIOD OF RECORD.—Flood of July 17, 1881, reached a stage of 21.1 ft, from floodmarks at site and datum in use 1913-21, from information by local resident, discharge, 51,000 ft<sup>3</sup>/s. Maximum stage known since at least 1850, about 3 ft higher than that of July 17, 1881, occurred in June 1851, discharge, 70,000 $ft^3/s$ , estimated. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 3,240 ft<sup>3</sup>/s Sept. 9, gage height, 13.87 ft; minimum daily discharge, 114 ft<sup>3</sup>/s Dec. 16. | | | DISCHARGE | , CUBIC | FEET PER | | WATER YEAR | OCTOBER | 1988 TO | SEPTEMBER | 1989 | | | |-------------|------|-----------|---------|----------|-------|------------|---------|---------|--------------|------|------|-------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 157 | 156 | 142 | 124 | 809 | 159 | 667 | 209 | 530 | 149 | 146 | 219 | | | 157 | 153 | 145 | 119 | 751 | 133 | 608 | 195 | 234 | 150 | 145 | 172 | | 2<br>3<br>4 | 154 | 167 | 143 | 120 | 424 | 151 | 603 | 190 | 338 | 147 | 175 | 161 | | 7 | 151 | 284 | 141 | 120 | 250 | 509 | 597 | 196 | 303 | 147 | 177 | 153 | | | | | | | | 209 | | | | | | 133 | | 5 | 147 | 156 | 144 | 133 | 250 | 263 | 593 | 189 | 264 | 149 | 151 | 149 | | 6 | 148 | 148 | 143 | 244 | 240 | 158 | 465 | 181 | 347 | 148 | 143 | 150 | | 7 | 145 | 151 | 141 | 182 | 240 | 157 | 338 | 181 | 418 | 145 | 141 | 162 | | 8 | 145 | 149 | 140 | 164 | 230 | 180 | 353 | 182 | 417 | 144 | 142 | 789 | | ğ | 144 | 166 | 141 | 134 | 220 | 415 | 337 | 197 | 417 | 143 | 141 | 2640 | | 10 | 145 | 161 | 140 | 125 | 260 | 1020 | 334 | 189 | 417 | 144 | 139 | 2670 | | 10 | 143 | 101 | 140 | 123 | 260 | 1020 | 334 | 109 | 417 | 144 | 139 | 2070 | | 11 | 148 | 156 | 141 | 126 | 290 | 1450 | 333 | 184 | 421 | 144 | 140 | 2240 | | 12 | 151 | 176 | 139 | 124 | 290 | 1740 | 383 | 184 | 661 | 145 | 140 | 1950 | | 13 | 149 | 158 | 139 | 123 | 280 | 1910 | 440 | 184 | 776 | 144 | 140 | 1350 | | 14 | 148 | 156 | 139 | 120 | 290 | 2250 | 441 | 184 | 529 | 143 | 204 | 530 | | | | | | | | | | | | | | | | 15 | 150 | 164 | 128 | 117 | 430 | 2430 | 382 | 183 | 308 | 146 | 197 | 336 | | 16 | 151 | 182 | 114 | 116 | 530 | 2190 | 337 | 182 | 272 | 145 | 154 | 32 <b>2</b> | | 17 | 153 | 187 | 118 | 121 | 520 | 1790 | 307 | 181 | 233 | 143 | 146 | 313 | | 18 | 190 | 148 | 120 | 123 | 520 | 1260 | 189 | 184 | 233 | 162 | 142 | 310 | | 19 | 190 | 156 | 123 | 125 | 510 | 979 | 184 | 179 | 235 | 166 | 152 | 305 | | 20 | 179 | 150 | 121 | 127 | 490 | 975 | 184 | 175 | 179 | 152 | 151 | 264 | | 20 | 1/9 | 130 | 121 | 127 | 490 | 9/3 | 104 | 1/3 | 1/9 | 134 | 131 | 204 | | 21 | 156 | 148 | 117 | 128 | 480 | 883 | 184 | 171 | 172 | 148 | 146 | 223 | | 22 | 164 | 153 | 120 | 130 | 470 | 680 | 209 | 170 | 170 | 157 | 152 | 226 | | 23 | 189 | 159 | 118 | 132 | 400 | 798 | 524 | 167 | 168 | 168 | 301 | 232 | | 24 | 156 | 154 | 121 | 129 | 340 | 904 | 258 | 181 | 167 | 158 | 169 | 234 | | 25 | 155 | 154 | 119 | 128 | 340 | 893 | 217 | 406 | 167 | 154 | 161 | 190 | | 23 | 133 | 134 | 119 | 120 | 340 | 093 | 217 | 400 | 107 | 134 | 101 | 130 | | 26 | 157 | 174 | 126 | 129 | 340 | 793 | 209 | 195 | 163 | 152 | 194 | 145 | | 27 | 153 | 159 | 131 | 131 | 280 | 707 | 204 | 169 | 178 | 148 | 178 | 145 | | 28 | 155 | 153 | 121 | 138 | 178 | 751 | 196 | 165 | 229 | 145 | 169 | 148 | | 29 | 154 | 153 | 121 | 210 | | 868 | 189 | 163 | 157 | 148 | 160 | 147 | | 30 | 152 | 149 | 123 | 484 | | 861 | 183 | 159 | 150 | 151 | 149 | 134 | | 31 | 153 | 149 | 122 | | | | | 160 | | 148 | 177 | | | 31 | 133 | | 122 | 781 | | 779 | | 100 | | 140 | 1// | | | TOTAL | 4846 | 4880 | 4041 | 5207 | 10652 | 29036 | 10448 | 5835 | <b>9</b> 253 | 4633 | 5022 | 17009 | | MEAN | 156 | 163 | 130 | 168 | 380 | 937 | 348 | 188 | 308 | 149 | 162 | 567 | | MAX | 190 | 284 | 145 | 781 | 809 | 2430 | 667 | 406 | 776 | 168 | 301 | 2670 | | MIN | 144 | 148 | 114 | 116 | 178 | 133 | 183 | 159 | 150 | 143 | 139 | 134 | | AC-FT | 9610 | | 8020 | 10330 | 21130 | | 20720 | 11570 | 18350 | 9190 | 9960 | 33740 | | VC_L 1 | aoto | 3000 | 0020 | 10220 | 21130 | 2/280 | 20120 | 113/0 | 10070 | 2120 | 3300 | 33740 | CAL YR 1988 WTR YR 1989 TOTAL 250256 MEAN 684 MAX 3630 MIN 114 AC-FT 496400 TOTAL 110862 MEAN 304 MAX 2670 MIN 114 AC-FT 219900 #### 05455010 SOUTH BRANCH RALSTON CREEK AT IOWA CITY, IA LOCATION. -- Lat 41°39'05", long 91°30'27", in SW1/4 NE1/4 sec.14, T.79 N., R.6 W., Johnson County, Hydrologic Unit 07080209, on right bank 60 ft downstream from bridge on Muscatine Avenue in Iowa City, and 1.2 mi upstream from mouth. DRAINAGE AREA. -- 2.94 mi2. PERIOD OF RECORD. -- October 1963 to current year. REVISED RECORDS .-- WDR IOWA 1966: Drainage area. GAGE.--Water-stage recorder and V-notch sharp-crested weir. Datum of gage is 678.03 ft above NGVD. REMARKS.--Estimated daily discharges: Nov. 29 to Dec. 2, Dec. 10 to Jan. 8, Jan. 11, 12, Feb. 4 to Mar. 11, Mar. 18, May 27, 29, 30, and June 5-8. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. AVERAGE DISCHARGE.--26 years, 2.36 ft3/s, 10.90 in/yr, 1,710 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,070 ft<sup>3</sup>/s July 17, 1972, gage height, 9.47 ft; no flow at times most years. EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood of July 14, 1962, reached a stage of 10.5 ft, from flood profile, discharge not determined. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 200 ft3/s and maximum (\*): | | | Discharge | Gage height | | Discharge | Gage height | |--------|------|------------|---------------|--------------|----------------------|-------------| | Date | Time | $(ft^3/s)$ | (ft) | Date Time | (ft <sup>3</sup> /s) | (ft) | | Aug. 3 | 2030 | *340 | <b>*</b> 6.10 | Sept. 9 0310 | 223 | 4.89 | No flow many days during the year. | | | DISCHARGE | , CUBIC | FEET PER | SECOND, | WATER YEAR<br>TEAN VALUES | OCTOBER | 1988 TO | SEPTEMBER | 1989 | | | |-----------------------------------|----------------------------------------|---------------------------------|------------------------------------------|-----------------------------------------|------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|----------------------------------------|------------------------------------------------|-----------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | .00<br>.00<br>.00<br>.00 | .15<br>.18<br>.13<br>.55 | .02<br>.03<br>.06<br>.04 | .00<br>.00<br>.00<br>.00<br>.20 | .62<br>.40<br>.14<br>.03<br>.03 | .04<br>.06<br>.60<br>2.4<br>.60 | .21<br>.17<br>.15<br>.13<br>.11 | 4.8<br>1.4<br>1.1<br>1.8<br>.84 | 2.2<br>.49<br>3.0<br>.82<br>.35 | .00<br>.00<br>.00<br>.00 | .00<br>.00<br>14<br>2.4<br>.10 | 3.4<br>.35<br>.16<br>.23<br>.10 | | 6<br>7<br>8<br>9<br>10 | .01<br>.0<br>.00<br>.27<br>.02 | .04<br>.14<br>.10<br>2.0<br>.28 | .05<br>.04<br>.03<br>.02<br>.02 | .50<br>1.0<br>.20<br>.12<br>.10 | .02<br>.01<br>.02<br>.03<br>.02 | .28<br>.90<br>2.0<br>6.0<br>1.5 | .09<br>.53<br>1.7<br>.17<br>.13 | .64<br>.59<br>.46<br>1.4<br>.40 | .25<br>.17<br>.13<br>.10 | .00<br>.00<br>.00<br>.00 | .01<br>.00<br>.00<br>.00 | .07<br>1.4<br>3.8<br>24<br>1.5 | | 11<br>12<br>13<br>14<br>15 | .0<br>.0<br>.00<br>.00 | .10<br>4.3<br>.29<br>.11<br>1.3 | .02<br>.02<br>.01<br>.01 | .09<br>.30<br>.11<br>.12<br>.30 | .02<br>.03<br>.10<br>.08<br>.05 | .70<br>.55<br>.37<br>.37<br>.25 | .13<br>.18<br>.14<br>.12<br>.09 | .34<br>.33<br>.33<br>.32<br>.28 | .88<br>4.6<br>.88<br>.56<br>.20 | .00<br>.00<br>.00<br>.00 | .00<br>.00<br>.00<br>6.0<br>1.0 | .89<br>.76<br>1.1<br>.61<br>.50 | | 16<br>17<br>18<br>19<br>20 | .00<br>.32<br>.04<br>.01<br>.15 | .67<br>.37<br>.58<br>.70<br>.35 | .01<br>.01<br>.00<br>.00 | .13<br>.10<br>.12<br>.17 | .04<br>.03<br>.03<br>.04<br>.03 | .19<br>.42<br>.17<br>.15 | .24<br>.20<br>.52<br>.14 | .26<br>.27<br>.76<br>.22<br>.18 | .13<br>.12<br>.10<br>.10 | .00<br>.00<br>5.3<br>.37<br>.02 | .07<br>.0<br>.00<br>1.3 | .42<br>.34<br>.30<br>.27<br>.24 | | 21<br>22<br>23<br>24<br>25 | .44<br>.74<br>2.8<br>.23<br>.19 | .15<br>.05<br>.03<br>.05 | .00<br>.00<br>.00<br>.00 | .07<br>.09<br>.08<br>.08 | .02<br>.02<br>.02<br>.03<br>.04 | .12<br>.11<br>.15<br>.18 | .07<br>6.7<br>19<br>1.4<br>.74 | .13<br>.12<br>.10<br>3.8<br>2.1 | .08<br>.03<br>.00<br>.00 | .09<br>.40<br>1.4<br>.12<br>.0 | .0<br>.0<br>4.3<br>.36<br>.11 | .21<br>.21<br>.18<br>.17<br>.17 | | 26<br>27<br>28<br>29<br>30<br>31 | .19<br>.18<br>.18<br>.19<br>.18 | 1.3<br>.12<br>.08<br>.05<br>.03 | .00<br>.02<br>.03<br>.01<br>.00 | .10<br>.07<br>6.2<br>4.8<br>.54<br>.46 | .03<br>.02<br>.03<br> | .23<br>.28<br>1.9<br>.32<br>.22<br>.20 | 2.6<br>1.2<br>1.3<br>.85<br>.67 | .54<br>.14<br>.90<br>.40<br>.20 | .53<br>.37<br>.03<br>.00<br>.00 | .00<br>.00<br>.00<br>.00<br>.00 | 2.1<br>.28<br>.14<br>.34<br>.05<br>2.8 | .14<br>.11<br>.10<br>.09<br>.05 | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 6.34<br>.20<br>2.8<br>.00<br>13<br>.07 | | 0.50<br>.016<br>.06<br>.00<br>1.0<br>.01 | 16.31<br>.53<br>6.2<br>.00<br>32<br>.18 | 1.98<br>.071<br>.62<br>.01<br>3.9<br>.02 | 21.64<br>.70<br>6.0<br>.04<br>43<br>.24 | 39.78<br>1.33<br>19<br>.07<br>79<br>.45 | 26.02<br>.84<br>4.8<br>.10<br>52<br>.29 | 16.66<br>.56<br>4.6<br>.00<br>33<br>.19 | 7.70<br>.25<br>5.3<br>.00<br>15<br>.08 | 35.45<br>1.14<br>14<br>.00<br>70<br>.39<br>.45 | 41.87<br>1.40<br>24<br>.05<br>83<br>.47 | CAL YR 1988 TOTAL 349.84 MEAN .96 MAX 42 MIN .00 AC-FT 694 CFSM .33 IN. 4.43 WTR YR 1989 TOTAL 228.57 MEAN .63 MAX 24 MIN .00 AC-FT 453 CFSM .21 IN. 2.89 97 #### 05455100 OLD MANS CREEK NEAR IOWA CITY, IA LOCATION.--Lat. 41°36'23", long. 91°36'56", in SE1/4 SW1/4 NW1/4 sec. 36, T.79 N., R.7 W., Johnson County, Hydrologic Unit 07080209, on left bank 10 ft downstream from bridge on county highway W62, 5 miles southwest of Iowa City, 5.9 miles upstream of Dirty Face Creek, and 8.6 miles upstream from mouth. DRAINAGE AREA, -- 201 mi2, PERIOD OF RECORD. --October 1950 to September 1964, published in WSP 1914. Annual maximum, water years 1965-84. Occasional low-flow measurements, water years 1964-77, October 1984 to current year. GAGE.--Water-stage recorder. Datum of gage is 637.49 ft above NGVD. Prior to Nov. 16, 1984, nonrecording gage at same site at datum 2.00 ft higher. Prior to Oct. 1, 1987, at datum 2.00 ft higher. REMARKS.--Estimated daily discharges: Dec. 1, 2, Dec. 8 to Jan. 29, and Feb. 2 to Mar. 10. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers data collection platform at station. COOPERATION. -- Gage height record and discharge measurements for water years 1951-64 were collected by the U.S. Army Corps of Engineers and computed by the U.S. Geological Survey. AVERAGE DISCHARGE.--19 years (1951-64, 1985-89), 98.5 ft<sup>3</sup>/s, 6.66 in/yr, 71,360 acre-ft/yr; median of yearly mean discharges, 95 ft<sup>3</sup>/s, 6.4 in/yr, 68,800 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 12,000 ft<sup>3</sup>/s May 29, 1962, gage height, 16.52 ft, present datum; minimum daily discharge, 0.1 ft<sup>3</sup>/s for several days in 1957, 1958 and 1964. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum discharge, 13,500 ft<sup>3</sup>/s, on the basis of contracted-opening of peak flow, June 15, 1982, gage height, 17.25 ft, present datum. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 1,500 ft3/s and maximum (\*): | | | Discharge | Gage height | | | Discharge | Gage height | |---------|------|----------------------|-------------|------|------|----------------------|-------------| | Date | Time | (ft <sup>3</sup> /s) | (ft) | Date | Time | (ft <sup>3</sup> /s) | (ft) | | Sept. 9 | 0615 | *1620 | *11.50 | | | | | Minimum discharge, 1.2 ft3/s Oct. 5-10, 12. | | | DISCHAR | GE, CUBIC | FEET PER | SECOND, | WATER YEAR<br>MEAN VALUES | OCTOBER | 1988 TO | SEPTEMBER | 1989 | | | |-----------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|-------------------------------------------|-------------------------------------------------|----------------------------------------------------|------------------------------------------|--------------------------------------------|---------------------------------------------|-------------------------------------------------|------------------------------------------|----------------------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | 1.3<br>1.3<br>1.3<br>1.3 | 1.9<br>2.1<br>2.4<br>2.2<br>2.2 | 2.5<br>2.6<br>2.6<br>2.6<br>2.6 | 2.1<br>2.0<br>1.9<br>1.9<br>3.0 | 40<br>20<br>10<br>6.0<br>4.5 | 2.3<br>2.4<br>5.0<br>300<br>100 | 2.6<br>2.5<br>2.5<br>2.5<br>2.4 | 7.5<br>10<br>9.3<br>7.4<br>6.0 | 524<br>113<br>330<br>156<br>49 | 2.9<br>2.8<br>2.7<br>2.7<br>2.5 | 2.3<br>2.3<br>2.5<br>2.7<br>2.2 | 15<br>36<br>12<br>4.0<br>3.0 | | 6<br>7<br>8<br>9 | 1.2<br>1.2<br>1.2<br>1.2<br>1.2 | 2.1<br>2.2<br>2.2<br>3.4<br>2.3 | 2.6<br>2.5<br>2.1<br>2.0<br>1.9 | 25<br>9.0<br>6.4<br>5.0<br>5.2 | 4.0<br>3.5<br>3.0<br>2.5<br>2.3 | 65<br>50<br>60<br>150<br>300 | 2.3<br>2.2<br>2.5<br>3.1<br>3.6 | 5.0<br>4.4<br>3.9<br>12<br>6.1 | 31<br>20<br>13<br>9.4 | 2.3<br>2.3<br>2.3<br>2.3<br>2.4 | 2.2<br>2.2<br>2.2<br>2.2<br>2.2 | 2.9<br>4.5<br>823<br>1310<br>519 | | 11<br>12<br>13<br>14<br>15 | 1.3<br>1.2<br>1.3<br>1.4 | 2.1<br>2.4<br>2.5<br>2.4<br>2.7 | 2.0<br>2.2<br>2.4<br>2.2<br>2.0 | 4.7<br>4.3<br>4.0<br>3.8<br>4.0 | 2.4<br>2.5<br>2.6<br>2.5<br>2.6 | 158<br>71<br>27<br>18<br>11 | 3.0<br>2.7<br>2.6<br>2.4<br>2.4 | 3.7<br>3.3<br>3.1<br>2.9<br>2.9 | 6.6<br>38<br>23<br>13<br>7.9 | 2.3<br>2.1<br>2.1<br>2.3<br>2.2 | 2.2<br>2.4<br>2.2<br>2.5<br>2.5 | 174<br>93<br>61<br>48<br>38 | | 16<br>17<br>18<br>19<br>20 | 1.5<br>1.4<br>1.4<br>1.5 | 93<br>64<br>13<br>4.8<br>3.3 | 2.1<br>2.2<br>2.5<br>2.4<br>2.3 | 3.7<br>4.0<br>4.3<br>4.1<br>4.4 | 2.4<br>2.3<br>2.3<br>2.4<br>2.4 | 8.1<br>7.2<br>5.7<br>5.6<br>4.1 | 2.3<br>2.4<br>2.4<br>2.4<br>2.4 | 2.7<br>2.7<br>2.7<br>2.7<br>2.6 | 5.7<br>4.4<br>4.0<br>3.6<br>3.4 | 2.1<br>2.0<br>2.1<br>26<br>27 | 2.6<br>2.7<br>2.6<br>2.7 | 31<br>24<br>19<br>15<br>11 | | 21<br>22<br>23<br>24<br>25 | 1.9<br>1.8<br>2.3<br>2.5<br>3.9 | 3.0<br>2.9<br>2.8<br>2.8<br>2.7 | 2.2<br>2.2<br>2.1<br>2.0<br>2.1 | 4.7<br>4.6<br>4.3<br>4.4<br>4.2 | 2.5<br>2.4<br>2.2<br>2.2<br>2.3 | 4.1<br>3.7<br>3.8<br>3.5<br>3.4 | 2.5<br>2.5<br>90<br>32<br>15 | 2.6<br>3.1<br>2.8<br>12<br>632 | 3.2<br>3.0<br>2.9<br>2.8<br>2.8 | 4.8<br>2.7<br>2.4<br>2.6<br>2.8 | 5.1<br>3.2<br>2.9<br>2.9<br>2.9 | 7.5<br>6.1<br>4.6<br>4.6<br>4.1 | | 26<br>27<br>28<br>29<br>30<br>31 | 2.3<br>1.9<br>1.9<br>1.9<br>2.0 | 3.1<br>3.4<br>3.6<br>3.0<br>2.7 | 2.2<br>2.5<br>2.4<br>2.2<br>2.3<br>2.2 | 4.2<br>4.6<br>4.4<br>40<br>212<br>74 | 2.5<br>2.4<br>2.4<br> | 3.2<br>3.3<br>3.8<br>3.8<br>3.5<br>2.9 | 8.0<br>5.4<br>5.9<br>7.0<br>6.1 | 101<br>22<br>7.9<br>6.7<br>4.5<br>3.4 | 2.8<br>51<br>30<br>7.8<br>3.4 | 2.6<br>2.3<br>2.2<br>2.1<br>2.1<br>2.2 | 3.1<br>7.3<br>9.7<br>3.8<br>3.3<br>3.3 | 4.0<br>4.1<br>4.1<br>3.8 | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 50.8<br>1.64<br>3.9<br>1.2<br>101<br>.01 | 243.2<br>8.11<br>93<br>1.9<br>482<br>.04 | 70.7<br>2.28<br>2.6<br>1.9<br>140<br>.01 | 464.2<br>15.0<br>212<br>1.9<br>921<br>.07 | 139.1<br>4.97<br>40<br>2.2<br>276<br>.02<br>.03 | 1389.4<br>44.8<br>300<br>2.3<br>2760<br>.22<br>.26 | 225.6<br>7.52<br>90<br>2.2<br>447<br>.04 | 898.9<br>29.0<br>632<br>2.6<br>1780<br>.14 | 1475.7<br>49.2<br>524<br>2.8<br>2930<br>.24 | 124.2<br>4.01<br>27<br>2.0<br>246<br>.02<br>.02 | 95.5<br>3.08<br>9.7<br>2.2<br>189<br>.02 | 3290.4<br>110<br>1310<br>2.9<br>6530<br>.55<br>.61 | CAL YR 1988 TOTAL 14644.3 MEAN 40.0 MAX 1100 MIN 1.2 AC-FT 29050 CFSM .20 IN. 2.71 WTR YR 1989 TOTAL 8467.7 MEAN 23.2 MAX 1310 MIN 1.2 AC-FT 16800 CFSM .12 IN. 1.57 #### 05455500 ENGLISH RIVER AT KALONA, IA LOCATION.--Lat 41°27'59", long 91°42'56", in SE1/4 SE1/4 sec.13, T.77 N., R.8 W., Washington County, Hydrologic Unit 07080209, on right bank 30 ft upstream from bridge on State Highway 1, 0.8 mi south of Kalona, 1.1 mi upstream from Camp Creek, 4.5 mi downstream from Smith Creek, and 14.5 mi upstream from mouth. DRAINAGE AREA. -- 573 mi2. PERIOD OF RECORD. -- September 1939 to current year. REVISED RECORDS.--WSP 1438: Drainage area. WSP 1558: 1940 (M), 1941. WSP 1708: 1956, 1957 (P), 1958 (P). GAGE.--Water-stage recorder. Datum of gage is 633.45 ft above NGVD (levels by U.S. Army Corps of Engineers). Prior to Dec. 27, 1939, nonrecording gage 30 ft downstream at same datum. REMARKS.--Estimated daily discharges: Dec. 13 to Mar. 20. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers data collection platform at station. AVERAGE DISCHARGE.--50 years, 366 $ft^3/s$ , 8.67 in/yr, 265,200 acre-ft/yr; median of yearly mean discharges, 330 $ft^3/s$ , 7.8 in/yr, 239,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 20,000 ft<sup>3</sup>/s Sept. 21, 1965, gage height, 21.45 ft; minimum daily discharge, 0.66 ft<sup>3</sup>/s Feb. 5-7, 1977. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in June 1930 reached a stage of 19.9 ft, from floodmark, from information by local residents, discharge, 18,500 ft<sup>3</sup>/s. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 4,000 ft3/s and maximum (\*): Discharge Gage height Date Time (ft $^3$ /s) (ft) Date Time (ft $^3$ /s) (ft) Sept. 9 1615 \*4,090 \*15.03 No other peak greater than base discharge. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 Minimum discharge, 3.0 ft3/s Oct. 12 and Dec. 6. | | | | • | | M | EAN VALUES | 5 | | | | | | |-----------------------------------------------------|------------------------------------------|--------------------------------------------|-------------------------------------------------|------------------------------------------|--------------------------------------------|------------------------------------------------|----------------------------------------|---------------------------------------------|-------------------------------------------------|--------------------------------------------|------------------------------------------|----------------------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | 12<br>12<br>9.9<br>7.0<br>5.7 | 5.1<br>5.8<br>5.4<br>7.3 | 16<br>16<br>7.9<br>11 | 12<br>11<br>10<br>10<br>15 | 130<br>80<br>60<br>70<br>20 | 17<br>18<br>19<br>70<br>350 | 33<br>29<br>27<br>26<br>24 | 49<br>43<br>41<br>37<br>32 | 1350<br>681<br>470<br>585<br>203 | 22<br>17<br>13<br>11<br>9.6 | 7.5<br>7.0<br>8.1<br>21 | 57<br>117<br>89<br>54<br>30 | | 6<br>7<br>8<br>9<br>10 | 5.0<br>4.6<br>4.7<br>6.1<br>4.9 | 8.9<br>8.9<br>11<br>13<br>18 | 7.5<br>5.1<br>13<br>8.8<br>10 | 25<br>60<br>25<br>20<br>19 | 15<br>12<br>11<br>10<br>9.8 | 300<br>170<br>150<br>200<br>600 | 22<br>21<br>26<br>30<br>40 | 27<br>23<br>20<br>18<br>16 | 109<br>74<br>54<br>44<br>37 | 8.5<br>8.0<br>7.7<br>7.2<br>6.8 | 8.2<br>8.5<br>12<br>11<br>7.7 | 21<br>21<br>2160<br>3850<br>3790 | | 11<br>12<br>13<br>14<br>15 | 4.3<br>3.6<br>3.5<br>3.9<br>3.6 | 18<br>22<br>24<br>23<br>22 | 13<br>17<br>15<br>12<br>11 | 23<br>21<br>21<br>20<br>25 | 9.6<br>9.6<br>10<br>11<br>12 | 350<br>230<br>130<br>80<br>50 | 37<br>30<br>25<br>22<br>20 | 14<br>13<br>12<br>11<br>10 | 32<br>54<br>65<br>55<br>38 | 6.5<br>12<br>13<br>9.8<br>20 | 6.5<br>5.9<br>5.5<br>6.0<br>6.9 | 2200<br>708<br>543<br>398<br>309 | | 16<br>17<br>18<br>19<br>20 | 3.5<br>5.0<br>5.0<br>6.8<br>9.1 | 25<br>241<br>98<br>53<br>29 | 12<br>11<br>10<br>12<br>16 | 24<br>25<br>27<br>26<br>25 | 13<br>14<br>13<br>12<br>12 | 60<br>56<br>52<br>48<br>43 | 19<br>18<br>18<br>18<br>17 | 9.6<br>9.1<br>8.9<br>9.1 | 29<br>24<br>21<br>19<br>18 | 11<br>8.6<br>9.6<br>43<br>135 | 7.2<br>7.1<br>5.7<br>5.6<br>6.4 | 246<br>202<br>168<br>143<br>119 | | 21<br>22<br>23<br>24<br>25 | 8.6<br>7.2<br>8.8<br>9.8 | 17<br>13<br>8.0<br>6.9<br>6.6 | 10<br>11<br>13<br>10<br>9.0 | 25<br>30<br>31<br>27<br>35 | 13<br>13<br>13<br>14<br>15 | 40<br>37<br>35<br>33<br>32 | 16<br>15<br>21<br>19<br>17 | 13<br>25<br>19<br>16<br>455 | 16<br>14<br>13<br>11<br>10 | 101<br>48<br>40<br>28<br>23 | 10<br>10<br>12<br>20<br>20 | 103<br>95<br>86<br>79<br>75 | | 26<br>27<br>28<br>29<br>30<br>31 | 18<br>12<br>8.4<br>6.2<br>6.0<br>5.8 | 10<br>11<br>15<br>10<br>9.7 | 11<br>13<br>11<br>11<br>10 | 32<br>30<br>34<br>70<br>350<br>210 | 15<br>16<br>17<br> | 32<br>33<br>37<br>41<br>43<br>39 | 17<br>21<br>49<br>65<br>48 | 312<br>110<br>57<br>53<br>173<br>133 | 13<br>47<br>85<br>65<br>37 | 21<br>15<br>11<br>9.3<br>8.8<br>8.0 | 17<br>27<br>20<br>19<br>22<br>24 | 67<br>65<br>63<br>60<br>56 | | TOTAL<br>MEAN<br>MAX<br>MIN<br>AC-FT<br>CFSM<br>IN. | 221.0<br>7.13<br>18<br>3.5<br>438<br>.01 | 759.6<br>25.3<br>241<br>5.1<br>1510<br>.04 | 354.3<br>11.4<br>17<br>5.1<br>703<br>.02<br>.02 | 1318<br>42.5<br>350<br>10<br>2610<br>.07 | 650.0<br>23.2<br>130<br>9.6<br>1290<br>.04 | 3395<br>110<br>600<br>17<br>6730<br>.19<br>.22 | 790<br>26.3<br>65<br>15<br>1570<br>.05 | 1779.7<br>57.4<br>455<br>8.9<br>3530<br>.10 | 4273<br>142<br>1350<br>10<br>8480<br>.25<br>.28 | 692.4<br>22.3<br>135<br>6.5<br>1370<br>.04 | 365.8<br>11.8<br>27<br>5.5<br>726<br>.02 | 15974<br>532<br>3850<br>21<br>31680<br>.93<br>1.04 | CAL YR 1988 TOTAL 36480.5 MEAN 99.7 MAX 1250 MIN 1.8 AC-FT 72360 CFSM .17 IN. 2.37 WTR YR 1989 TOTAL 30572.8 MEAN 83.8 MAX 3850 MIN 3.5 AC-FT 60640 CFSM .15 IN. 1.98 99 #### 05455700 IOWA RIVER NEAR LONE TREE, IA LOCATION.--Lat 41°25'15", long 91°28'25", in NW1/4 NE1/4 sec.6, T.76 N., R.5 W., Louisa County, Hydrologic Unit 07080209, on left bank 2,000 ft downstream from tri-county bridge on county highway W66, 5 mi southwest of Lone Tree, 6.2 mi downstream from English River, and at mile 47.2. DRAINAGE AREA. -- 4,293 mi2. PERIOD OF RECORD. -- October 1956 to current year. GAGE.--Water-stage recorder. Datum of gage is 588.16 ft above NGVD. Prior to Dec. 28, 1956, nonrecording gage at same site and datum. REMARKS.--Estimated daily discharges: Dec. 9 to Jan. 23, Feb. 4 to Mar. 13, May 25, and June 3. Records good except those for estimated daily discharges, which are poor. Flow regulated by Coralville Lake (station 05453510), 36.1 mi upstream, since Sept. 17, 1958. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers gage height telemeter and data collection platform at station. AVERAGE DISCHARGE.--33 years, 2,792 ft<sup>3</sup>/s, 8.83 in/yr, 2,023,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 35,700 ft<sup>3</sup>/s May 19, 1974, gage height, 18.97 ft; maximum gage height, 20.27 ft Sept. 22, 1965; minimum daily discharge, 69 ft<sup>3</sup>/s Aug. 4, 1977. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of May 25, 1944, reached a stage of 19.94 ft, discharge not determined, from information by U.S. Army Corps of Engineers. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 8,930 ft<sup>3</sup>/s Sept. 10, gage height, 11.89 ft; Minimum daily discharge, 142 ft<sup>3</sup>/s, Aug. 13. DISCHARGE CURIC FEFT DED SECOND WATER VEAR OCTORED 1088 TO SEPTEMBER 1080 | | | DISCHARGE | , CUBIC | FEET PER | SECOND, | , WATER YEAR<br>MEAN VALUES | OCTOBER | 1988 TO | SEPTEMBER | 1989 | | | |--------|-------|---------------------|---------|----------|---------|-----------------------------|------------|---------|--------------|-------------|-------|-------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 202 | 181 | 191 | 155 | 1850 | 230 | 924 | 325 | 1390 | 229 | 159 | 276 | | 2 | 204 | 177 | 186 | 155 | 1570 | 190 | 805 | 375 | <b>2</b> 460 | 205 | 156 | 325 | | 3 | 198 | 187 | 184 | 150 | 740 | 250 | 750 | 387 | 1060 | 196 | 156 | 291 | | 3<br>4 | 197 | 225 | 176 | 155 | 600 | 700 | 734 | 335 | 1680 | 188 | 342 | 247 | | 5 | 197 | 330 | 174 | 165 | 450 | 1200 | 725 | 327 | 1130 | 174 | 276 | 210 | | 6 | 194 | 213 | 182 | 220 | 340 | 740 | 718 | 303 | 746 | 172 | 176 | 200 | | 7 | 195 | <b>1</b> 9 <b>6</b> | 179 | 375 | 310 | 560 | 570 | 286 | 608 | 168 | 158 | 198 | | 8 | 198 | 202 | 171 | 300 | 290 | 450 | 511 | 271 | 585 | 167 | 153 | 978 | | 9 | 197 | 204 | 170 | 230 | 280 | 500 | 534 | 269 | 552 | 163 | 154 | 7350 | | 10 | 193 | 247 | 165 | 200 | 280 | 700 | 526 | 275 | 525 | 16 <b>1</b> | 148 | 8580 | | 11 | 195 | 222 | 155 | 170 | 310 | 1000 | 526 | 270 | 504 | 161 | 146 | 7620 | | 12 | 190 | 225 | 170 | 165 | 350 | 1300 | 531 | 255 | 546 | 162 | 143 | 4760 | | 13 | 186 | 264 | 180 | 160 | 360 | 1800 | 548 | 247 | 824 | 164 | 142 | 3300 | | 14 | 191 | 217 | 185 | 170 | 400 | 2370 | 561 | 242 | 812 | 169 | 144 | 2000 | | 15 | 191 | 209 | 180 | 180 | 500 | 2690 | 567 | 235 | 584 | 166 | 227 | 1150 | | 16 | 189 | 233 | 165 | 180 | 540 | 2670 | 495 | 232 | 440 | 175 | 231 | 883 | | 17 | 190 | 302 | 160 | 190 | 560 | 2230 | 459 | 228 | 400 | 167 | 165 | 776 | | 18 | 188 | 368 | 170 | 185 | 560 | 1810 | 405 | 226 | 345 | 204 | 151 | 709 | | 19 | 153 | 267 | 180 | 185 | 560 | 1230 | <b>299</b> | 226 | <b>3</b> 35 | 290 | 144 | 663 | | 20 | 150 | 233 | 180 | 190 | 540 | 1140 | 275 | 225 | 335 | 250 | 164 | 63 <b>3</b> | | 21 | 172 | 213 | 170 | 185 | 540 | 1120 | 272 | 214 | 292 | 307 | 154 | 566 | | 22 | 187 | 201 | 160 | 185 | 530 | 939 | 276 | 210 | 249 | 271 | 152 | 502 | | 23 | 255 | 205 | 160 | 180 | 500 | 818 | 994 | 210 | 232 | 248 | 187 | 470 | | 24 | 243 | 204 | 160 | 171 | 450 | 983 | 872 | 221 | 222 | 260 | 342 | 443 | | 25 | 191 | 195 | 160 | 165 | 430 | 1020 | 440 | 937 | 213 | 213 | 202 | 430 | | 26 | 189 | 226 | 150 | 163 | 410 | 1010 | 351 | 1400 | 215 | 185 | 187 | 369 | | 27 | 182 | 234 | 150 | 158 | 350 | 892 | 329 | 632 | 242 | 183 | 240 | 300 | | 28 | 186 | 206 | 150 | 162 | 280 | 836 | 330 | 412 | <b>2</b> 87 | 183 | 217 | 285 | | 29 | 180 | 202 | 145 | 238 | | 882 | 327 | 352 | 364 | 183 | 190 | 280 | | 30 | 179 | 200 | 155 | 439 | | 960 | 327 | 326 | 268 | 181 | 173 | 268 | | 31 | 178 | | 160 | 1290 | | 979 | | 333 | | 166 | 186 | | | TOTAL | 5940 | 6788 | 5223 | 7216 | 14880 | 34199 | 15981 | 10786 | 18445 | 6111 | 5765 | 45062 | | MEAN | 192 | 226 | 168 | 233 | 531 | 1103 | 533 | 348 | 615 | 197 | 186 | 1502 | | MAX | 255 | 368 | 191 | 1290 | 1850 | 2690 | 994 | 1400 | 2460 | 307 | 342 | 8580 | | MIN | 150 | 177 | 145 | 150 | 280 | 190 | 272 | 210 | 213 | 161 | 142 | 198 | | AC-FT | 11780 | | 0360 | 14310 | 29510 | 67830 | 31700 | 21390 | 36590 | 12120 | 11430 | 89380 | CAL YR 1988 TOTAL 353413 MEAN 966 MAX 6000 MIN 145 AC-FT 701000 WTR YR 1989 TOTAL 176396 MEAN 483 MAX 8580 MIN 142 AC-FT 349900 #### 05457700 CEDAR RIVER AT CHARLES CITY, IA LOCATION.--Lat 43°03'45", long 92°40'23", in SE1/4 NE1/4, sec.12, T.95 N., R.16 W., Floyd County, Hydrologic Unit 07080201, on right bank 800 ft downstream from bridge on U.S. Highway 18 (Brantingham Street) in Charles City, 10.6 mi upstream from Gizzard Creek, and at mile 252.9 upstream from mouth of Iowa River. DRAINAGE AREA. -- 1,054 mi2. Mar. 13 0830 PERIOD OF RECORD .-- October 1964 to current year. Discharge (ft3/s) Îce jam 86 f+3/e Aug 22 GAGE. -- Water-stage recorder. Datum of gage is 973.02 ft above NGVD. REMARKS.--Estimated daily discharges: Nov. 19, 20, Dec. 13-17, 28, 29, Jan. 2, 8-10, 23-27, Feb. 1-9, 14, 15, 19, 20, 22-25, Mar. 3-17, 25, 26, Aug. 30 to Sept. 4. Records good except those for estimated daily discharges, which are poor. Occasional minor regulation by dam 0.2 mi upstream from gage. Daily wire-weight gage readings available in district office for period Sept. 13, 1945 to June 30, 1954, at same site and datum. Discharge not published for this period because of extreme regulation of streamflow by power dam 0.2 mi upstream. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. National Weather Service Limited Automatic Remote Collector telemeter at station. AVERAGE DISCHARGE.--25 years, 694 ft<sup>3</sup>/s, 8.94 in/yr, 502,800 acre-ft/yr. Gage height (ft) \*8.46 EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 21,000 ft<sup>3</sup>/s Apr. 7, 1965, gage height, 19.14 ft; maximum gage height, 21.64 ft Mar. 2, 1965, backwater from ice; minimum daily discharge, 60 ft<sup>3</sup>/s Nov. 23, 1977, Jan. 7, 1978 EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Mar. 27, 1961, reached a stage of 21.6 ft, from floodmarks, discharge, 29,200 ft<sup>3</sup>/s. Date Mar. 15 Time Discharge (ft<sup>3</sup>/s) \*2,300 Gage height (ft) Ice jam EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 3,600 ft3/s and maximum (\*): | Minim | rum disch | arge, 86 | ft <sup>3</sup> /s A | ıg. 22. | | | | | | | | | |------------------|-----------|----------|----------------------|------------|------|---------------------------|-------------------|------------|------------|-------|----------------|-------------------| | | | DISCHAR | GE, CUBIC | C FEET PER | | WATER YEAR<br>MEAN VALUES | OCTOBER | 1988 TO | SEPTEMBER | 1989 | | | | DAY | OCT | NOA | DEC | JAN | FEB | MAR | APR | YAM | JUN | JUL | AUG | SEP | | 1 | 165 | 130 | 192 | 140 | 160 | 124 | 575 | 829 | 204 | 190 | 148 | 387 | | 2 | 159 | 131 | 181 | 135 | 140 | 131 | 485 | 669 | 274 | 179 | 134 | 329 | | 1<br>2<br>3<br>4 | 149 | 133 | 201 | 125 | 120 | 130 | 441 | 567 | 247 | 168 | 129 | 361 | | | 139 | 140 | 209 | 138 | 100 | 140 | 457 | 506 | 212 | 155 | 125 | 465 | | 5 | 136 | 154 | 194 | 118 | 120 | 145 | 729 | 472 | 194 | 153 | 118 | 465<br>563 | | 6 | 136 | 154 | 196 | 120 | 160 | 140 | 712 | 435 | 179 | 144 | 113 | 524 | | 7 | 136 | 153 | 189 | 135 | 240 | 135 | 521 | 418 | 171 | 130 | 131 | 465 | | 8 | 136 | 149 | 150 | 125 | 230 | 135 | 430 | 418<br>390 | 165 | 124 | 117 | 413 | | 9 | 136 | 146 | 147 | 120 | 220 | 130 | 375 | 379 | 160 | 120 | 106 | 376 | | 10 | 136 | 142 | 133 | 125 | 233 | 130 | 338 | 364 | 154 | 116 | 101 | 376<br>352 | | 11 | 131 | 136 | 133 | 123 | 209 | 130 | 301 | 351 | 146 | 116 | 98 | 347 | | 12 | 132 | 150 | 129 | 135 | 176 | 250 | 280 | 334 | 144<br>149 | 120 | 98<br>95 | 318 | | 13 | 132 | 153 | 130 | 116 | 155 | 450 | 264 | 317 | 149 | 150 | 95 | 281 | | 14 | 131 | 149 | 135 | 116 | 145 | 600 | 252 | 305 | 153 | 166 | 103 | 257 | | 15 | 129 | 185 | 135 | 113 | 135 | 2100 | 246 | 301 | 144 | 153 | 103 | 238 | | 16 | 132 | 215 | 130 | 113 | 152 | 1900 | 241<br>236 | 288 | 144 | 138 | 101 | 221 | | 17 | 137 | 290 | 130 | 113 | 133 | 1700 | 236 | 271 | 137 | 128 | 98<br>95<br>96 | 208 | | 18 | 137 | 347 | 140 | 113 | 128 | 1180 | 230 | 264 | 133 | 137 | 95 | 193 | | 19 | 133 | 300 | 143 | 114 | 125 | 701 | 224 | 258 | 130 | 164 | 96 | 181 | | 20 | 136 | 280 | 171 | 119 | 120 | 510 | 218 | 249 | 125 | 249 | 93 | 172 | | 21 | 140 | 206 | 168 | 123 | 130 | 428 | 214 | 238 | 120 | 303 | 90 | 167<br>165<br>162 | | 22 | 136 | 211 | 187 | 125 | 125 | 370 | 225 | 228 | 116 | 319 | 89 | 165 | | 23 | 141 | 238 | 190 | 120 | 115 | 405 | 244 | 219 | 116 | 271 | 104 | 162 | | 24 | 140 | 232 | 190 | 115 | 110 | 660 | 278 | 217 | 116 | 220 | 98 | 147<br>143 | | 25 | 132 | 224 | 167 | 125 | 110 | 900 | 288 | 210 | 122 | 174 | 94 | 143 | | 26 | 127 | 228 | 164 | 130 | 140 | 1700 | 312 | 209 | 137 | 156 | 99 | 139<br>137<br>140 | | 27 | 135 | 224 | 171 | 140 | 134 | 1560 | 449<br>574<br>612 | 209 | 161 | 145 | 103 | 137 | | 28 | 132 | 153 | 170 | 140 | 124 | 1400 | 574 | 199 | 187 | 134 | 112 | 140 | | 29 | 131 | 149 | 155 | 144 | | 1210 | 612 | 192 | 195 | 130 | 164 | 140 | | 30 | 132 | 184 | 128 | 157 | | 953 | 840 | 188 | 199 | 126 | 173 | 138 | | 31 | 134 | | 139 | 175 | | 724 | | 186 | | 137 | 236 | | | TOTAL | 4238 | 5686 | 4997 | 3950 | 4189 | | 11591 | 10262 | 4834 | 5115 | 3564 | 8129 | | MEAN | 137 | 190 | 161 | 127 | 150 | 683 | 386 | 331 | 161 | 165 | 115 | 271 | | MAX | 165 | 347 | 209 | 175 | 240 | 2100 | 840 | 829 | 274 | 319 | 236 | 563 | | MIN | 127 | 130 | 128 | 113 | 100 | 124 | 214 | 186 | 116 | 116 | 89 | 137<br>16120 | | AC-FT | 8410 | 11280 | 9910 | 7830 | 8310 | 41990 | 22990 | 20350 | 9590 | 10150 | 7070 | 16120 | | CFSM | .13 | .18 | . 15 | . 12 | . 14 | .65 | .37 | .31 | . 15 | . 16 | .11 | .26 | | IN. | . 15 | . 20 | .18 | . 14 | . 15 | .75 | . 41 | .36 | . 17 | . 18 | .13 | .29 | CAL YR 1988 TOTAL 103059 MEAN 282 MAX 1340 MIN 81 AC-FT 204400 CFSM .27 IN. 3.64 WTR YR 1989 TOTAL 87726 MEAN 240 MAX 2100 MIN 89 AC-FT 174000 CFSM .23 IN. 3.10 #### 05458000 LITTLE CEDAR RIVER NEAR IONIA, IA LOCATION.--Lat 43°02'05", long 92°30'05", in SW1/4 NE1/4 sec.21, T.95 N., R.14 W., Chickasaw County, Hydrologic Unit 07080201, on left bank 12 ft downstream from bridge on county highway B57, 2.4 mi west of Ionia, 6.4 mi upstream from mouth, and 7.6 mi downstream from Beaver Creek. DRAINAGE AREA, -- 306 mi<sup>2</sup>. PERIOD OF RECORD. -- October 1954 to current year. REVISED RECORDS. -- WSP 1438: Drainage area. WSP 1708: 1959. GAGE. -- Water-stage recorder. Datum of gage is 973.35 ft above NGVD. REMARKS.--Estimated daily discharges: Dec. 11, Feb. 2-13, and Mar. 4-23. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. National Weather Service Limited Automatic Remote Collector at station. AVERAGE DISCHARGE.--35 years, 172 $ft^3/s$ , 7.63 in/yr, 124,600 acre-ft/yr; median of yearly mean discharges, 150 $ft^3/s$ , 6.7 in/yr, 109,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 10,800 ft<sup>3</sup>/s Mar. 27, 1961, gage height, 15.58 ft; minimum daily discharge, 3.0 ft<sup>3</sup>/s Feb. 4-9, 1959. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 22, 1954, reached a stage of 11.37 ft, discharge, $4,600 \text{ ft}^3/\text{s}$ . EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 1,200 ft3/s and maximum (\*): Discharge Gage height Date Time (ft $^3$ /s) (ft) Date Time (ft $^3$ /s) (ft) Mar. 12 1200 \*650 (a)\*6.67 (a) Ice jam Minimum discharge, 4.9 ft3/s Aug. 30. | | | DISCHARGE | , CUBIC | FEET PER | SECOND, | WATER YEAR<br>EAN VALUES | OCTOBER | 1988 TO | SEPT <b>EM</b> BER | 1989 | | | |-----------------------------------------------------|---------------------------------------|----------------------------|----------------------------------------|---------------------------------------|-------------------------------------------|-----------------------------------------|-------------------------------------------------|-------------------------------------------------|----------------------------------------|------------------------------------------|-------------------------------------------------|-------------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | 17<br>15<br>14<br>13<br>12 | 11<br>11<br>11<br>11<br>12 | 18<br>21<br>23<br>20<br>21 | 15<br>14<br>14<br>13<br>13 | 30<br>20<br>14<br>9.0<br>9.7 | 19<br>19<br>18<br>16<br>13 | 91<br>82<br>76<br>71<br>73 | 100<br>90<br>81<br>78<br>75 | 31<br>29<br>28<br>25<br>23 | 19<br>17<br>16<br>14<br>13 | 11<br>11<br>10<br>9.5 | 18<br>16<br>21<br>32<br>45 | | 6<br>7<br>8<br>9<br>10 | 12<br>12<br>11<br>11 | 12<br>12<br>13<br>13 | 20<br>20<br>18<br>18<br>17 | 13<br>13<br>13<br>12<br>12 | 11<br>12<br>17<br>14<br>15 | 14<br>15<br>16<br>17<br>45 | 90<br>77<br>70<br>63<br>59 | 70<br>66<br>63<br>63<br>60 | 22<br>22<br>21<br>20<br>19 | 12<br>11<br>10<br>9.6<br>8.8 | 8.8<br>8.2<br>7.6<br>7.2<br>6.8 | 40<br>35<br>31<br>28<br>29 | | 11<br>12<br>13<br>14<br>15 | 11<br>11<br>11<br>11 | 13<br>15<br>16<br>16<br>18 | 17<br>15<br>14<br>15<br>14 | 11<br>11<br>10<br>10 | 19<br>22<br>23<br>24<br>23 | 250<br>580<br>520<br>480<br>450 | 56<br>53<br>51<br>49<br>47 | 58<br>56<br>54<br>52<br>50 | 18<br>20<br>18<br>17<br>17 | 11<br>10<br>9.5<br>11<br>13 | 6.2<br>6.0<br>6.0<br>6.2<br>6.7 | 30<br>28<br>25<br>22<br>20 | | 16<br>17<br>18<br>19<br>20 | 10<br>10<br>11<br>11 | 25<br>26<br>30<br>32<br>27 | 12<br>12<br>12<br>13<br>15 | 11<br>11<br>11<br>11<br>12 | 22<br>22<br>22<br>22<br>22<br>22 | 300<br>140<br>70<br>66<br>61 | 46<br>45<br>43<br>42<br>41 | 48<br>45<br>44<br>45<br>43 | 16<br>15<br>15<br>14<br>13 | 13<br>12<br>18<br>26<br>40 | 6.6<br>6.4<br>5.9<br>6.2<br>6.2 | 18<br>16<br>15<br>13<br>11 | | 21<br>22<br>23<br>24<br>25 | 11<br>11<br>11<br>11 | 18<br>18<br>30<br>30<br>28 | 14<br>15<br>16<br>18<br>19 | 12<br>12<br>13<br>13<br>14 | 21<br>21<br>21<br>20<br>20 | 66<br>68<br>83<br>151<br>278 | 41<br>43<br>49<br>66<br>70 | 41<br>39<br>37<br>36<br>35 | 12<br>12<br>12<br>11<br>13 | 31<br>26<br>23<br>21<br>19 | 5.7<br>5.7<br>5.6<br>6.0<br>5.9 | 9.6<br>9.7<br>8.9<br>8.8<br>8.7 | | 26<br>27<br>28<br>29<br>30<br>31 | 11<br>11<br>11<br>11<br>10<br>11 | 28<br>26<br>13<br>15<br>17 | 20<br>20<br>18<br>17<br>16<br>15 | 14<br>14<br>15<br>16<br>18<br>25 | 20<br>19<br>20<br> | 293<br>210<br>184<br>151<br>123<br>104 | 72<br>75<br>84<br>95<br>105 | 41<br>38<br>34<br>33<br>36<br>33 | 17<br>17<br>17<br>18<br>19 | 17<br>16<br>14<br>13<br>13 | 5.9<br>5.8<br>6.1<br>5.6<br>5.3 | 8.3<br>7.8<br>7.5<br>7.2<br>6.9 | | TOTAL<br>MEAN<br>MAX<br>MIN<br>AC-FT<br>CFSM<br>IN. | 356<br>11.5<br>17<br>10<br>706<br>.04 | 32<br>11 | 523<br>16.9<br>23<br>12<br>1040<br>.06 | 406<br>13.1<br>25<br>10<br>805<br>.04 | 534.7<br>19.1<br>30<br>9.0<br>1060<br>.06 | 4820<br>155<br>580<br>13<br>9560<br>.51 | 1925<br>64.2<br>105<br>41<br>3820<br>.21<br>.23 | 1644<br>53.0<br>100<br>33<br>3260<br>.17<br>.20 | 551<br>18.4<br>31<br>11<br>1090<br>.06 | 498.9<br>16.1<br>40<br>8.8<br>990<br>.05 | 224.1<br>7.23<br>14<br>5.3<br>445<br>.02<br>.03 | 576.4<br>19.2<br>45<br>6.9<br>1140<br>.06 | CAL YR 1988 TOTAL 15241.2 MEAN 41.6 MAX 370 MIN 6.1 AC-FT 30230 CFSM .14 IN. 1.85 WTR YR 1989 TOTAL 12619.1 MEAN 34.6 MAX 580 MIN 5.3 AC-FT 25030 CFSM .11 IN. 1.53 #### 05458500 CEDAR RIVER AT JANESVILLE, IA LOCATION.--Lat 42°38'54", long 92°27'54", in NE1/4 SW1/4 sec.35, T.91 N., R.14 W., Bremer County, Hydrologic Unit 07080201, on left bank 300 ft downstream from bridge on county highway at Janesville, 3.6 mi upstream from West Fork Cedar River, and at mile 207.7 upstream from mouth of Iowa River. DRAINAGE AREA, -- 1.661 mi2. PERIOD OF RECORD.--October 1904 to Sept. 1906, October 1914 to September 1927, October 1932 to September 1942, October 1945 to current year. Monthly discharge only for some periods, published in WSP 1308. Published as Red Cedar River at Janesville, 1905-06. REVISED RECORDS.--WSP 1438: Drainage area. WSP 1558: 1906 (M), 1915-16 (M), 1917, 1918-19 (M), 1920-27, 1933-37 (M), 1940-42 (M). GAGE.--Water-stage recorder. Datum of gage is 868.26 ft above NGVD. Prior to July 26, 1919, nonrecording gage at site 1,000 ft downstream at datum 4.0 ft lower. July 26, 1919, to Sept. 30, 1927, Nov. 14, 1932, to Sept 30, 1942, and Apr. 26, 1946, to Nov. 10, 1949, nonrecording gage at county bridge 300 ft upstream at same datum. REMARKS.--Estimated daily discharges: Nov. 19-21, Dec. 11-24, 26, 27, 29-31, Jan. 3-7, 9-18, 23-25, Feb. 2-28, and March 1-17. Records good except those for estimated daily discharges, which are poor. Diurnal fluctuation during low water caused by powerplant at Waverly, 10 mi upstream. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. National Weather Service gage-height telemeter at station. AVERAGE DISCHARGE. --69 years (water years 1905-06, 1915-27, 1933-42, 1946-89), 856 $ft^3/s$ , 7.00 in/yr, 620,200 acre-ft/yr; median of yearly mean discharges, 750 $ft^3/s$ , 6.1 in/yr, 543,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 37,000 ft<sup>3</sup>/s Mar. 28, 1961, gage height, 16.33 ft; minimum daily discharge, 28 ft<sup>3</sup>/s Oct. 21, 1922. EXTREMES OUTSIDE PERIOD OF RECORD. --Flood of Mar. 17, 1945, reached a stage of 16.2 ft, from floodmark at site 300 ft upstream, discharge, 34,300 ft<sup>3</sup>/s. Flood of Mar. 16, 1929, reached a stage of about 16 ft, from information by City of Waterloo, discharge not determined. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 4,000 ft<sup>3</sup>/s and maximum (\*): | Discharge | Gage height Oft 3/s | Oft 3/s | Discharge | Gage height | Discharge | Gage height | Discharge | Oft 4,000 | Oft 3/s Minimum discharge, 109 ft3/s Aug. 28-30. | | | DISCHAR | GE, CUBIC | FEET PER | SECOND, | WATER YEAR<br>MEAN VALUES | OCTOBER | 19 <b>88 TO</b> | SEPTEMBER | 1989 | | | |-----------------------------------------------------|--------------------------------------------------|--------------------------------------------------|-------------------------------------------|--------------------------------------------------|--------------------------------------------------|----------------------------------------------|----------------------------------------------------|---------------------------------------------------|--------------------------------------------------|--------------------------------------------------|-------------------------------------------------|-------------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 226 | 161 | 215 | 196 | 370 | 220 | 1040 | 813 | 249 | 222 | 160 | 294 | | 2 | 218 | 161 | 331 | 183 | 180 | 215 | 865 | 888 | 249 | 224 | 152 | 264 | | 3 | 208 | 164 | 448 | 190 | 140 | 235 | 731 | 770 | 300 | 223 | 154 | 350 | | 4 | 203 | 169 | 362 | 170 | 110 | 250 | 655 | 669 | 319 | 181 | 149 | 893 | | 5 | 190 | 176 | 288 | 180 | 140 | 270 | 672 | 553 | 265 | 187 | 143 | 896 | | 6 | 295 | 173 | 253 | 170 | 220 | 270 | 1080 | 501 | 248 | 168 | 142 | 645 | | 7 | 197 | 173 | 245 | 160 | 310 | 275 | 979 | 500 | 244 | 169 | 138 | 555 | | 8 | 191 | 175 | 275 | 146 | 270 | 280 | 799 | 475 | 244 | 162 | 135 | 717 | | 9 | 192 | 177 | 447 | 130 | 240 | 300 | 665 | 464 | 234 | 158 | 136 | 494 | | 10 | 178 | 166 | 360 | 140 | 245 | 620 | 568 | 415 | 223 | 158 | 133 | 413 | | 11 | 200 | 174 | 300 | 135 | 250 | 960 | 528 | 434 | 213 | 159 | 129 | 372 | | 12 | 172 | 186 | 270 | 135 | 260 | 1150 | 484 | 403 | 233 | 164 | 126 | 352 | | 13 | 180 | 185 | 230 | 130 | 265 | 1920 | 426 | 385 | 222 | 160 | 126 | 338 | | 14 | 179 | 187 | 205 | 125 | 245 | 3150 | 421 | 378 | 216 | 182 | 125 | 311 | | 15 | 180 | 190 | 190 | 150 | 230 | 3700 | 395 | 371 | 217 | 179 | 123 | 280 | | 16 | 182 | 232 | 185 | 160 | 215 | 3180 | 364 | 360 | 203 | 180 | 122 | 260 | | 17 | 196 | 244 | 180 | 170 | 200 | 2900 | 358 | 349 | 187 | 174 | 122 | 243 | | 18 | 184 | 252 | 175 | 180 | 210 | 2410 | 340 | 354 | 195 | 175 | 121 | 226 | | 19 | 188 | 300 | 180 | 213 | 200 | 1760 | 323 | 392 | 201 | 217 | 121 | 213 | | 20 | 183 | 280 | 200 | 233 | 180 | 1320 | 316 | 379 | 184 | 206 | 127 | 203 | | 21 | 180 | 290 | 180 | 201 | 165 | 976 | 312 | 334 | 178 | 270 | 123 | 191 | | 22 | 182 | 273 | 190 | 229 | 180 | 895 | 309 | 315 | 179 | 344 | 119 | 192 | | 23 | 174 | 253 | 200 | 205 | 150 | 846 | 336 | 308 | 179 | 330 | 125 | 173 | | 24 | 175 | 284 | 210 | 210 | 165 | 901 | 334 | 315 | 166 | 284 | 124 | 156 | | 25 | 175 | 278 | 199 | 220 | 220 | 1030 | 349 | 297 | 174 | 252 | 116 | 168 | | 26<br>27<br>28<br>29<br>30<br>31 | 174<br>247<br>179<br>145<br>141<br>154 | 294<br>284<br>231<br>202<br>175 | 190<br>180<br>177<br>160<br>175<br>190 | 235<br>233<br>236<br>252<br>293<br>335 | 240<br>220<br>240<br> | 2380<br>3980<br>3060<br>2080<br>1660<br>1310 | 368<br>397<br>469<br>595<br>633 | 283<br>275<br>275<br>273<br>281<br>288 | 209<br>204<br>207<br>217<br>227 | 226<br>204<br>182<br>173<br>163<br>161 | 115<br>116<br>113<br>112<br>112<br>204 | 149<br>148<br>151<br>144<br>135 | | TOTAL<br>MEAN<br>MAX<br>MIN<br>AC-FT<br>CFSM<br>IN. | 5868<br>189<br>295<br>141<br>11640<br>.11<br>.13 | 6489<br>216<br>300<br>161<br>12870<br>.13<br>.15 | 7390<br>238<br>448<br>160<br>14660<br>.14 | 5945<br>192<br>335<br>125<br>11790<br>.12<br>.13 | 6060<br>216<br>370<br>110<br>12020<br>.13<br>.14 | 1436<br>3980<br>215 | 16111<br>537<br>1080<br>309<br>31960<br>.32<br>.36 | 13097<br>422<br>888<br>273<br>25980<br>.25<br>.29 | 6586<br>220<br>319<br>166<br>13060<br>.13<br>.15 | 6237<br>201<br>344<br>158<br>12370<br>.12<br>.14 | 4063<br>131<br>204<br>112<br>8060<br>.08<br>.09 | 9926<br>331<br>896<br>135<br>19690<br>.20 | CAL YR 1988 TOTAL 152813 MEAN 418 MAX 2600 MIN 126 AC-FT 303100 CFSM .25 IN. 3.42 WTR YR 1989 TOTAL 132275 MEAN 362 MAX 3980 MIN 110 AC-FT 262400 CFSM .22 IN. 2.96 #### 05458900 WEST FORK CEDAR RIVER AT FINCHFORD. IA LOCATION.--Lat 42°37'50", long 92°32'24", in SW1/4 SE1/4 sec.6, T.90 N., R.14 W., Black Hawk County, Hydrologic Unit 07080204, on left bank 100 ft downstream from bridge on county highway C55 at Finchford, 3.2 mi upstream upstream from Shell Rock River, and 5.0 mi upstream from mouth. DRAINAGE AREA, -- 846 mi2. PERIOD OF RECORD. --October 1945 to current year. Prior to October 1955, published as West Fork Shell Rock River at Finchford. REVISED RECORDS.--WSP 1438: Drainage area. WSP 1558: 1946 (M), 1947. GAGE.--Water-stage recorder. Datum of gage is 867.54 ft above NGVD. Prior to June 10, 1955, nonrecording gage at same site and datum. REMARKS.--Estimated daily discharges: Oct. 6-13, Nov. 19-22, and Nov. 28 to Mar. 25. Records good except those estimated daily discharges, which are poor. An authorized diversion of 2,100 acre-ft is made into Big Marsh, 16 mi upstream from gage, each year between September 1 and November 15. Net effect on daily flows at gage is unknown. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. National Weather Service gage-height telemeter at station. AVERAGE DISCHARGE.--44 years, 499 $ft^3/s$ , 8.01 in/yr, 361,500 acre-ft/yr; median of yearly mean discharges, 410 $ft^3/s$ , 6.6 in/yr, 297,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 31,900 ft<sup>3</sup>/s June 27, 1951, gage height, 17.28 ft, from floodmarks; minimum daily discharge, 5.9 ft<sup>3</sup>/s Feb. 26, 27, 1959. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in March 1929 reached a stage of about 14 ft, from information by local resident, discharge, about 12,800 ft<sup>3</sup>/s. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 2,500 ft3/s and maximum (\*): | | | Discharge | Gage height | | | Discharge | Gage height | |---------|------|------------|-------------|------|------|------------|-------------| | Date | Time | $(ft^3/s)$ | (ft) | Date | Time | $(ft^3/s)$ | (ft) | | Mar. 14 | 1745 | *1.250 | (a) *9.55 | | | | | (a) Ice jam Minimum daily discharge, 12 $\mathrm{ft^3/s}$ Sept. 26-28. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 MEAN VALUES DAY OCT NOV JUN JUL AUG SEP DEC JAN FEB MAR APR MAY 23 48 225 55 24 35 56 15 14 21 25 72 27 54 54 173 138 g 70 15 2.7 13 24 31 48 56 151 120 32 14 21 22 22 52 30 13 17 14 2.2 43 22 87 15 14 12 23 22 14 TOTAL 244 121 MEAN 52.7 97 51.5 67 207 15.2 20 16.9 31 23.0 60.0 78 65 0 34.1 49.6 MAX MIN .07 .02 **CFSM** .06 .41 .19 .08 .04 .02 .03 .06 . 06 . 21 . 17 .09 .05 .02 .02 IN. . 03 .08 . 07 .06 . 07 CAL YR 1988 TOTAL 59296 MEAN 162 MAX 1290 MIN 17 AC-FT 117600 CFSM .19 IN. 2.61 WTR YR 1989 TOTAL 30371 MEAN 83.2 MAX 1130 MIN 12 AC-FT 60240 CFSM .10 IN. 1.34 #### 05459500 WINNEBAGO RIVER AT MASON CITY, IA LOCATION.--Lat 43°09'54", long 93°11'33", in NE1/4 NW1/4 sec.3, T.96 N., R.20 W., Cerro Gordo County, Hydrologic Unit 07080203, on right bank 650 ft upstream from Thirteenth Street Bridge in Mason City, 0.1 mi downstream from Calmus Creek, and 1.0 mi upstream from Willow Creek, and at mile 275.8 upstream from mouth of Iowa River. DRAINAGE AREA. -- 526 mi<sup>2</sup>. PERIOD OF RECORD.--October 1932 to current year. Prior to December 1932, monthly discharge only, published in WSP 1308. Prior to October 1959, published as Lime Creek at Mason City. REVISED RECORDS.--WSP 825: 1935-36. WSP 1438: Drainage area. WSP 1558: 1933-37, 1943 (M), 1945, 1948. GAGE.--Water-stage recorder and concrete control. Datum of gage is 1,069.59 ft above NGVD. Prior to Oct. 15, 1934, nonrecording gage at datum 6.47 ft lower. Oct. 15 to Nov. 6, 1934, nonrecording gage at different datum, and Nov. 7, 1934, to Mar. 22, 1935, nonrecording gage at present datum. REMARKS.--Estimated daily discharges: Nov. 15-19, Dec. 9-11, Jan. 5-12, Jan. 31 to Feb. 10, Mar. 16-19, 21-27, Mar. 30 to Apr. 2. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. National Service Limited Automatic Remote Collector at station. AVERAGE DISCHARGE.--57 years, 258 $\rm ft^3/s$ , 6.66 $\rm in/yr$ , 186,900 acre-ft/yr; median of yearly mean discharges, 210 $\rm ft^3/s$ , 5.4 $\rm in/yr$ , 152,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 10,800 ft<sup>3</sup>/s Mar. 30, 1933, gage height, 15.7 ft; no flow part of each day Aug. 14, 15, 21, 22, 1989. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 2,000 ft<sup>3</sup>/s and maximum (\*): | Date<br>Mar. 11 | Time<br>unknown | Discharge<br>(ft <sup>3</sup> /s)<br>*929 | Gage height<br>(ft)<br>(a) *5.30 | Date | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height<br>(ft) | |-----------------|-----------------|-------------------------------------------|----------------------------------|------|------|-----------------------------------|---------------------| |-----------------|-----------------|-------------------------------------------|----------------------------------|------|------|-----------------------------------|---------------------| DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 (a) High water mark No flow part of each day Aug. 14, 15, 21, 22. | | | | .02, 00210 | , , , , , , , , , , , , , , , , , , , , | M | EAN VALUES | 3 | 1000 10 | | | | | |-----------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|-----------------------------------------|----------------------------------------|-------------------------------------------------|------------------------------------------------|-------------------------------------------------|----------------------------------------|-------------------------------------------|------------------------------------------|------------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | 41<br>33<br>29<br>25<br>23 | 21<br>20<br>23<br>23<br>26 | 35<br>32<br>31<br>27<br>30 | 20<br>18<br>17<br>17<br>19 | 30<br>22<br>18<br>13<br>16 | 14<br>14<br>13<br>14<br>20 | 200<br>161<br>149<br>146<br>137 | 142<br>130<br>115<br>108<br>106 | 34<br>34<br>32<br>29<br>26 | 23<br>20<br>17<br>14<br>12 | 14<br>18<br>16<br>12<br>11 | 13<br>18<br>18<br>22<br>21 | | 6<br>7<br>8<br>9<br>10 | 21<br>22<br>20<br>18<br>19 | 23<br>20<br>17<br>17<br>19 | 29<br>29<br>23<br>19<br>19 | 18<br>16<br>17<br>18<br>17 | 22<br>27<br>31<br>27<br>33 | 21<br>14<br>15<br>12<br>112 | 132<br>127<br>122<br>115<br>103 | 96<br>89<br>90<br>92<br>82 | 23<br>24<br>23<br>23<br>23 | 8.3<br>6.3<br>5.8<br>4.8<br>3.5 | 9.6<br>7.0<br>4.9<br>5.5<br>5.2 | 23<br>21<br>24<br>23<br>22 | | 11<br>12<br>13<br>14<br>15 | 18<br>16<br>16<br>16<br>15 | 16<br>19<br>22<br>22<br>25 | 20<br>20<br>21<br>24<br>23 | 16<br>17<br>15<br>13 | 35<br>36<br>31<br>30<br>27 | 831<br>526<br>269<br>332<br>356 | 99<br>95<br>88<br>85<br>81 | 74<br>68<br>65<br>64<br>60 | 22<br>24<br>23<br>20<br>19 | 15<br>19<br>16<br>14<br>12 | 6.5<br>3.5<br>2.0<br>2.0<br>2.1 | 21<br>20<br>20<br>17<br>15 | | 16<br>17<br>18<br>19<br>20 | 16<br>18<br>19<br>19 | 40<br>60<br>50<br>40<br>34 | 17<br>16<br>17<br>17<br>26 | 13<br>14<br>16<br>19<br>21 | 26<br>23<br>22<br>20<br>20 | 235<br>207<br>200<br>174<br>155 | 75<br>73<br>74<br>69<br>70 | 59<br>54<br>52<br>53<br>50 | 18<br>18<br>18<br>17<br>15 | 9.5<br>8.0<br>18<br>42<br>50 | 3.7<br>5.7<br>4.8<br>1.2<br>2.7 | 14<br>14<br>13<br>9.6<br>9.6 | | 21<br>22<br>23<br>24<br>25 | 20<br>20<br>22<br>21<br>22 | 36<br>34<br>42<br>40<br>38 | 29<br>38<br>41<br>44<br>32 | 21<br>26<br>28<br>27<br>27 | 20<br>29<br>40<br>32<br>17 | 100<br>89<br>100<br>150<br>290 | 70<br>72<br>79<br>84<br>80 | 46<br>43<br>43<br>46<br>48 | 13<br>15<br>14<br>14<br>18 | 62<br>62<br>52<br>41<br>34 | 2.4<br>2.1<br>7.0<br>6.2<br>3.8 | 10<br>11<br>8.6<br>8.5 | | 26<br>27<br>28<br>29<br>30<br>31 | 20<br>21<br>19<br>19<br>21<br>21 | 40<br>44<br>21<br>37<br>36 | 28<br>32<br>24<br>22<br>20<br>21 | 26<br>27<br>27<br>27<br>28<br>35 | 17<br>17<br>16<br> | 340<br>400<br>409<br>361<br>304<br>253 | 82<br>109<br>147<br>152<br>154 | 46<br>41<br>39<br>38<br>37<br>35 | 25<br>34<br>37<br>31<br>28 | 28<br>23<br>18<br>16<br>16 | 9.9<br>9.3<br>11<br>12<br>12<br>12 | 8.8<br>6.8<br>6.0<br>5.7<br>4.4 | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 648<br>20.9<br>41<br>15<br>1290<br>.04 | 905<br>30.2<br>60<br>16<br>1800<br>.06 | 806<br>26.0<br>44<br>16<br>1600<br>.05 | 633<br>20.4<br>35<br>13<br>1260<br>.04 | 697<br>24.9<br>40<br>13<br>1380<br>.05 | 6330<br>204<br>831<br>12<br>12560<br>.39<br>.45 | 3230<br>108<br>200<br>69<br>6410<br>.20<br>.23 | 2111<br>68.1<br>142<br>35<br>4190<br>.13<br>.15 | 694<br>23.1<br>37<br>13<br>1380<br>.04 | 685.2<br>22.1<br>62<br>3.5<br>1360<br>.04 | 225.1<br>7.26<br>18<br>1.2<br>446<br>.01 | 439.0<br>14.6<br>24<br>4.4<br>871<br>.03 | CAL YR 1988 TOTAL 26526.9 MEAN 72.5 MAX 586 MIN 3.0 AC-FT 52620 CFSM .14 IN. 1.88 WTR YR 1989 TOTAL 17403.3 MEAN 47.7 MAX 831 MIN 1.2 AC-FT 34520 CFSM .09 IN. 1.23 #### 05460000 CLEAR LAKE AT CLEAR LAKE, IA LOCATION.--Lat 43°08'01", long 93°22'57", in SE1/4 NE1/4 sec.13, T.96 N., R.22 W., Cerro Gordo County, Hydrologic Unit 07080203, at the public bathing beach in the town of Clear Lake near dam across Clear Creek. DRAINAGE AREA. -- 22.6 mi2. PERIOD OF RECORD.--May 1933 to current year. No winter records 1933-52. Record fragmentary November 1952 to June 1959. GAGE.--Water-stage recorder. Datum of gage is 1,222.24 ft above NGVD, and 4.60 ft below crest of spillway of dam at outlet. See WSP 1708 for history of changes prior to June 25, 1959. REMARKS.--Lake is formed by concrete dam on Clear Creek with ungated overflow spillway 50 ft long at elevation 1,226.84 ft above NGVD. Dam constructed in 1903. A previous outlet works had been constructed in 1887. Lake is used for conservation and recreation. Area of lake is approximately 3,600 acres. EXTREMES FOR PERIOD OF RECORD.--Maximum gage height observed, 5.94 ft July 3, 1951; minimum observed, 1.10 ft Sept. 30, 1989. EXTREMES FOR CURRENT YEAR. -- Maximum gage height, 2.63 ft May 4; minimum, 1.10 ft Sept. 30. # GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 MEAN VALUES | | | | | | • • • • | | • | | | | | | |------|------|------|------|-----|---------|-----|------|------|------|------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL. | AUG | SEP | | 1 | 2,42 | 2.15 | 2.27 | | | | | 2.49 | 2.20 | 1.93 | 1.60 | 1.36 | | 2 | 2.40 | 2.15 | | | | | | 2.48 | 2.20 | 1.93 | 1.58 | 1.34 | | 3 | 2.39 | 2.14 | | | | | | 2.48 | 2.18 | 1.93 | 1.56 | 1.31 | | 4 | 2.35 | 2.13 | | | | | | 2.49 | 2.17 | 1.89 | 1.54 | 1.38 | | 5 | 2.33 | 2.12 | | | | | | 2.51 | 2.16 | 1.88 | 1.52 | 1.39 | | 6 | 2.32 | 2.13 | | | | | | 2.45 | 2.15 | 1.87 | 1.47 | 1.37 | | 7 | 2.32 | 2.12 | | | | | | 2.43 | 2.14 | 1.83 | 1.43 | 1,39 | | 8 | 2.30 | 2.12 | | | | | | 2.40 | 2.13 | 1.79 | 1.42 | 1.39 | | 9 | 2.29 | | | | | | | 2.41 | 2.10 | 1.78 | 1.40 | 1.40 | | 10 | 2.29 | | | | | | | 2.42 | 2.08 | 1.78 | 1.39 | 1.39 | | 11 | 2.28 | | | | | | | 2.41 | 2.06 | 1.79 | 1.36 | 1.37 | | 12 | 2.27 | | | | | | 2.52 | 2.40 | 2.08 | 1.79 | 1.34 | 1.33 | | 13 | 2.26 | | | | | | 2.53 | 2.39 | 2.07 | 1.78 | 1.33 | 1.31 | | 14 | 2.26 | | | | | | 2.50 | 2.38 | 2.02 | 1.78 | 1.32 | 1.31 | | 15 | 2.25 | 2.12 | 2.24 | | | | 2.49 | 2.38 | 2.00 | 1.77 | 1.29 | 1.31 | | 16 | 2.24 | | 2.26 | | | | 2.49 | 2.37 | 1.99 | 1.76 | 1.27 | 1.29 | | 17 | 2.24 | | 2.25 | | | | 2.47 | 2.35 | 1.98 | 1.75 | 1.27 | 1,29 | | 18 | 2.24 | 2.20 | 2.26 | | | | 2.47 | 2.34 | 1.97 | 1.74 | 1.28 | 1.32 | | 19 | 2.24 | | | | | | 2.46 | 2.35 | 1.96 | 1.73 | 1.28 | 1.30 | | 20 | 2.23 | | | | | | 2.45 | 2.36 | 1.93 | 1.73 | 1.27 | 1.29 | | 21 | 2,23 | | | | | | 2.42 | 2.33 | 1.92 | 1.72 | 1.27 | 1.28 | | 22 | 2.22 | | | | | | 2.41 | 2.30 | 1.93 | 1.70 | 1.28 | 1.28 | | 23 | 2.21 | | | | | | 2.42 | 2.30 | 1.93 | 1,69 | 1.44 | 1.23 | | 24 | 2.21 | | | | | | 2.43 | 2.32 | 1.91 | 1.68 | 1.41 | 1.23 | | 25 | 2.20 | 2.25 | | | | | 2.45 | 2.30 | 1.94 | 1.66 | 1.38 | 1.20 | | 26 | 2.19 | | | | | | 2.44 | 2.29 | 1.98 | 1.65 | 1.44 | 1.18 | | 27 | 2.18 | | | | | | 2.46 | 2.24 | 1.98 | 1.64 | 1.46 | 1.16 | | 28 | 2.19 | | | | | | 2.51 | 2.22 | 1.97 | 1.61 | 1.48 | 1.16 | | 29 | 2.17 | | | | | | 2.54 | 2.21 | 1.94 | 1.62 | 1.46 | 1.13 | | 30 | 2.17 | | | | | | 2.50 | 2.22 | 1,93 | 1.61 | 1.42 | 1.11 | | 31 | 2.16 | | | | | | | 2.21 | | 1.60 | 1.40 | | | MEAN | 2.26 | | | | | | | 2.36 | 2.03 | 1.76 | 1.40 | 1.29 | | MAX | 2.42 | | | | | | | 2.51 | 2.20 | 1.93 | 1.60 | 1.40 | | MIN | 2.16 | | | | | | | 2.21 | 1.91 | 1.60 | 1.27 | 1.11 | ### 05462000 SHELL ROCK RIVER AT SHELL ROCK, IA LOCATION.--Lat 42°39'10", long 92°35'45", in NE1/4 NW1/4 sec.11, T.91 N., R.15 W., Butler County, Hydrologic Unit 07080202 on right bank 400 ft upstream from bridge on county highway C45 in Shell Rock, 2.2 mi downstream from Curry Creek, and 10.4 mi upstream from mouth. DRAINAGE AREA. -- 1,746 mi2. PERIOD OF RECORD. -- June 1953 to current year. Prior to July 1953, monthly discharge only, published in WSP 1728. REVISED RECORDS. -- WSP 1438: Drainage area. GAGE. -- Water-stage recorder. Rockfill dam since Oct. 19, 1957. Datum of gage is 885.34 ft above NGVD. REMARKS.--Estimated daily discharges: Feb. 5-14, Feb. 22 to Mar. 9. Records good except those for estimated daily discharges, which are poor. Diurnal fluctuation at low stages caused by power plant upstream at Greene. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. National Weather Service gage-height telemeter at station. AVERAGE DISCHARGE.--36 years, 959 $ft^3/s$ , 7.46 in/yr, 694,800 acre-ft/yr; median of yearly mean discharges, 780 $ft^3/s$ , 6.1 in/yr, 565,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 33,500 ft<sup>3</sup>/s Mar. 28, 1961, gage height, 16.26 ft; minimum daily discharge, 37 ft<sup>3</sup>/s Sept. 10, 1988 result of dam construction. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in 1856 reached a stage of 17.7 ft at bridge 400 ft downstream, from information provided by U.S. Army Corps of Engineers, discharge, about 45,000 ft<sup>3</sup>/s. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 4,000 ft3/s and maximum (\*): | Date Time<br>Mar. 12 1400 | Discharge<br>(ft <sup>3</sup> /s)<br>*2,340 | Gage height<br>(ft)<br>*9.62 | Date | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height<br>(ft) | |---------------------------|---------------------------------------------|------------------------------|------|------|-----------------------------------|---------------------| | | | | | | | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 Minimum discharge, 57 ft3/s Feb. 2. | DAY OCT NOV DEC JAN FEB MAR AFR MAY JUN JUL AUG SEP | MEAN VALUES | | | | | | | | | | | | | |----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----|-----|-----|-----|-----|-------|-------|-----|-----|------|------|-----| | 2 144 109 195 145 76 144 770 455 196 139 78 75 3 147 115 222 141 67 150 698 428 196 121 74 75 4 137 127 207 133 75 153 659 415 195 102 72 79 5 127 135 205 147 84 157 646 407 183 87 69 83 6 119 124 209 157 94 167 629 380 174 81 69 107 7 117 109 202 149 100 180 594 371 170 78 68 121 8 112 117 153 102 110 190 582 374 175 75 66 182 9 115 122 164 120 100 230 553 351 172 74 66 148 10 120 132 166 117 123 434 518 328 162 72 66 146 11 118 138 127 113 120 1490 497 312 147 82 64 148 11 118 138 127 113 120 1490 497 312 147 82 64 137 12 106 151 141 110 118 2130 475 301 148 78 63 128 13 101 167 160 110 123 1800 446 287 143 81 63 21 14 98 156 176 110 120 1160 431 276 129 106 63 116 15 95 185 131 110 120 1160 431 276 129 106 63 116 15 95 185 131 110 120 1160 431 276 129 106 63 116 16 106 220 123 110 118 1540 394 253 115 82 62 89 18 122 259 151 112 114 847 387 240 114 78 62 89 18 122 259 151 112 114 847 387 240 114 78 62 89 18 122 259 151 112 114 847 387 240 114 78 62 89 18 122 259 151 112 114 847 387 240 114 78 62 89 18 122 259 151 112 114 847 387 240 114 78 62 89 18 122 259 151 112 114 847 387 240 114 78 62 89 18 122 259 151 112 114 847 387 240 114 78 62 89 18 122 259 151 112 114 847 387 240 114 78 62 89 18 122 259 151 112 114 847 387 240 114 78 62 89 18 122 259 151 112 114 847 387 240 114 78 62 89 18 122 259 151 112 114 847 387 240 114 78 62 89 18 122 259 151 112 114 847 387 240 114 78 62 89 18 122 259 151 112 114 847 387 240 114 78 62 89 18 122 259 151 112 114 627 362 243 108 89 62 83 19 118 263 144 115 108 560 345 261 108 120 64 79 20 124 257 164 112 106 635 337 253 93 229 65 77 21 131 233 177 84 106 642 333 234 223 87 289 61 85 77 21 131 232 206 75 130 1640 328 214 140 120 67 75 22 127 162 193 73 108 593 324 223 87 289 61 85 79 29 111 169 156 75 136 620 442 230 67 5 130 664 79 29 111 169 156 75 130 640 328 214 140 110 67 78 29 111 169 156 75 130 600 440 328 214 140 110 67 78 30 107 192 164 81 1250 475 216 157 105 216 67 75 30 107 192 164 8 | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 2 144 109 195 145 76 144 770 455 196 139 78 75 3 147 115 222 141 67 150 698 428 196 121 74 75 4 137 127 207 133 75 153 659 415 195 102 72 79 5 127 135 205 147 84 157 646 407 183 87 69 83 6 119 124 209 157 94 167 629 380 174 81 69 107 7 117 109 202 149 100 180 594 371 170 78 68 121 8 112 117 153 102 110 190 582 374 175 75 66 182 9 115 122 164 120 100 230 553 351 172 74 66 148 10 120 132 166 117 123 434 518 328 162 72 66 146 11 118 138 127 113 120 1490 497 312 147 82 64 148 11 118 138 127 113 120 1490 497 312 147 82 64 137 12 106 151 141 110 118 2130 475 301 148 78 63 128 13 101 167 160 110 123 1800 446 287 143 81 63 21 14 98 156 176 110 120 1160 431 276 129 106 63 116 15 95 185 131 110 120 1160 431 276 129 106 63 116 15 95 185 131 110 120 1160 431 276 129 106 63 116 16 106 220 123 110 118 1540 394 253 115 82 62 89 18 122 259 151 112 114 847 387 240 114 78 62 89 18 122 259 151 112 114 847 387 240 114 78 62 89 18 122 259 151 112 114 847 387 240 114 78 62 89 18 122 259 151 112 114 847 387 240 114 78 62 89 18 122 259 151 112 114 847 387 240 114 78 62 89 18 122 259 151 112 114 847 387 240 114 78 62 89 18 122 259 151 112 114 847 387 240 114 78 62 89 18 122 259 151 112 114 847 387 240 114 78 62 89 18 122 259 151 112 114 847 387 240 114 78 62 89 18 122 259 151 112 114 847 387 240 114 78 62 89 18 122 259 151 112 114 847 387 240 114 78 62 89 18 122 259 151 112 114 847 387 240 114 78 62 89 18 122 259 151 112 114 847 387 240 114 78 62 89 18 122 259 151 112 114 627 362 243 108 89 62 83 19 118 263 144 115 108 560 345 261 108 120 64 79 20 124 257 164 112 106 635 337 253 93 229 65 77 21 131 233 177 84 106 642 333 234 223 87 289 61 85 77 21 131 232 206 75 130 1640 328 214 140 120 67 75 22 127 162 193 73 108 593 324 223 87 289 61 85 79 29 111 169 156 75 136 620 442 230 67 5 130 664 79 29 111 169 156 75 130 640 328 214 140 110 67 78 29 111 169 156 75 130 600 440 328 214 140 110 67 78 30 107 192 164 81 1250 475 216 157 105 216 67 75 30 107 192 164 8 | 1 | 139 | 118 | 160 | 155 | 91 | 140 | 858 | 474 | 206 | 157 | 82 | 73 | | 3 | | 144 | | | | | | | | | | | 75 | | 5 127 135 205 147 84 157 646 407 183 87 69 83 6 119 124 209 157 94 167 629 380 174 81 69 107 7 117 109 202 149 100 180 594 371 175 75 66 812 9 115 122 164 120 100 230 553 374 175 75 66 182 9 115 122 166 117 123 434 518 328 162 72 66 148 10 120 132 166 117 123 434 518 322 147 82 64 137 12 106 151 141 110 118 2130 475 301 148 78 63 128 13 | 3 | | | | | | | | | | | | 75 | | 5 127 135 205 147 84 157 646 407 183 87 69 83 6 119 124 209 157 94 167 629 380 174 81 69 107 7 117 109 202 149 100 180 594 371 175 75 66 812 9 115 122 164 120 100 230 553 374 175 75 66 182 9 115 122 166 117 123 434 518 328 162 72 66 148 10 120 132 166 117 123 434 518 322 147 82 64 137 12 106 151 141 110 118 2130 475 301 148 78 63 128 13 | 4 | | | | | | | | | | | | 79 | | 7 117 109 202 149 100 180 594 371 170 78 68 121 8 112 117 153 102 110 190 582 374 175 75 66 182 9 115 122 164 120 100 230 553 351 172 74 66 148 10 120 132 166 117 123 434 518 328 162 72 66 148 11 118 138 127 113 120 1490 497 312 147 82 64 137 12 106 151 141 110 118 2130 475 301 148 78 63 128 13 101 167 160 110 123 1800 446 287 143 81 63 121 14 98 156 176 110 120 1160 431 276 129 106 63 116 15 95 185 131 110 123 1400 440 253 125 92 63 106 16 106 220 123 110 118 1540 394 253 115 82 62 94 17 124 234 151 112 114 847 387 240 114 78 62 89 18 122 269 151 112 114 827 362 243 108 89 62 89 18 122 269 151 112 114 627 362 243 108 89 62 89 18 122 269 151 112 114 627 362 243 108 89 62 83 19 118 263 144 115 108 560 345 261 108 120 64 79 20 124 257 164 112 106 635 337 253 93 229 65 77 21 131 233 177 84 106 642 333 224 223 87 369 61 65 23 121 176 210 75 112 591 323 219 93 263 63 79 24 131 222 215 75 120 640 322 219 89 263 63 79 24 131 222 215 75 120 640 322 219 89 242 64 70 25 121 233 184 76 122 862 324 219 103 213 66 74 26 117 239 203 78 128 115 0 322 217 134 110 67 78 27 113 232 206 75 130 1640 328 217 134 110 67 78 27 113 232 206 75 130 1640 328 217 134 110 67 78 28 121 176 210 75 132 662 324 219 103 213 66 74 26 117 239 203 78 128 1150 322 217 134 110 67 78 27 113 232 206 75 130 1640 328 217 134 110 67 78 28 121 192 145 75 136 1620 412 215 161 117 68 79 29 111 169 156 76 1250 475 293 142 140 120 67 75 30 107 192 164 81 110 486 226 159 95 68 79 31 109 165 98 969 220 87 69 20 TOTAL 3698 5298 5369 3346 3046 25201 14240 9094 4266 3980 2068 2899 30 107 192 164 81 110 486 226 159 95 68 79 31 109 165 98 969 220 87 69 20 124 269 222 157 136 2130 858 474 206 316 82 182 30 107 192 164 81 110 486 226 159 95 66 79 30 107 10 .10 0.06 064 6040 49990 28250 18040 8460 7890 4100 5750 30 107 10 .10 0.06 064 647 220 1100 8460 7890 4100 5750 30 107 10 .10 0.06 064 6040 49990 28250 18040 8460 7890 4100 5750 30 10 | | | | | | | | | | | | | 83 | | 8 112 117 153 102 110 190 582 375 175 75 66 182 10 120 132 166 117 123 434 518 328 162 72 66 146 11 118 138 127 113 120 1490 497 312 147 82 64 137 12 106 151 141 110 118 2130 475 301 148 78 63 128 13 101 167 160 110 123 1800 446 287 143 81 63 121 14 98 156 176 110 123 1800 446 287 143 81 63 121 14 98 156 176 110 120 1160 491 276 129 106 63 116 < | 6 | 119 | 124 | 209 | 157 | 94 | 167 | 629 | 380 | 174 | 81 | 69 | 107 | | 9 115 122 164 120 100 230 553 351 172 74 66 148 10 120 132 166 117 123 434 518 328 162 72 66 146 11 118 138 127 113 120 1490 497 312 147 82 64 137 12 106 151 141 110 118 2130 475 301 148 78 63 128 13 101 167 160 110 123 1800 446 287 143 81 63 121 14 98 156 176 110 120 1160 431 276 129 106 63 116 15 95 185 131 110 123 1400 410 263 125 92 63 106 16 106 220 123 110 118 1540 394 253 115 82 62 94 17 124 234 151 112 114 847 387 240 114 78 62 89 18 122 289 151 112 114 847 387 240 114 78 62 89 18 122 289 151 112 114 627 362 243 108 89 62 83 19 118 263 144 115 108 560 345 261 108 120 64 78 20 124 257 164 112 106 635 337 253 93 229 65 77 21 131 233 177 84 106 642 333 224 84 316 62 72 22 127 162 193 73 108 593 324 223 87 229 65 77 21 131 223 176 210 75 120 640 322 219 93 263 63 79 24 131 222 215 75 120 640 322 219 93 263 63 79 24 131 222 215 75 120 640 322 219 89 242 64 70 25 121 233 184 76 122 862 324 219 103 213 66 74 26 117 239 203 78 128 1150 322 217 134 110 67 78 26 117 239 203 78 128 1150 322 217 134 110 67 78 27 113 232 206 75 130 1640 328 214 140 120 67 75 28 121 192 145 75 136 1620 412 215 161 117 68 79 30 107 192 164 81 110 466 226 159 95 68 79 30 107 192 164 81 1250 475 293 142 128 66.7 96.6 MEAN 119 177 173 108 109 813 475 293 142 128 66.7 96.6 MEAN 119 177 173 108 109 813 475 293 142 128 66.7 96.6 MEAN 119 177 173 108 109 813 475 293 142 128 66.7 96.6 MEAN 119 177 173 108 109 813 475 293 142 128 66.7 96.6 MEAN 119 177 173 108 109 813 475 293 142 128 66.7 96.6 MEAN 119 177 173 108 109 813 475 293 142 128 66.7 96.6 MEAN 119 177 173 108 109 813 475 293 144 72 61 70 CFSM .07 1.00 .10 .00 .06 .06 .47 .27 .17 .08 .07 .04 .06 | | 117 | 109 | 202 | 149 | 100 | 180 | 594 | 371 | 170 | 78 | 68 | 121 | | 9 115 122 164 120 100 230 553 351 172 74 66 148 10 120 132 166 117 123 434 518 328 162 72 66 146 11 118 138 127 113 120 1490 497 312 147 82 64 137 12 106 151 141 110 118 2130 475 301 148 78 63 128 13 101 167 160 110 123 1800 446 287 143 81 63 121 14 98 156 176 110 120 1160 431 276 129 106 63 116 15 95 185 131 110 123 1400 410 263 125 92 63 106 16 106 220 123 110 118 1540 394 253 115 82 62 94 17 124 234 151 112 114 847 387 240 114 78 62 89 18 122 289 151 112 114 847 387 240 114 78 62 89 18 122 289 151 112 114 627 362 243 108 89 62 83 19 118 263 144 115 108 560 345 261 108 120 64 78 20 124 257 164 112 106 635 337 253 93 229 65 77 21 131 233 177 84 106 642 333 224 84 316 62 72 22 127 162 193 73 108 593 324 223 87 229 65 77 21 131 223 176 210 75 120 640 322 219 93 263 63 79 24 131 222 215 75 120 640 322 219 93 263 63 79 24 131 222 215 75 120 640 322 219 89 242 64 70 25 121 233 184 76 122 862 324 219 103 213 66 74 26 117 239 203 78 128 1150 322 217 134 110 67 78 26 117 239 203 78 128 1150 322 217 134 110 67 78 27 113 232 206 75 130 1640 328 214 140 120 67 75 28 121 192 145 75 136 1620 412 215 161 117 68 79 30 107 192 164 81 110 466 226 159 95 68 79 30 107 192 164 81 1250 475 293 142 128 66.7 96.6 MEAN 119 177 173 108 109 813 475 293 142 128 66.7 96.6 MEAN 119 177 173 108 109 813 475 293 142 128 66.7 96.6 MEAN 119 177 173 108 109 813 475 293 142 128 66.7 96.6 MEAN 119 177 173 108 109 813 475 293 142 128 66.7 96.6 MEAN 119 177 173 108 109 813 475 293 142 128 66.7 96.6 MEAN 119 177 173 108 109 813 475 293 142 128 66.7 96.6 MEAN 119 177 173 108 109 813 475 293 144 72 61 70 CFSM .07 1.00 .10 .00 .06 .06 .47 .27 .17 .08 .07 .04 .06 | 8 | 112 | 117 | 153 | 102 | 110 | 190 | 582 | 374 | 175 | 75 | 66 | 182 | | 10 120 132 166 117 123 | | 115 | 122 | 164 | 120 | | | | 351 | | 74 | 66 | 148 | | 12 | | | | | | | | | | | | | 146 | | 12 | 11 | 118 | 138 | 127 | 113 | 120 | 1490 | 497 | 312 | 147 | 82 | 64 | 137 | | 13 | 12 | 106 | 151 | 141 | 110 | 118 | | 475 | 301 | 148 | 78 | 63 | 128 | | 14 98 156 176 110 120 1160 431 276 129 106 63 116 15 95 185 131 110 123 1400 410 263 125 92 63 106 16 106 220 123 111 114 847 387 240 114 78 62 89 18 122 269 151 112 114 627 362 243 108 89 62 83 19 118 263 144 115 106 635 337 253 93 229 65 77 21 131 233 177 84 106 642 333 234 84 316 62 72 22 127 162 193 73 108 593 324 223 87 269 61 85 23 <td>13</td> <td>101</td> <td>167</td> <td>160</td> <td>110</td> <td>123</td> <td></td> <td>446</td> <td>287</td> <td>143</td> <td>81</td> <td>63</td> <td>121</td> | 13 | 101 | 167 | 160 | 110 | 123 | | 446 | 287 | 143 | 81 | 63 | 121 | | 15 95 185 131 110 123 1400 410 263 125 92 63 106 16 106 220 123 110 118 1540 394 253 115 82 62 94 17 124 234 151 112 114 847 387 240 114 78 62 89 18 122 269 151 112 114 627 362 243 108 89 62 83 19 118 263 144 115 108 560 345 261 108 120 64 79 20 124 257 164 112 106 635 337 253 93 229 65 77 21 131 233 177 84 106 642 333 234 84 316 62 72 22 127 162 193 73 108 593 324 223 87 289 61 85 23 121 176 210 75 112 591 323 219 93 263 63 79 24 131 222 215 75 120 640 322 219 89 242 64 70 25 121 233 184 76 122 862 324 219 103 213 66 74 26 117 239 203 78 128 1128 1150 328 214 140 120 67 78 27 113 232 206 75 130 1640 328 214 140 120 67 78 28 121 192 145 75 136 1620 412 215 161 117 68 79 29 111 169 156 76 1250 475 216 157 105 72 89 30 107 192 164 81 110 486 226 159 95 68 79 31 109 165 98 969 220 87 69 TOTAL 3698 5298 5369 3346 3046 25201 14240 9094 4266 3980 2068 2899 MEAN 119 177 173 108 109 813 475 293 142 128 66.7 96.6 MIN 95 109 123 73 67 140 322 214 84 72 61 70 AC-FT 7330 10510 10650 6640 6040 49990 28250 18040 8460 7890 4100 5750 MAX 147 269 222 157 136 6040 322 214 84 72 61 70 AC-FT 7330 10510 10650 6640 6040 49990 28250 18040 8460 7890 4100 5750 MAX 147 269 222 157 136 6040 322 214 84 72 61 70 AC-FT 7330 10510 10650 6640 6040 49990 28250 18040 8460 7890 4100 5750 | 14 | 98 | 156 | 176 | | | | | | | 106 | 63 | 116 | | 17 | 15 | | | | | | | | | | | 63 | 106 | | 18 122 269 151 112 114 627 362 243 108 89 62 83 19 118 263 144 115 108 560 345 261 108 120 64 79 20 124 257 164 112 106 635 337 253 93 229 65 77 21 131 233 177 84 106 642 333 234 84 316 62 72 22 127 162 193 73 108 593 324 223 87 289 61 85 23 121 176 210 75 112 591 323 219 93 263 63 79 24 131 222 215 75 120 640 322 219 89 242 64 70 25 121 233 184 76 122 862 324 219 103 | | 106 | 220 | 123 | 110 | 118 | 1540 | 394 | 253 | 115 | 82 | 62 | | | 18 122 269 151 112 114 627 362 243 108 89 62 83 19 118 263 144 115 108 560 345 261 108 120 64 79 20 124 257 164 112 106 635 337 253 93 229 65 77 21 131 233 177 84 106 642 333 234 84 316 62 72 22 127 162 193 73 108 593 324 223 87 289 61 85 23 121 176 210 75 112 591 323 219 93 263 63 79 24 131 222 215 75 120 640 322 219 89 242 64 70 25 121 233 184 76 122 862 324 219 103 | 17 | 124 | 234 | 151 | 112 | 114 | 847 | 387 | 240 | 114 | 78 | 62 | | | 19 118 263 144 115 108 560 345 261 108 120 64 79 20 124 257 164 112 106 635 337 253 93 229 65 77 21 131 233 177 84 106 642 333 234 84 316 62 72 22 127 162 193 73 108 593 324 223 87 289 61 85 23 121 176 210 75 112 591 323 219 93 263 63 79 24 131 222 215 75 120 640 322 219 89 242 64 70 25 121 233 184 76 122 862 324 219 103 213 66 74 26 117 239 203 78 128 1150 322 217 134 110 67 78 27 113 232 206 75 130 1640 328 214 140 120 67 75 28 121 192 145 75 136 1620 412 215 161 117 68 79 29 111 169 156 76 1250 475 216 157 105 72 89 30 107 192 164 81 1110 486 226 159 95 68 79 31 109 165 98 969 220 87 69 TOTAL 3698 5298 5369 3346 3046 25201 14240 9094 4266 3980 2068 2899 MEAN 119 177 173 108 109 813 475 293 142 128 66.7 96.6 MIN 95 109 123 73 67 140 322 214 84 72 61 70 AC-FT 7330 10510 10650 6640 6040 4990 28250 18040 8460 7890 4100 5750 CFSM .07 .10 .10 .06 .06 .47 .27 .17 .08 .07 .04 .06 | 18 | 122 | 269 | 151 | 112 | 114 | | 362 | 243 | 108 | 89 | 62 | 83 | | 20 | 19 | 118 | 263 | 144 | | | | | | 108 | 120 | 64 | 79 | | 22 127 162 193 73 108 593 324 223 87 289 61 85 23 121 176 210 75 112 591 323 219 93 263 63 79 24 131 222 215 75 120 640 322 219 89 242 64 70 25 121 233 184 76 122 862 324 219 103 213 66 74 26 117 239 203 78 128 1150 322 217 134 110 67 78 27 113 232 206 75 130 1640 328 214 140 120 67 75 28 121 192 145 75 136 1620 412 215 161 117 68 79 29 111 169 156 76 1250 475 216 157 105 72 89 30 107 192 164 81 110 486 226 159 95< | | | | | | | | | | | | | | | 23 | | | | | | 106 | 642 | 333 | 234 | | | | | | 24 131 222 215 75 120 640 322 219 89 242 64 70 25 121 233 184 76 122 862 324 219 103 213 66 74 26 117 239 203 78 128 1150 322 217 134 110 67 78 27 113 232 206 75 130 1640 328 214 140 120 67 75 28 121 192 145 75 136 1620 412 215 161 117 68 79 29 111 169 156 76 1250 475 216 157 105 72 89 30 107 192 164 81 1110 486 226 159 95 68 79 31 109 165 98 969 220 87 69 TOTAL 3698 5298 5369 3346 3046 25201 14240 9094 4266 3980 2068 2899 MEAN 119 177 173 108 109 813 475 293 142 128 66.7 96.6 MAX 147 269 222 157 136 2130 858 474 206 316 82 182 MIN 95 109 123 73 67 140 322 214 84 72 61 70 AC-FT 7330 10510 10650 6640 6040 49990 28250 18040 8460 7890 4100 5750 CFSM .07 .10 .10 .06 .06 .47 .27 .17 .08 .07 .04 .06 | 22 | 127 | 162 | 193 | 73 | 108 | 593 | 324 | 223 | 87 | 289 | 61 | 85 | | 24 131 222 215 75 120 640 322 219 89 242 64 70 25 121 233 184 76 122 862 324 219 103 213 66 74 26 117 239 203 78 128 1150 322 217 134 110 67 78 27 113 232 206 75 130 1640 328 214 140 120 67 75 28 121 192 145 75 136 1620 412 215 161 117 68 79 29 111 169 156 76 1250 475 216 157 105 72 89 30 107 192 164 81 1110 486 226 159 95 68 79 31 109 165 98 969 220 87 69 TOTAL 3698 5298 5369 3346 3046 25201 14240 9094 4266 3980 2068 2899 MEAN 119 177 173 108 109 813 475 293 142 128 66.7 96.6 MAX 147 269 222 157 136 2130 858 474 206 316 82 182 MIN 95 109 123 73 67 140 322 214 84 72 61 70 AC-FT 7330 10510 10650 6640 6040 49990 28250 18040 8460 7890 4100 5750 CFSM .07 .10 .10 .06 .06 .47 .27 .17 .08 .07 .04 .06 | 23 | 121 | 176 | 210 | 75 | 112 | 591 | 323 | 219 | 93 | 263 | 63 | 79 | | 25 121 233 184 76 122 862 324 219 103 213 66 74 26 117 239 203 78 128 1150 322 217 134 110 67 78 27 113 232 206 75 130 1640 328 214 140 120 67 75 28 121 192 145 75 136 1620 412 215 161 117 68 79 29 111 169 156 76 1250 475 216 157 105 72 89 30 107 192 164 81 1110 486 226 159 95 68 79 31 109 165 98 969 220 87 69 TOTAL 3698 5298 5369 3346 3046 25201 14240 9094 4266 3980 2068 2899 MEAN 119 177 173 108 109 813 475 293 142 128 66.7 96.6 MAX 147 269 222 157 136 2130 858 474 206 316 82 182 MIN 95 109 123 73 67 140 322 214 84 72 61 70 AC-FT 7330 10510 10650 6640 6040 49990 28250 18040 8460 7890 4100 5750 CFSM .07 .10 .10 .06 .06 .47 .27 .17 .08 .07 .04 .06 | 24 | 131 | 222 | 215 | | | | | | 89 | 242 | 64 | 70 | | 27 113 232 206 75 130 1640 328 214 140 120 67 75 28 121 192 145 75 136 1620 412 215 161 117 68 79 29 111 169 156 76 1250 475 216 157 105 72 89 30 107 192 164 81 1110 486 226 159 95 68 79 31 109 165 98 969 220 87 69 TOTAL 3698 5298 5369 3346 3046 25201 14240 9094 4266 3980 2068 2899 MEAN 119 177 173 108 109 813 475 293 142 128 66.7 96.6 MAX 147 269 222 157 136 2130 858 474 206 316 82 182 MIN 95 109 123 73 67 140 322 214 84 72 61 70 AC-FT 7330 10510 10650 6640 6040 49990 28250 18040 8460 7890 4100 5750 CFSM .07 .10 .10 .06 .06 .47 .27 .17 .08 .07 .04 .06 | 25 | 121 | 233 | 184 | | 122 | | 324 | 219 | 103 | 213 | 66 | 74 | | 28 121 192 145 75 136 1620 412 215 161 117 68 79 29 111 169 156 76 1250 475 216 157 105 72 89 30 107 192 164 81 1110 486 226 159 95 68 79 31 109 165 98 969 220 87 69 TOTAL 3698 5298 5369 3346 3046 25201 14240 9094 4266 3980 2068 2899 MEAN 119 177 173 108 109 813 475 293 142 128 66.7 96.6 MAX 147 269 222 157 136 2130 858 474 206 316 82 182 MIN 95 109 123 73 67 140 322 214 84 72 61 70 AC-FT 7330 10510 10650 6640 6040 49990 28250 18040 8460 7890 4100 5750 CFSM .07 .10 .10 .06 .06 .47 .27 .17 .08 .07 .04 .06 | | 117 | | | 78 | 128 | 1150 | 322 | | 134 | | | | | 29 111 169 156 76 1250 475 216 157 105 72 89 30 107 192 164 81 1110 486 226 159 95 68 79 31 109 165 98 969 220 87 69 TOTAL 3698 5298 5369 3346 3046 25201 14240 9094 4266 3980 2068 2899 MEAN 119 177 173 108 109 813 475 293 142 128 66.7 96.6 MAX 147 269 222 157 136 2130 858 474 206 316 82 182 MIN 95 109 123 73 67 140 322 214 84 72 61 70 AC-FT 7330 10510 10650 6640 6040 49990 28250 18040 8460 7890 4100 5750 CFSM .07 .10 .10 .06 .06 .06 .47 .27 .17 .08 .07 .04 .06 | | 113 | 232 | 206 | 75 | 130 | 1640 | 328 | 214 | 140 | 120 | | 75 | | 29 111 169 156 76 1250 475 216 157 105 72 89 30 107 192 164 81 1110 486 226 159 95 68 79 31 109 165 98 969 220 87 69 TOTAL 3698 5298 5369 3346 3046 25201 14240 9094 4266 3980 2068 2899 MEAN 119 177 173 108 109 813 475 293 142 128 66.7 96.6 MAX 147 269 222 157 136 2130 858 474 206 316 82 182 MIN 95 109 123 73 67 140 322 214 84 72 61 70 AC-FT 7330 10510 10650 6640 6040 49990 28250 18040 8460 7890 4100 5750 CFSM .07 .10 .10 .06 .06 .06 .47 .27 .17 .08 .07 .04 .06 | 28 | 121 | 192 | 145 | 75 | 136 | 1620 | 412 | 215 | 161 | 117 | 68 | 79 | | 30 107 192 164 81 1110 486 226 159 95 68 79 31 109 165 98 969 220 87 69 TOTAL 3698 5298 5369 3346 3046 25201 14240 9094 4266 3980 2068 2899 MEAN 119 177 173 108 109 813 475 293 142 128 66.7 96.6 MAX 147 269 222 157 136 2130 858 474 206 316 82 182 MIN 95 109 123 73 67 140 322 214 84 72 61 70 AC-FT 7330 10510 10650 6640 6040 49990 28250 18040 8460 7890 4100 5750 CFSM .07 .10 .10 .06 .06 .47 .27 .17 .08 .07 .04 .06 | 29 | 111 | 169 | 156 | | | | | | 157 | 105 | 72 | 89 | | 31 109 165 98 969 220 87 69 TOTAL 3698 5298 5369 3346 3046 25201 14240 9094 4266 3980 2068 2899 MEAN 119 177 173 108 109 813 475 293 142 128 66.7 96.6 MAX 147 269 222 157 136 2130 858 474 206 316 82 182 MIN 95 109 123 73 67 140 322 214 84 72 61 70 AC-FT 7330 10510 10650 6640 6040 49990 28250 18040 8460 7890 4100 5750 CFSM .07 .10 .10 .06 .06 .47 .27 .17 .08 .07 .04 .06 | 30 | 107 | 192 | 164 | | | | 486 | | | 95 | 68 | 79 | | MEAN 119 177 173 108 109 813 475 293 142 128 66.7 96.6 MAX 147 269 222 157 136 2130 858 474 206 316 82 182 MIN 95 109 123 73 67 140 322 214 84 72 61 70 AC-FT 7330 10510 10650 6640 6040 49990 28250 18040 8460 7890 4100 5750 CFSM .07 .10 .10 .06 .06 .47 .27 .17 .08 .07 .04 .06 | | | | | | | | | | | | 69 | | | MEAN 119 177 173 108 109 813 475 293 142 128 66.7 96.6 MAX 147 269 222 157 136 2130 858 474 206 316 82 182 MIN 95 109 123 73 67 140 322 214 84 72 61 70 AC-FT 7330 10510 10650 6640 6040 49990 28250 18040 8460 7890 4100 5750 CFSM .07 .10 .10 .06 .06 .47 .27 .17 .08 .07 .04 .06 | | | | | | | | | | | | | | | MAX 147 269 222 157 136 2130 858 474 206 316 82 182 MIN 95 109 123 73 67 140 322 214 84 72 61 70 AC-FT 7330 10510 10650 6640 6040 49990 28250 18040 8460 7890 4100 5750 CFSM .07 .10 .10 .06 .06 .47 .27 .17 .08 .07 .04 .06 | | | | | 108 | 109 | 813 | 475 | | | | | | | MIN 95 109 123 73 67 140 322 214 84 72 61 70 AC-FT 7330 10510 10650 6640 6040 49990 28250 18040 8460 7890 4100 5750 CFSM .07 .10 .10 .06 .06 .47 .27 .17 .08 .07 .04 .06 | XAM | | | 222 | 157 | 136 | | 858 | 474 | | | | | | AC-FT 7330 10510 10650 6640 6040 49990 28250 18040 8460 7890 4100 5750 CFSM .07 .10 .10 .06 .06 .47 .27 .17 .08 .07 .04 .06 | | 95 | 109 | 123 | 73 | 67 | | 322 | | | | | | | CFSM .07 .10 .10 .06 .06 .47 .27 .17 .08 .07 .04 .06 | AC-FT | | | | | | 49990 | 28250 | | | 7890 | 4100 | | | | | | | | | | | | | | .07 | | | | | IN. | | | | | .06 | | | | | .08 | .04 | .06 | CAL YR 1988 TOTAL 119101 MEAN 325 MAX 1570 MIN 57 AC-FT 236200 CFSM .19 IN. 2.54 WTR YR 1989 TOTAL 82505 MEAN 226 MAX 2130 MIN 61 AC-FT 163600 CFSM .13 IN. 1.76 107 05463000 BEAVER CREEK AT NEW HARTFORD, IA LOCATION.--Lat 42°30'50", long 92°37'55", in SE1/4 SE1/4 sec.28, T.90 N., R.15 W., Butler County, Hydrologic Unit 07080205, on right bank 5 ft from right end of bridge on county highway T55, 0.2 mi north of New Hartford, and 8 mi upstream from mouth. DRAINAGE AREA, -- 347 mi<sup>2</sup>. Time 2100 Date Mar. 11 TOTAL MEAN MAX MIN AC-FT **CFSM** IN. 401.8 13.4 26 8.3 797 .04 247.7 7.99 19 3.6 491 .02 221.5 7.15 8,6 5.8 439 .02 .02 PERIOD OF RECORD. -- October 1945 to current year. Prior to April 1948, monthly discharge only, published in WSP REVISED RECORDS.--WSP 1438: Drainage area. WSP 1558: 1948-49. WSP 1708: 1947 (M). GAGE .- Water-stage recorder. Datum of gage is 882.44 ft above NGVD. Prior to July 14, 1959, nonrecording gage at same site and datum. REMARKS.--Estimated daily discharges: Nov. 29 to Mar. 23, Apr. 21, and May 8-31. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. National Weather Service Limited Automatic Remote Collector at station. AVERAGE DISCHARGE. --44 years, 196 ft3/s, 7.67 in/yr, 142,000 acre-ft/yr. Discharge (ft3/s) Ice jam Minimum daily discharge, 2.0 ft3/s Sept. 30. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 18,000 ft<sup>3</sup>/s June 13, 1947, gage height, 13.5 ft, from graph based on gage readings, from rating curve extended above 14,000 ft<sup>3</sup>/s; minimum daily dischargee, 2.0 ft<sup>3</sup>/s Sept. 30, 1989. Date Mar. 12 Time 965 31.1 1910 .09 78 11 651 21.7 55 1290 .06 13 282.0 9.10 14 6.1 559 .03 .03 360.0 12.0 55 2.0 .03 .04 130.8 4.22 7.1 2.6 259 .01 .01 Discharge (ft<sup>3</sup>/s) \*1,800 Gage height (ft) Ice jam EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 1,400 ft3/s and maximum (\*): Gage height (ft) \*9.57 | | | DISCHARGE | , CUBIC | FEET PER | SECOND, | WATER YEAR<br>EAN VALUES | OCTOBER | 1988 TO | SEPTEMBER | 1989 | | | |----------------------------------|----------------------------------------|-----------------------------|----------------------------------------|--------------------------------------|----------------------------|-----------------------------------|------------------------------|----------------------------------|----------------------------|---------------------------------------|----------------------------------------|---------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | 7.6<br>8.2<br>8.6<br>6.3<br>5.9 | 8.7<br>8.7<br>8.5 | 16<br>19<br>12<br>18<br>12 | 3.3<br>3.2<br>3.0<br>2.9<br>3.0 | 25<br>20<br>15<br>13<br>13 | 19<br>20<br>21<br>22<br>23 | 68<br>67<br>64<br>60<br>60 | 78<br>62<br>55<br>49<br>50 | 24<br>23<br>24<br>23<br>21 | 14<br>14<br>13<br>12<br>11 | 6.7<br>6.2<br>5.4<br>5.3<br>4.7 | 4.0<br>3.5<br>3.8<br>5.4<br>5.0 | | 6<br>7<br>8<br>9<br>10 | 5.8<br>6.0<br>6.2<br>5.9<br>8.0 | 8.7<br>9.2 | 10<br>11<br>12<br>11<br>9.1 | 3.8<br>5.0<br>4.5<br>4.0<br>3.8 | 12<br>11<br>11<br>10<br>10 | 25<br>27<br>28<br>51<br>250 | 59<br>56<br>71<br>71<br>71 | 48<br>45<br>45<br>42<br>40 | 20<br>18<br>28<br>55<br>35 | 9.9<br>8.9<br>8.2<br>7.5<br>6.8 | 4.3<br>3.7<br>3.5<br>3.3<br>3.2 | 4.3<br>4.3<br>14<br>19<br>36 | | 11<br>12<br>13<br>14<br>15 | 7.0<br>6.0<br>5.9<br>5.8<br>6.2 | 9.2<br>10<br>14<br>15<br>16 | 8.0<br>8.0<br>7.6<br>7.2<br>6.8 | 3.6<br>3.4<br>3.4<br>3.3<br>3.2 | 11<br>12<br>12<br>12<br>12 | 900<br>1300<br>540<br>370<br>420 | 68<br>57<br>59<br>60<br>51 | 38<br>36<br>33<br>31<br>29 | 29<br>27<br>24<br>22<br>20 | 10<br>10<br>7.8<br>7.1<br>6.6 | 3.0<br>3.2<br>3.2<br>3.6<br>3.2 | 55<br>41<br>30<br>24<br>20 | | 16<br>17<br>18<br>19<br>20 | 6.2<br>7.0<br>7.4<br>7.1<br>8.1 | 23<br>26<br>22<br>20<br>16 | 6.6<br>6.8<br>6.8<br>6.4<br>6.2 | 3.2<br>3.5<br>3.6<br>4.1<br>4.8 | 13<br>13<br>14<br>15<br>16 | 400<br>280<br>250<br>260<br>230 | 50<br>47<br>43<br>41<br>40 | 27<br>25<br>23<br>20<br>18 | 19<br>18<br>17<br>16<br>15 | 6.3<br>6.1<br>9.1<br>9.2 | 3.1<br>2.6<br>2.7<br>3.6<br>5.2 | 16<br>12<br>10<br>10<br>7.9 | | 21<br>22<br>23<br>24<br>25 | 8.2<br>8.2<br>8.2<br>8.2<br>8.3 | 14<br>13<br>15<br>16<br>15 | 5.8<br>5.4<br>5.0<br>4.5<br>4.2 | 4.5<br>4.8<br>6.0<br>7.8<br>9.4 | 16<br>17<br>17<br>18<br>18 | 180<br>160<br>135<br>126<br>109 | 43<br>40<br>41<br>39<br>38 | 14<br>13<br>11<br>11<br>14 | 14<br>13<br>15<br>13<br>16 | 10<br>8.9<br>9.3<br>8.0<br>7.6 | 3.7<br>3.5<br>4.6<br>4.1<br>4.0 | 5.3<br>4.8<br>4.2<br>4.0<br>3.8 | | 26<br>27<br>28<br>29<br>30<br>31 | 8.4<br>7.1<br>7.1<br>7.1<br>7.3<br>8.2 | 15<br>15<br>14<br>13<br>12 | 3.9<br>3.7<br>3.8<br>3.6<br>3.6<br>3.7 | 9.0<br>8.0<br>7.4<br>8.8<br>13<br>20 | 19<br>20<br>19<br> | 100<br>99<br>96<br>88<br>79<br>73 | 37<br>57<br>177<br>128<br>98 | 18<br>18<br>15<br>16<br>18<br>23 | 20<br>24<br>23<br>19<br>16 | 7.9<br>11<br>8.2<br>8.2<br>7.9<br>7.5 | 4.8<br>6.8<br>7.1<br>5.0<br>3.7<br>3.8 | 3.3<br>2.7<br>2.4<br>2.3<br>2.0 | 1861 62.0 3690 177 37 .18 6681 216 19 .62 1300 13250 CAL YR 1988 WTR YR 1989 TOTAL 17337.3 MEAN 47.4 MAX 274 MIN 3.6 AC-FT 34390 CFSM .14 IN. 1.86 TOTAL 12387.1 MEAN 33.9 MAX 1300 MIN 2.0 AC-FT 24570 CFSM .10 IN. 1.33 414 14.8 25 10 821 .04 171.3 5.53 20 2.9 340 .02 # 05463050 CEDAR RIVER AT CEDAR FALLS, IA (National stream-quality accounting network station) #### WATER-QUALITY RECORDS LOCATION.--Lat 42°32'20", Long 92°26'58", in NW1/4 NE1/4 sec.12, T.89 N, R.14W., Black Hawk County, Hydrologic Unit 07080205, at bridge on U.S. Highway 20 at Cedar Falls, 1.1 mi upstream from Dry Run, and at mile 196.0 upstream from mouth of Iowa River. DRAINAGE AREA. -- 4,734 mi<sup>2</sup>. PERIOD OF RECORD.--October 1975 to September 1979, May 1984 to September 1985, October 1986 to current year. REMARKS.--Water discharge estimated on basis of records at gaging station 8.1 mi downstream at Waterloo. No significant inflow between gaging station and sampling site. #### WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | | WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | | | | | | | | | | | | | |------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------|--| | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | PH<br>(STAND-<br>ARD<br>UNITS)<br>(00400) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | TEMPER-<br>ATURE<br>AIR<br>(DEG C)<br>(00020) | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | OXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION)<br>(00301) | BARO-<br>METRIC<br>FRES-<br>SURE<br>(MM<br>OF<br>HG)<br>(00025) | COLI-<br>FORM,<br>FECAL,<br>0.7<br>UM-MF<br>(COLS./<br>100 ML)<br>(31625) | STREP-<br>TOCOCCI<br>FECAL,<br>KF AGAR<br>(COLS.<br>PER<br>100 ML)<br>(31673) | | | OCT<br>21<br>DEC | 1000 | 572 | 510 | 8.60 | 9.5 | 13.0 | 6.5 | 11.8 | 107 | 739 | 210 | 2000 | | | 15 | 1145 | 499 | 702 | 8.40 | 0.0 | -12.5 | 3.2 | | | | K23 | 80 | | | MAR<br>20<br>MAY | 1115 | 2870 | 348 | 8.20 | 0.0 | 2.0 | 14 | 12.0 | 84 | 746 | 560 | 2000 | | | 04<br>JUN | 0830 | 1550 | 580 | 8.70 | 13.5 | 13.0 | 7.0 | 9.6 | 96 | 736 | K40 | 130 | | | 30 | 1215 | 532 | 450 | 8.80 | 27.0 | 21.0 | 9.8 | 10.2 | 131 | 746 | 340 | 100 | | | AUG<br>24 | 0730 | 320 | 392 | 8.40 | 24.5 | 17.0 | 4.5 | 9.2 | 114 | 742 | 92 | 140 | | | DATE | HARD-<br>NESS<br>NONCARB<br>WH WAT<br>TOT FLD<br>MG/L AS<br>CACO3<br>(00902) | HARD-<br>NESS<br>TOTAL<br>(MG/L<br>AS<br>CACO3)<br>(00900) | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915) | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925) | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | SODIUM<br>PERCENT<br>(00932) | SODIUM<br>AD-<br>SORP-<br>TION<br>RATIO<br>(00931) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | ALKA-<br>LINITY<br>WAT DIS<br>TOT IT<br>FIELD<br>MG/L AS<br>CACO3<br>(39086) | CAR-<br>BONATE<br>WATER<br>DIS IT<br>FIELD<br>MG/L AS<br>CO3<br>(00452) | BICAR-<br>BONATE<br>WATER<br>DIS IT<br>FIELD<br>MG/L AS<br>HCO3<br>(00453) | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)<br>(00945) | | | OCT 21 | 52 | 220 | 49 | 24 | 20 | 16 | 0.6 | 10 | 169 | 3 | 201 | 50 | | | DEC | | | | - | - | | | | 103 | 3 | | | | | 15 | 62 | 320 | 81 | 28 | 23 | 13 | 0.6 | 11 | | | | 57 | | | 20<br>May | 37 | 150 | 42 | 11 | 6.9 | 9 | 0.3 | 8.7 | | | | 31 | | | 04<br>JUN | 81 | 260 | 65 | 24 | 13 | 10 | 0.4 | 4.4 | 175 | 3 | 208 | 55 | | | 30<br>AUG | 33 | 170 | 32 | 22 | 20 | 19 | 0.7 | 8.8 | 129 | 9 | 140 | 44 | | | 24 | 34 | 170 | 32 | 21 | 17 | 18 | 0.6 | 4.3 | | | | 37 | | | DATE | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)<br>(00950) | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2)<br>(00955) | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L)<br>(70300) | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L)<br>(70301) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>AC-FT)<br>(70303) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>DAY)<br>(70302) | NITRO-<br>GEN,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00605) | NITRO-<br>GEN,<br>NO2+NO3<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00631) | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00613) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,<br>AMMONIA<br>TOTAL<br>(MG/L<br>AS N)<br>(00610) | | | OCT | 20 | | | 222 | 200 | | 440 | | 1 10 | 0.010 | <b>-0.010</b> | <0.010 | | | DEC DEC | 28 | 0.20 | 1.3 | 290 | 290 | 0.39 | 448 | | 1.10 | 0.010 | <0.010 | <0.010 | | | 15<br>MAR | 37 | 0.30 | 9.8 | 415 | 420 | 0.56 | 559 | 1.2 | 4.20 | 0.030 | 0.030 | 0.010 | | | 20<br>May | 14 | 0.10 | 11 | 218 | 210 | 0.30 | 1690 | 1.4 | 3.30 | 0.100 | 1.30 | 1.30 | | | 04<br>Jun | 35 | 0.20 | 4.9 | 349 | 310 | 0.47 | 1460 | 0.67 | 0.100 | | | 0.030 | | | 30 | 31 | 0.20 | 2.0 | 230 | 243 | 0.31 | 330 | 2.0 | <0.100 | <0.010 | 0.040 | 0.030 | | | 24 | 26 | 0.20 | 2.2 | 232 | 221 | 0.32 | 200 | 2.0 | 0.170 | 0.020 | 0.040 | 0.020 | | K Results based on colony count outside ideal range. ## WATER-QUALITY RECORDS WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 05463050 CEDAR RIVER AT CEDAR FALLS, IA--Continued | DATE | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | DIS<br>SOLV<br>(MG/<br>AS E | COUS PERO, PH<br>FED S<br>FL (P) A | HOS-<br>OROUS<br>DIS-<br>OLVED<br>MG/L<br>S P)<br>0666) | PHOS-PHOROUS<br>TOTAL<br>(MG/L<br>AS P)<br>(00665 | S ME<br>SU<br>PE<br>(M | NT, (S-<br>NDED<br>G/L) | SEDI<br>MENI<br>DIS<br>CHARC<br>SUS<br>PENI<br>(T/DA | T,<br>S- S<br>GE,<br>S-<br>DED<br>AY) .0 | SED.<br>SUSP.<br>IEVE<br>DIAM.<br>THAN<br>62 MM<br>0331) | D<br>(U<br>AS | ENIC<br>IS-<br>G/L<br>AS) | ALUM-<br>INUM,<br>DIS-<br>(UG/L<br>AS AL<br>(01106 | DI<br>(U<br>AS | RIUM,<br>S-<br>IG/L<br>S BA) | BERYL<br>LIUM,<br>DIS-<br>(UG/L<br>AS BE<br>(01010 | CA<br>( | DMIUM<br>DIS-<br>UG/L<br>S CD)<br>1025) | |------------------|--------------------------------------------------------------------------------|--------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------|-------------------------------------------------|-----------------------------------------|------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------|--------------------------------------|---------------------------------------|----------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------|----------------------------------------------------|---------------------------------------------------------|-----------------------------------------| | OCT 21 | 0.40 | <0. | 010 | 0.010 | 0.050 | ) | 20 | 31 | | 97 | | 3 | <16 | ) | 81 | <0. | 5 | <1 | | DEC<br>15 | 1.2 | 0. | 150 | 0.180 | 0.24 | ) | 8 | 11 | | 100 | | | | - | | - | - | | | MAR<br>20 | 2.7 | 0. | 380 | 0.460 | 0.50 | ) | | | | | | 3 | 50 | ) | <b>9</b> 8 | <0. | 5 | <1 | | MAY<br>04 | 0.70 | | | 0.041 | 0.09 | ) | 50 | 209 | | 92 | | | | - | | - | - | | | JUN<br>30<br>AUG | 2.0 | <0. | 010 | 0.030 | 0.09 | ) | 23 | 33 | | 92 | | | | - | | - | - | | | 24 | 2.0 | 0. | 010 | 0.020 | 0.10 | ) | 20 | 17 | | 100 | | 5 | 40 | ) | 63 | <0. | 5 | <1 | | DAT | | M,<br>;-<br>.VED<br>;/L<br>CR) | COBALT,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CO)<br>(01035) | DIS<br>SOL<br>(UG<br>AS | - I<br>VED SO<br>/L (I<br>CU) A: | RON,<br>DIS-<br>DLVED<br>JG/L<br>S FE)<br>L046) | LEAD<br>DIS-<br>SOLVI<br>(UG/)<br>AS PI | -<br>ED<br>L<br>B) | LITHIUM<br>DIS-<br>SOLVED<br>(UG/L<br>AS LI)<br>(01130) | NES<br>DI<br>SOI<br>(UC | S-<br>VED<br>/L<br>MN) | MERCU<br>DIS<br>SOLV<br>(UG/)<br>AS H | RY DI<br>- I<br>ED SC<br>L (I<br>G) A | DLYB-<br>ENUM,<br>DIS-<br>DLVED<br>IG/L<br>S MO)<br>L060) | NICKEI<br>DIS-<br>SOLVI<br>(UG/I<br>AS NI | L, N<br>ED S<br>L (<br>I) A | ELE-<br>IUM,<br>DIS-<br>OLVED<br>UG/L<br>S SE)<br>1145) | | | OCT<br>21<br>DEC | | <1 | <3 | | 1 | 19 | • | <5 | 9 | | 3 | <0 | . 1 | <10 | | 1 | 1 | | | 15<br>MAR | | | | | | | | | | | | | | | | | | | | 20<br>May | | <1 | <3 | | 5 | 92 | • | <5 | <4 | | 29 | <0 | . 1 | <10 | | 2 | <1 | | | 04<br>JUN | | | | | | | • | | | | | | | | • | | | | | 30 | | | | | | | • | | | | | | | | • | | | | | 24 | | 1 | <3 | | 11 | 10 | | 2 | 7 | | 2 | 0 | .3 | <10 | | 2 | <1 | | | DAT | | S-<br>VED<br>/L | STRON-<br>TIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS SR) | DIU<br>DI<br>SOL<br>(UG | M, Z:<br>S- I<br>VED SO<br>/L (I | INC,<br>DIS-<br>DLVED<br>JG/L<br>S ZN) | ATRA<br>ZINE<br>TOTAI<br>(UG/) | i i | CYAN-<br>AZINE<br>IOTAL<br>(UG/L) | | IN<br>I<br>DLE<br>ER<br>'L)<br>stici | | - CI<br>R WI<br>L WI<br>ER W<br>L) (UC | FOLA-<br>HLOR<br>IN<br>HOLE<br>ATER<br>B/L) | TRI-<br>FLUR.<br>LIN<br>TOTA<br>RECOVI<br>(UG/I | A-<br>L BU<br>ER LA<br>L) (U | G/L) | | | | (010 | 75) | (01080) | (010 | 85) (0: | 1090) | (3963 | 0) | (81757) | | | able ]<br>(7782 | | 356) | (3903 | 0) (9 | 9901) | | | OCT 21 | < | 1.0 | 170 | | <6 | 4 | | | | | | | | | | | | | | DEC<br>15<br>MAR | | | | | | | • | | | | | | | | | | | | | 20<br>MAY | < | 1.0 | 85 | | <6 | 19 | 0.0 | 67 | <0.10 | c | .29 | <0. | 10 . | 0.10 | <0.10 | 0 | <0.10 | | | 04<br>JUN | | | | | | | 0. | 21 | 0.13 | ( | . 57 | <0. | 10 | <0.10 | <0.1 | 0 | <0.10 | | | 30<br>AUG | | | | | | | 0. | 48 | 0.12 | C | .12 | <0. | 10 | <0.10 | <0.1 | 0 | <0.10 | | | 24 | < | 1.0 | 130 | | <6 | 9 | | | | | | | | | • | | | | #### 05463500 BLACK HAWK CREEK AT HUDSON, IA LOCATION.--Lat 42°24'28", long 92°27'47", in SW1/4 NE1/4 sec.27, T.88 N., R.14 W., Black Hawk County, Hydrologic Unit 07080205, on left bank 35 ft downstream from bridge on State Highway 58, 0.2 mi northwest of Chicago and Great Western Railway tracks at the west edge of Hudson, 4.5 mi upstream from Prescotts Creek, and 9.6 mi upstream from mouth. DRAINAGE AREA. -- 303 mi2. Time Date Mar. 11 PERIOD OF RECORD. -- April 1952 to current year. REVISED RECORDS. -- WSP 1438: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 865.03 ft above NGVD. Discharge (ft<sup>3</sup>/s) \*570 4 0 0 3 / 4 REMARKS.--Estimated daily discharges: Nov. 22 to Mar. 27 and Apr. 3, 4. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. National Weather Service Limited Automatic Remote Collector at station. AVERAGE DISCHARGE.--37 years, 168 $ft^3/s$ , 7.53 in/yr, 121,700 acre-ft/yr; median of yearly mean discharges, 150 $ft^3/s$ , 6.7 in/yr, 109,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 19,300 ft<sup>3</sup>/s July 9, 1969, gage height, 18.23 ft; minimum daily discharge, 0.12 ft<sup>3</sup>/s Jan. 26, 1977. Date Mar. 12 Gage height (ft) \*9.59 Discharge (ft3/s) Ice jam Time 0130 EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 1,200 ft3/s and maximum (\*): Gage height (ft) Ice jam | Mini | mum discha | rge, 1.3 | ft <sup>3</sup> /s Ap | r. 19. | | | | | | | | | |-----------------------------------|------------------------------------------|----------------------------------------|------------------------------------------|------------------------------------------|---------------------------------------|------------------------------------------------|----------------------------------------|-----------------------------------------|-------------------------------------------|--------------------------------------------------|------------------------------------------|-------------------------------------------------| | | | DISCHA | RGE, CUBI | C FEET PER | SECOND, | WATER YEA<br>EAN VALUES | R OCTOBER | 1988 TO | SEPTEMBE | R 1989 | | | | DAY | OCT | NOA | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | 8.8<br>8.1<br>8.8<br>6.8<br>6.5 | 13<br>12<br>11<br>12<br>13 | 21<br>18<br>17<br>18<br>17 | 7.0<br>6.8<br>7.0<br>7.2<br>6.8 | 31<br>26<br>22<br>19<br>15 | 17<br>18<br>19<br>20<br>21 | 42<br>33<br>35<br>38<br>40 | 42<br>37<br>33<br>31<br>31 | 71<br>39<br>30<br>25<br>21 | 8.8<br>8.1<br>7.6<br>6.9<br>5.7 | 3.6<br>3.3<br>3.3<br>4.6<br>3.5 | 6.1<br>3.8<br>2.4<br>2.8<br>4.3 | | 6<br>7<br>8<br>9<br>10 | 7.7<br>7.9<br>8.7<br>8.2<br>8.3 | 13<br>12<br>12<br>11<br>11 | 15<br>13<br>14<br>13<br>13 | 8.2<br>11<br>8.3<br>7.4<br>6.6 | 16<br>15<br>14<br>12<br>13 | 21<br>26<br>23<br>20<br>142 | 29<br>25<br>26<br>22<br>21 | 28<br>26<br>24<br>23<br>21 | 18<br>16<br>14<br>14<br>14 | 5.1<br>4.5<br>4.3<br>4.1<br>3.7 | 2.7<br>2.4<br>2.1<br>1.8<br>1.6 | 2.7<br>3.3<br>9.2<br>23<br>29 | | 11<br>12<br>13<br>14<br>15 | 7.1<br>6.3<br>6.6<br>7.3<br>8.3 | 11<br>15<br>18<br>19<br>18 | 12<br>12<br>11<br>11 | 6.5<br>6.1<br>5.5<br>5.2<br>5.0 | 13<br>14<br>13<br>15<br>16 | 440<br>390<br>310<br>332<br>240 | 18<br>19<br>17<br>16<br>15 | 19<br>18<br>17<br>15<br>14 | 13<br>16<br>17<br>15<br>14 | 4.0<br>4.4<br>4.6<br>3.9<br>3.8 | 1.5<br>1.5<br>1.5<br>1.6<br>1.8 | 25<br>21<br>16<br>13<br>10 | | 16<br>17<br>18<br>19<br>20 | 8.4<br>11<br>11<br>11<br>11 | 32<br>35<br>25<br>21<br>19 | 10<br>10<br>11<br>10<br>9.8 | 6.0<br>7.2<br>8.0<br>9.1 | 17<br>18<br>18<br>18<br>19 | 220<br>200<br>160<br>140<br>130 | 24<br>23<br>18<br>19<br>19 | 13<br>13<br>13<br>15<br>15 | 14<br>14<br>13<br>13 | 3.7<br>3.8<br>7.1<br>9.7<br>8.7 | 1.7<br>1.5<br>1.4<br>1.8<br>3.6 | 6.3<br>5.1<br>4.5<br>3.5<br>3.0 | | 21<br>22<br>23<br>24<br>25 | 12<br>12<br>12<br>12<br>11 | 19<br>22<br>20<br>17<br>17 | 9.3<br>9.0<br>8.5<br>8.4<br>8.2 | 10<br>11<br>15<br>21<br>28 | 18<br>18<br>18<br>18 | 130<br>125<br>120<br>115<br>110 | 19<br>20<br>22<br>21<br>20 | 13<br>11<br>11<br>122<br>93 | 11<br>9.9<br>10<br>9.9<br>13 | 5.8<br>5.4<br>5.1<br>5.2<br>5.2 | 2.8<br>2.6<br>2.2<br>2.0<br>2.0 | 2.6<br>2.8<br>2.1<br>2.2<br>2.0 | | 26<br>27<br>28<br>29<br>30<br>31 | 11<br>12<br>11<br>10<br>8.9 | 19<br>17<br>14<br>15<br>19 | 7.8<br>7.5<br>7.6<br>7.0<br>6.8<br>6.8 | 26<br>24<br>23<br>32<br>44<br>36 | 19<br>20<br>18<br> | 90<br>69<br>60<br>48<br>46<br>44 | 18<br>20<br>86<br>75<br>51 | 45<br>33<br>27<br>24<br>21<br>115 | 16<br>16<br>14<br>11<br>9.5 | 5.2<br>4.5<br>3.7<br>3.7<br>4.4<br>4.5 | 2.2<br>4.3<br>2.9<br>2.3<br>1.6<br>2.2 | 2.0<br>2.4<br>2.0<br>1.7<br>1.6 | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 289.7<br>9.35<br>12<br>6.3<br>575<br>.03 | 513<br>17.1<br>35<br>11<br>1020<br>.06 | 353.7<br>11.4<br>21<br>6.8<br>702<br>.04 | 415.9<br>13.4<br>44<br>5.0<br>825<br>.04 | 491<br>17.5<br>31<br>12<br>974<br>.06 | 3846<br>124<br>440<br>17<br>7630<br>.41<br>.47 | 851<br>28.4<br>86<br>15<br>1690<br>.09 | 963<br>31.1<br>122<br>11<br>1910<br>.10 | 523.3<br>17.4<br>71<br>9.5<br>1040<br>.06 | 165.2<br>5.33<br>9.7<br>3.7<br>328<br>.02<br>.02 | 73.9<br>2.38<br>4.6<br>1.4<br>147<br>.01 | 215.4<br>7.18<br>29<br>1.6<br>427<br>.02<br>.03 | CAL YR 1988 TOTAL 22029.5 MEAN 60.2 MAX 410 MIN 4.0 AC-FT 43700 CFSM .20 IN. 2.70 WTR YR 1989 TOTAL 8701.1 MEAN 23.8 MAX 440 MIN 1.4 AC-FT 17260 CFSM .08 IN. 1.07 05464000 CEDAR RIVER AT WATERLOO, IA LOCATION.--Lat 42°29'44", long 92°20'03", in NW1/4 NW1/4 sec.25, T.89 N., R.13 W., Black Hawk County, Hydrologic Unit 07080205, on left bank at foot of East Seventh Street, 0.3 mi upstream from Eleventh Avenue bridge in Waterloo, 1.1 mi downstream from Black Hawk Creek, and at mile 187.9 upstream from mouth of Iowa River. DRAINAGE AREA. -- 5, 146 mi2. PERIOD OF RECORD. --October 1940 to current year. Prior to April 1941, monthly discharge only, published in WSP 1308. REVISED RECORDS. -- WSP 1438: Drainage area. WSP 1558: 1950. GAGE. -- Water-stage recorder. Datum of gage is 824.14 ft above NGVD. REMARKS.--Estimated daily discharges: Dec. 8-12, 15-18, Jan. 8-10, Feb. 2-12, and Feb. 22,23. Records good except those for estimated daily discharges, which are poor. Slight diurnal fluctuation during low flow caused by powerplant upstream from station. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. National Weather Service gage-height telemeter and U.S. Army Corps of Engineers data collection platform at station. AVERAGE DISCHARGE.--49 years, 2,986 ft3/s, 7.88 in/yr, 2,163,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 76,700 ft<sup>3</sup>/s Mar. 29, 1961, gage height, 21.86 ft; minimum daily discharge, 152 ft<sup>3</sup>/s Jan. 28, 1959. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Mar. 16, 1929, reached a stage of about 20 ft, determined by U. S. Army Corps of Engineers, from information by City of Waterloo, discharge, 65,000 ft<sup>3</sup>/s. Flood of Apr. 2, 1933, reached a stage of about 19.5 ft from information by City of Waterloo, discharge, 61,000 ft<sup>3</sup>/s. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 13,000 ft3/s and maximum (\*): | | | Discharge | Gage height | | | Discharge | Gage height | |---------|------|------------|-------------|------|------|----------------------|-------------| | Date | Time | $(ft^3/s)$ | (ft) | Date | Time | (ft <sup>3</sup> /s) | (ft) | | Mar. 16 | 1045 | *6.730 | *7.44 | | | | | DISCHARGE CURIC FEET PER SECOND WATER VEAR OCTOBER 1988 TO SEPTEMBER 1989 Minimum discharge, 288 ft3/s Aug. 18, 19. | | | DISCHARGE | , CUBIC | FEET PER | SECOND | , WATER YEAR<br>MEAN VALUES | OCTOBER | 1988 TC | SEPTEMBER | 1989 | | | |----------|-------|-----------|-------------|----------|-------------|-----------------------------|---------|---------------|--------------|-------|-------|-------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 624 | 519 | 576 | 533 | 779 | 457 | 2490 | 1650 | 830 | 520 | 381 | 437 | | 2 | 596 | 537 | 484 | 533 | 600 | 404 | 2120 | 1790 | 746 | 510 | 370 | 450 | | 3 | 577 | 570 | 566 | 492 | 500 | 430 | 1880 | 1680 | 737 | 492 | 389 | 428 | | 3<br>4 | 579 | 575 | 684 | 483 | 450 | 449 | 1550 | 1550 | 735 | 467 | 376 | 681 | | 5 | 567 | 567 | 712 | 550 | 520 | 551 | 1570 | 1480 | 699 | 445 | 358 | 959 | | _ | | <b></b> | | | | | | | 637 | 437 | 339 | 875 | | 6 | 533 | 543 | <b>75</b> 6 | 628 | 500 | 500 | 1750 | 1250 | | | | | | 7 | 615 | 547 | 748 | 611 | 480 | 456 | 1890 | 1280 | 621 | 427 | 330 | 749 | | 8 | 559 | 558 | 500 | 560 | 460 | 460 | 1750 | 1230 | 615 | 411 | 318 | 1020 | | 9 | 529 | 568 | 380 | 500 | 450 | 518 | 1540 | 1250 | 603 | 394 | 316 | 891 | | 10 | 538 | 584 | 430 | 530 | 450 | 1200 | 1420 | 1160 | <b>59</b> 3 | 390 | 316 | 701 | | 11 | 532 | 557 | 380 | 504 | 480 | 2750 | 1330 | 1070 | 579 | 400 | 308 | 663 | | 12 | 587 | 627 | 440 | 479 | 540 | 4910 | 1280 | 1090 | 621 | 412 | 302 | 621 | | 13 | 526 | 605 | 565 | 469 | 560 | 5150 | 1200 | 999 | 578 | 402 | 298 | 580 | | 14 | 528 | 608 | 591 | 465 | 541 | 5660 | 1130 | 976 | 552 | 387 | 302 | 552 | | 15 | 522 | 661 | 500 | 465 | 530 | 6060 | 1080 | 903 | 514 | 403 | 306 | 526 | | 16 | 538 | 001 | 460 | 464 | 510 | 0000 | | 891 | 512 | 400 | 301 | 507 | | | | 804 | | | 516 | 6390 | 1030 | | | | | 477 | | 17 | 553 | 777 | 450 | 465 | 504 | 5610 | 1010 | 881 | 494 | 393 | 295 | | | 18 | 562 | 826 | 500 | 471 | 504 | 3500 | 986 | 881 | 483 | 462 | 294 | 463 | | 19 | 539 | 875 | <b>5</b> 52 | 496 | 494 | 2990 | 960 | 973 | 483 | 455 | 332 | 445 | | 20 | 547 | 938 | 592 | 527 | 493 | 2790 | 939 | 943 | 474 | 430 | 321 | 429 | | 21 | 559 | 917 | 560 | 533 | 501 | 2060 | 932 | 851 | 461 | 477 | 310 | 414 | | 22 | 527 | 810 | 582 | 551 | 480 | 2050 | 950 | 807 | 456 | 606 | 306 | 412 | | 23 | 539 | 760 | 609 | 588 | 470 | 1970 | 1000 | 788 | 452 | 633 | 381 | 390 | | 24 | 604 | 781 | 658 | 599 | 474 | 1910 | 970 | 893 | 450 | 602 | 320 | 380 | | 25 | 667 | 858 | 579 | 607 | 480 | 2040 | 991 | 946 | 480 | 544 | 307 | 373 | | 26 | 550 | 961 | 564 | 607 | 475 | 2800 | 1030 | 807 | 5 <b>2</b> 3 | 503 | 312 | 374 | | 27 | 540 | 899 | 643 | 583 | 469 | 5290 | 1060 | 764 | <b>52</b> 8 | 457 | 311 | 351 | | 28 | 601 | | 706 | | 469 | | | 754<br>754 | 516 | 420 | 312 | 355 | | 20<br>29 | 531 | 795 | | 614 | | 5970 | 1250 | 754 | 52 <b>2</b> | 420 | 341 | 333 | | | | 717 | 62 <b>2</b> | 696 | | 4480 | 1480 | 746 | | | 341 | 355 | | 30 | 489 | 656 | 556 | 745 | | 3590 | 1580 | 741 | 524 | 408 | 315 | 342 | | 31 | 495 | | 554 | 779 | | 3000 | | 745 | | 388 | 386 | | | TOTAL | 17253 | | 7499 | 17127 | 14169 | | 40148 | 3276 <b>9</b> | 17018 | 14094 | 10153 | 16200 | | MEAN | 557 | 700 | 564 | 552 | <b>50</b> 6 | <b>2</b> 787 | 1338 | 1057 | <b>5</b> 67 | 455 | 328 | 540 | | MAX | 667 | 961 | 756 | 779 | 779 | 6390 | 2490 | 1790 | 830 | 633 | 389 | 1020 | | MIN | 489 | 519 | 380 | 464 | 450 | 404 | 932 | 741 | 450 | 387 | 294 | 342 | | AC-FT | 34220 | | 4710 | 33970 | 28100 | | 79630 | 65000 | 33760 | 27960 | 20140 | 32130 | | CFSM | .11 | .14 | . 11 | .11 | .10 | . 54 | .26 | .21 | . 11 | .09 | .06 | . 10 | | IN. | . 12 | . 15 | . 13 | .12 | .10 | .62 | .29 | . 24 | . 12 | .10 | .07 | .12 | | | , | . 23 | . 10 | | . 10 | . 02 | . 20 | . 27 | | | | 2 | TOTAL 444680 MEAN 1215 MAX 5120 MIN 380 AC-FT 882000 CFSM .24 IN. 3.21 TOTAL 303825 MEAN 832 MAX 6390 MIN 294 AC-FT 602600 CFSM .16 IN. 2.20 **CAL YR 1988** WTR YR 1989 #### 05464500 CEDAR RIVER AT CEDAR RAPIDS, IA LOCATION.--Lat 41°58'14", long 91°40'01", in SE1/4 NW1/4 sec.28, T.83 N., R.7 W., Linn County, Hydrologic Unit 07080205, on right bank 400 ft upstream from bridge on Eighth Avenue in Cedar Rapids, 2.7 mi upstream from Prairie Creek, and at mile 112.7 upstream from mouth of Iowa River. DRAINAGE AREA, -- 6,510 mi2. PERIOD OF RECORD. --October 1902 to current year. Monthly discharge only for some periods, published in WSP 1308. REVISED RECORDS.--WSP 955: 1924. WSP 1308: 1904, 1906-13, 1915, 1917, 1919-24, 1928, 1930,. WSP 1438: Drainage area. WSP 1558: 1915-18 (M), 1920 (M), 1922 (M), 1929, 1933, 1943. GAGE.--Water-stage recorder. Datum of gage is 700.47 ft above NGVD. Prior to Aug. 20, 1920, nonrecording gage at same site and datum. REMARKS.--Estimated daily discharges: Dec. 16, 17, 28, 29, Jan. 8-10, Feb. 2-12, and Feb. 16-24. Records good except those for estimated daily discharges, which are poor. Flow regulated by city hydroelectric dam 1/2 mile upstream since June 1979. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U. S. Geological Survey gage-height telemeter and U. S. Army Corps of Engineers data collection platform at station. AVERAGE DISCHARGE. -- 87 years, 3,447 ft3/s, 7.19 in/yr, 2,497,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 73,000 ft<sup>3</sup>/s Mar. 31, 1961, gage height, 19.66 ft; maximum gage height, 20.0 ft Mar. 18, 1929; minimum discharge 53 ft<sup>3</sup>/s Jan. 6, 1950, caused by construction operations upstream; minimum daily, 212 ft<sup>3</sup>/s Dec. 10, 1949. EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood in June 1851 reached a stage of about 20 ft, discharge, 65,000 ft3/s, EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 12,000 ft3/s and maximum (\*): | | | Discharge | Gage height | | | Discharge | Gage height | |---------|------|------------|-------------|------|------|----------------------|-------------| | Date | Time | $(ft^3/s)$ | (ft) | Date | Time | (ft <sup>3</sup> /s) | (ft) | | Mar. 16 | 1945 | *8,130 | *5.53 | | | | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 Minimum daily discharge, 349 ft3/s Aug. 18. | | | | , | | ì | MEAN VALU | ES | | | | | | |-------------|--------------|-------|-------|-------------|-------|--------------|--------|-------|-------------|-------|-------|-------------| | DAY | OCT | NOA | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 724 | 511 | 670 | 592 | 1500 | 532 | 3440 | 1950 | 1010 | 589 | 471 | 467 | | ž | 692 | 482 | 667 | 601 | 800 | 518 | 2900 | 2020 | 899 | 571 | 453 | 469 | | 2<br>3<br>4 | 659 | 523 | 799 | 571 | 620 | 515 | 2660 | 2080 | 960 | 582 | 447 | 521 | | 4 | 633 | 565 | 686 | 530 | 560 | 571 | 2290 | 2000 | 865 | 572 | 438 | 565 | | 5 | 594 | 595 | 637 | 559 | 500 | 546 | 2030 | 2040 | 817 | 574 | 465 | 574 | | 6 | 611 | 544 | 756 | 585 | 580 | 565 | 1870 | 1880 | 827 | 541 | 458 | <b>6</b> 67 | | 6<br>7<br>8 | 602 | 552 | 753 | 695 | 540 | 557 | 1910 | 1740 | 781 | 451 | 419 | 938 | | 8 | 582 | 565 | 709 | 800 | 520 | 568 | 2100 | 1550 | 746 | 502 | 401 | 1260 | | 9 | 597 | 584 | 360 | 560 | 480 | 637 | 2090 | 1630 | <b>73</b> 7 | 488 | 409 | 1450 | | 10 | 577 | 599 | 453 | 510 | 470 | 1810 | 1850 | 1580 | 695 | 467 | 392 | 1300 | | 11 | 524 | 570 | 416 | 535 | 520 | 3360 | 1670 | 1520 | 698 | 443 | 378 | 1200 | | 12 | 519 | 636 | 371 | 576 | 620 | 3900 | 1780 | 1430 | 783 | 433 | 376 | 962 | | 13 | 515 | 623 | 422 | 549 | 720 | 4580 | 1240 | 1340 | 792 | 438 | 377 | 869 | | 14<br>15 | 544 | 647 | 530 | 522 | 671 | 5440 | 1790 | 1340 | 744 | 403 | 424 | 830 | | 15 | 534 | 744 | 613 | 515 | 648 | 6320 | 1450 | 1270 | 695 | 399 | 377 | 794 | | 16 | 540 | 895 | 520 | 500 | 620 | 6840 | 1340 | 1180 | 670 | 414 | 363 | 765 | | 17 | 575 | 800 | 470 | 500 | 600 | 7070 | 1340 | 1110 | 642 | 529 | 357 | 727 | | 18 | 560 | 808 | 522 | 504 | 570 | 5010 | 1230 | 1090 | 622 | 618 | 349 | 677 | | 19 | 550 | 813 | 559 | 524 | 560 | 4300 | 1210 | 1100 | 69 <b>5</b> | 595 | 385 | 640 | | 20 | 563 | 824 | 634 | 610 | 550 | 4380 | 1120 | 1080 | 483 | 570 | 431 | 611 | | 21 | 571 | 834 | 651 | 712 | 540 | 3970 | 1210 | 1070 | 598 | 547 | 422 | 581 | | 22 | 5 <b>5</b> 7 | 862 | 652 | 718 | 520 | 3840 | 1360 | 1050 | <b>5</b> 87 | 531 | 407 | 573 | | 23 | 665 | 883 | 644 | <b>69</b> 9 | 500 | 3440 | 2350 | 972 | 555 | 561 | 414 | 523 | | 24 | 554 | 835 | 658 | 723 | 520 | 2860 | 1920 | 1070 | 549 | 638 | 392 | 519 | | 25 | 532 | 810 | 649 | 779 | 532 | 2370 | 1650 | 1470 | 547 | 670 | 429 | 516 | | 26 | 544 | 864 | 679 | 791 | 542 | 2310 | 1530 | 1250 | 582 | 659 | 446 | 493 | | 27 | 616 | 928 | 710 | 747 | 567 | 2450 | 1580 | 1100 | 601 | 619 | 414 | 470 | | 28 | 559 | 909 | 580 | 809 | 538 | 4090 | 1790 | 1020 | 651 | 568 | 393 | 462 | | 29 | 520 | 931 | 530 | 1370 | | 5810 | 1670 | 938 | 564 | 545 | 441 | 457 | | 30 | 550 | 852 | 537 | 1910 | | <b>5280</b> | 1760 | 887 | 568 | 503 | 386 | 450 | | 31 | 717 | | 556 | 1560 | | 4020 | | 890 | | 489 | 406 | | | TOTAL | 18080 | 21588 | 18393 | 22156 | 16908 | 98459 | 54130 | 42647 | 20963 | 16509 | 12720 | 21330 | | MEAN | 583 | 720 | 593 | 715 | 604 | 3176 | 1804 | 1376 | 699 | 533 | 410 | 711 | | MAX | 724 | 931 | 799 | 1910 | 1500 | 7070 | 3440 | 2080 | 1010 | 670 | 471 | 1450 | | MIN | 515 | 482 | 360 | 500 | 470 | 515 | 1120 | 887 | 483 | 399 | 349 | 450 | | AC-FT | 35860 | 42820 | 36480 | 43950 | 33540 | 195300 | 107400 | 84590 | 41580 | 32750 | 25230 | 42310 | | CFSM | .09 | . 11 | .09 | .11 | .09 | . 49 | .28 | . 21 | , 11 | .08 | . 06 | .11 | | IN. | .10 | . 12 | . 11 | . 13 | .10 | . <b>5</b> 6 | .31 | . 24 | . 12 | .09 | . 07 | .12 | CAL YR 1988 TOTAL 532757 MEAN 1456 MAX 6890 MIN 360 AC-FT 1057000 CFSM .22 IN. 3.04 WTR YR 1989 TOTAL 363883 MEAN 997 MAX 7070 MIN 349 AC-FT 721800 CFSM .15 IN. 2.08 #### 05465000 CEDAR RIVER NEAR CONESVILLE, IA LOCATION.--Lat 41°24'36", long 91°17'06", in SW1/4 SW1/4 sec.2, T.76 N., R.4 W., Muscatine County, Hydrologic Unit 07080206, on right bank 10 ft downstream from bridge on county highway G28, 3.4 mi northeast of Conesville, 5.2 mi downstream from Wapsinonoc Creek, 10.7 mi upstream from mouth, and at mile 39.8 upstream from mouth of Iowa River DRAINAGE AREA. -- 7,785 mi2. PERIOD OF RECORD. -- September 1939 to current year. REVISED RECORDS. -- WSP 1438: Drainage area. WSP 1708: 1956. GAGE.--Water-stage recorder. Datum of gage is 581.95 ft above NGVD. Prior to Feb. 2, 1940, and Apr. 11, 1952, to July 1, 1954, nonrecording gage, Feb. 2, 1940, to Apr. 10, 1952, and July 2, 1954, to Sept. 16, 1963, water-stage recorder, at site 150 ft downstream on left bank at same datum. REMARKS.-- Estimated daily discharges: Dec. 11 to Jan. 31 and Feb. 3 to Mar. 16. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers data collection platform at station. AVERAGE DISCHARGE.--50 years, 4,681 ft3/s, 8.16 in/yr, 3,391,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 70,800 ft<sup>3</sup>/s Apr. 2, 1961, gage height, 16.62 ft; maximum gage height, 16.85 ft Apr. 12, 1965; minimum daily discharge, 250 ft<sup>3</sup>/s Nov. 28, 1955, result of freezeup. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in March 1929 reached a stage of 15.8 ft, from information by local residents to U.S. Army Corps of Engineers. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 12,000 ft3/s and maximum (\*): | | | Discharge | Gage height | | | Discharge | Gage height | |---------|------|----------------------|-------------|------|------|----------------------|-------------| | Date | Time | (ft <sup>3</sup> /s) | (ft) | Date | Time | (ft <sup>3</sup> /s) | (ft) | | Mar. 18 | 0515 | *6.650 | *8.61 | | | • | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 Minimum discharge, 554 ft3/s Aug. 10, 19. | | | DISCHA | RGE, CUBI | C FEE1 PE | K SECOND, | MATER II<br>MEAN VALUI | EAR OCTOB | FK 1900 IC | SEPIEMBE | w Taoa | | | |------------------|-------|--------|-----------|--------------|-----------|------------------------|-----------|------------|----------|--------|-------|-------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 978 | 806 | 1160 | 800 | 2490 | 800 | 4960 | 2230 | 1680 | 882 | 747 | 857 | | Ž | 981 | 912 | 1140 | 820 | 2090 | 780 | 4350 | 2410 | 1860 | 883 | 725 | 865 | | 3 | 948 | 840 | 1030 | 800 | 1500 | 760 | 3950 | 2470 | 1740 | 866 | 701 | 877 | | 1<br>2<br>3<br>4 | 898 | 781 | 994 | 760 | 1000 | 740 | 3610 | 2440 | 1900 | 845 | 734 | 795 | | 5 | 859 | 809 | 1030 | 720 | 800 | 800 | 3320 | 2490 | 1640 | 843 | 1130 | 782 | | 6 | 842 | 827 | 995 | 740 | 720 | 770 | 3050 | 2420 | 1410 | 840 | 855 | 963 | | 6<br>7 | 808 | 843 | 942 | 1000 | 700 | 780 | 2830 | 2380 | 1300 | 861 | 748 | 940 | | 8 | 797 | 837 | 995 | 1200 | 800 | 760 | 2750 | 2220 | 1260 | 795 | 712 | 1150 | | 8<br><b>9</b> | 779 | 828 | 1040 | 1400 | 740 | 810 | 2730 | 2150 | 1210 | 719 | 658 | 1780 | | 10 | 788 | 879 | 1080 | 800 | 680 | 900 | 2790 | 2070 | 1160 | 737 | 616 | 2920 | | 11 | 791 | 889 | 600 | 800 | 640 | 850 | 2730 | 2030 | 1140 | 716 | 593 | 2990 | | 12 | 791 | 917 | 660 | 840 | 680 | 1000 | 2490 | 1970 | 1170 | 710 | 585 | 2330 | | 13 | 751 | 948 | 620 | 820 | 740 | 2000 | 2360 | 1890 | 1430 | 693 | 571 | 1970 | | 14 | 737 | 961 | 600 | 910 | 800 | 3000 | 2330 | 1810 | 1600 | 646 | 573 | 1680 | | 15 | 754 | 950 | 700 | 840 | 860 | 3800 | 2120 | 1730 | 1300 | 628 | 643 | 1490 | | | / 34 | 930 | 700 | 040 | 800 | 3600 | 2120 | 1750 | 1500 | 020 | 043 | 1430 | | 16 | 764 | 987 | 840 | 800 | 840 | 5720 | 2250 | 1700 | 1190 | 625 | 700 | 1410 | | 17 | 795 | 1080 | 900 | 760 | 820 | 6110 | 2050 | 1630 | 1110 | 584 | 634 | 1410 | | 18 | 796 | 1200 | 840 | 740 | 780 | 6550 | 2000 | 1580 | 1060 | 617 | 581 | 1270 | | 19 | 805 | 1130 | 800 | 760 | 760 | 5910 | 1970 | 1540 | 1020 | 810 | 558 | 1210 | | 20 | 808 | 1130 | 920 | 740 | 740 | 4820 | 1840 | 1520 | 975 | 1090 | 598 | 1210 | | 21 | 805 | 1120 | 920 | 860 | 710 | 4600 | 1790 | 1480 | 988 | 968 | 617 | 1130 | | 22 | 820 | 1120 | 940 | 940 | 690 | 4630 | 1760 | 1460 | 868 | 867 | 699 | 1000 | | 23 | 868 | 1120 | 920 | 1000 | 680 | 4380 | 2150 | 1450 | 928 | 862 | 721 | 949 | | 24 | 898 | 1130 | 900 | 980 | 660 | 4110 | 2990 | 1440 | 899 | 957 | 748 | 905 | | 25 | 928 | 1150 | 860 | 1000 | 680 | 4070 | 3280 | 1640 | 867 | 996 | 717 | 855 | | 26 | 845 | 1180 | 840 | 1000 | 700 | 3440 | 2590 | 1650 | 870 | 930 | 716 | 815 | | 27 | 808 | 1170 | 880 | 980 | 720 | 3200 | 2310 | 1930 | 882 | 923 | 733 | 790 | | 28 | 800 | 1170 | 900 | 980 | 760 | 3340 | 2210 | 1730 | 924 | 895 | 803 | 754 | | 29 | 856 | 1200 | 800 | 1100 | | 3630 | 2260 | 1560 | 930 | 859 | 782 | 723 | | 30 | 823 | 1150 | 760 | 1400 | | 5140 | 2260 | 1450 | 899 | 826 | 707 | 701 | | 31 | 786 | | 740 | 2000 | | 5710 | | 1390 | | 787 | 785 | | | TOTAL | 25707 | 30064 | 27346 | 29290 | 24780 | 93910 | 80080 | 57860 | 36210 | 25260 | 21690 | 37521 | | MEAN | 829 | 1002 | 882 | 29290<br>945 | 885 | 3029 | 2669 | 1866 | 1207 | 815 | 700 | 1251 | | MAX | 981 | 1200 | 1160 | 2000 | 2490 | 6550 | 4960 | 2490 | 1900 | 1090 | 1130 | 2990 | | MIN | 737 | 781 | 600 | 720 | 640 | 740 | 1760 | 1390 | 867 | 584 | 558 | 701 | | AC-FT | 50990 | 59630 | 54240 | 58100 | 49150 | 186300 | 158800 | 114800 | 71820 | 50100 | 43020 | 74420 | | CFSM | | | | | | | .34 | .24 | .16 | .10 | .09 | .16 | | IN. | .11 | .13 | .11 | . 12 | .11 | .39 | | | .10 | .10 | .10 | .18 | | IN. | . 12 | . 14 | . 13 | . 14 | .12 | . 45 | .38 | . 28 | .1/ | . 12 | .10 | .10 | CAL YR 1988 TOTAL 767271 MEAN 2096 MAX 7360 MIN 600 AC-FT 1522000 CFSM .27 IN. 3.67 WTR YR 1989 TOTAL 489718 MEAN 1342 MAX 6550 MIN 558 AC-FT 971400 CFSM .17 IN. 2.34 # 05465500 IOWA RIVER AT WAPELLO, IA (National stream-quality accounting network station) LOCATION.--Lat 41°10'48", long 91°10'57", in NW1/4 SE1/4 sec.27, T.74 N., R.3 W., Louisa County, Hydrologic Unit 07080209, on right bank 30 ft downstream from bridge on State Highway 99 at east edge of Wapello, 13.0 mi downstream from Cedar River, and at mile 16.0. DRAINAGE AREA. -- 12,499 mi2. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. --October 1914 to current year. Monthly discharge only for some periods, published in WSP 1308. REVISED RECORDS.--WSP 1308: 1917, 1923-30, 1932. WSP 1438: Drainage area. WSP 1558: 1918, 1923-25 (M), 1929. WSP 1708: 1955(P), 1956. GAGE.--Water-stage recorder. Datum of gage is 538.17 ft above NGVD; Oct. 1, 1914 to Apr. 15, 1934, nonrecording gage and Apr. 16, 1934 to Sept. 30, 1972, water-stage recorder at datum 10.00 ft higher. REMARKS.--Estimated daily discharges: Dec. 8-19, Dec. 25 to Jan. 21, and Feb. 3 to Mar. 13. Records good except those for estimated daily discharges, which are poor. Flow regulated by Coralville Lake (station 05453510) 67.3 mi upstream, since Sept. 17, 1958. U.S. Army Corps of Engineers data collection platform at station. AVERAGE DISCHARGE.--75 years, 6,964 ft3/s, 7.57 in/yr, 5,045,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 94,000 ft<sup>3</sup>/s June 18, 1947, gage height, 16.14 ft, datum then in use; maximum gage height, 28.63 ft Apr. 22, 1973; minimum daily discharge, 300 ft<sup>3</sup>/s Nov. 28, 1955, result of freezeup. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 11,400 ft<sup>3</sup>/s, Sept. 10, gage height, 15.47 ft, minimum daily discharge, 718 ft<sup>3</sup>/s Aug. 14. | | | DISCHAL | RGE, CUBIC | FEET PER | | , WATER YEAR<br>ÆAN VALUES | OCTOBER | 1988 <b>T</b> O | SEPTEMBER | 1989 | | | |--------------------------------------|----------------------------------------------|----------------------------------------|-------------------------------------------|----------------------------------------------|---------------------------------------|----------------------------------------------|----------------------------------------|----------------------------------------------|-----------------------------------------|---------------------------------------------|----------------------------------------|-----------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | 1160<br>1200<br>1190<br>1140<br>1110 | 1010<br>1060<br>1180<br>1060<br>1050 | 1300<br>1310<br>1260<br>1130<br>1110 | 990<br>940<br>920<br>920<br>900 | 4040<br>4230<br>2500<br>1100<br>960 | 930<br>900<br>880<br>940<br>900 | 6500<br>5620<br>5080<br>4620<br>4350 | 2840<br>3180<br>3240<br>3110<br>3050 | 1990<br>3830<br>3900<br>3240<br>3520 | 1200<br>1120<br>1080<br>1050<br>1020 | 942<br>889<br>859<br>870<br>1260 | 1380<br>1200<br>1160<br>1100<br>982 | | 6<br>7<br>8<br>9 | 1080<br>1060<br>1040<br>1040<br>1020 | 1160<br>1100<br>1110<br>1080<br>1100 | 1170<br>1080<br>960<br>780<br>820 | 940<br>1100<br>1500<br>1600<br>1650 | 1200<br>1400<br>1250<br>1100<br>1050 | 880<br>900<br>1000<br>1200<br>2000 | 4030<br>3770<br>3550<br>3410<br>3440 | 3020<br>2910<br>2790<br>2670<br>2540 | 2470<br>2020<br>1940<br>1880<br>1810 | 1000<br>977<br>962<br>912<br>858 | 1200<br>939<br>881<br>833<br>794 | 1330<br>1770<br>1960<br>5370<br>10700 | | 11<br>12<br>13<br>14<br>15 | 1010<br>1030<br>1020<br>984<br>994 | 1160<br>1200<br>1200<br>1230<br>1220 | 740<br>780<br>890<br>1100<br>1000 | 1450<br>1200<br>1100<br>1050<br>1000 | 1050<br>1200<br>1550<br>1450<br>1350 | 2900<br>4000<br>5400<br>6330<br>6850 | 3420<br>3280<br>3050<br>3070<br>2890 | 2460<br>2340<br>2240<br>2130<br>2030 | 1790<br>1880<br>2110<br>2570<br>2400 | 850<br>848<br>864<br>842<br>847 | 756<br>734<br>721<br>718<br>742 | 10900<br>9400<br>6370<br>5010<br>3590 | | 16<br>17<br>18<br>19<br>20 | 999<br>1040<br>1020<br>1040<br>1050 | 1190<br>1210<br>1460<br>1520<br>1380 | 920<br>900<br>960<br>1150<br>1570 | 1000<br>1050<br>1050<br>1050<br>1200 | 1300<br>1250<br>1200<br>1150<br>1100 | 7850<br>8470<br>8350<br>7970<br>6480 | 2920<br>2760<br>2620<br>2550<br>2360 | 1940<br>1900<br>1860<br>1810<br>1740 | 1900<br>1670<br>1530<br>1450<br>1380 | 857<br>842<br>829<br>952<br>1180 | 859<br>863<br>748<br>736<br>767 | 2700<br>2320<br>2110<br>1950<br>1810 | | 21<br>22<br>23<br>24<br>25 | 1040<br>1060<br>1160<br>1190<br>1290 | 1330<br>1310<br>1310<br>1320<br>1320 | 1570<br>1530<br>1520<br>1460<br>1150 | 1500<br>1760<br>1420<br>1440<br>1500 | 1050<br>1000<br>970<br>920<br>980 | 5870<br>5850<br>5440<br>5290<br>5190 | 2240<br>2210<br>2990<br>4050<br>4430 | 1690<br>1670<br>1640<br>1660<br>1680 | 1320<br>1270<br>1150<br>1180<br>1150 | 1320<br>1240<br>1130<br>1110<br>1260 | 775<br>803<br>877<br>959<br>992 | 1710<br>1580<br>1480<br>1420<br>1360 | | 26<br>27<br>28<br>29<br>30<br>31 | 1220<br>1090<br>1030<br>1070<br>1100<br>1040 | 1390<br>1380<br>1350<br>1370<br>1390 | 1050<br>1000<br>950<br>930<br>990<br>1100 | 1440<br>1400<br>1400<br>1410<br>1730<br>2520 | 1000<br>960<br>950<br> | 4910<br>4380<br>4270<br>4380<br>5390<br>6750 | 3750<br>3110<br>2900<br>2800<br>2860 | 2580<br>2980<br>2620<br>2170<br>1920<br>1800 | 1130<br>1150<br>1150<br>1260<br>1260 | 1190<br>1110<br>1080<br>1050<br>1020<br>982 | 912<br>876<br>932<br>967<br>875<br>973 | 1300<br>1210<br>1140<br>1090<br>1060 | | TOTAL<br>MEAN<br>MAX<br>MIN<br>AC-FT | 33517<br>1081<br>1290<br>984<br>66480 | 37150<br>1238<br>1520<br>1010<br>73690 | 34180<br>1103<br>1570<br>740<br>67800 | 40130<br>1295<br>2520<br>900<br>79600 | 39260<br>1402<br>4230<br>920<br>77870 | 4285<br>8470<br>880 | 04630<br>3488<br>6500<br>2210<br>07500 | 72210<br>2329<br>3240<br>1640<br>143200 | 57300<br>1910<br>3900<br>1130<br>113700 | 31582<br>1019<br>1320<br>829<br>62640 | 27052<br>873<br>1260<br>718<br>53660 | 86462<br>2882<br>10900<br>982<br>171500 | CAL YR 1988 TOTAL 1217511 MEAN 3327 MAX 11000 MIN 740 AC-FT 2415000 WTR YR 1989 TOTAL 696323 MEAN 1908 MAX 10900 MIN 718 AC-FT 1381000 #### 05465500 IOWA RIVER AT WAPELLO, IA--Continued (National stream-accounting network station) #### WATER-QUALITY RECORDS PERIOD OF RECORD. -- Water years 1978 to current year. PERIOD OF DAILY RECORD. -SPECIFIC CONDUCTANCE: January 1978 to current year. WATER TEMPERATURES: January 1978 to current year. SUSPENDED-SEDIMENT DISCHARGE: April 1978 to current year. REMARKS.--During periods of ice effect samples are collected in open water channel or through ice cover. Records of specific conductance are obtained from suspended-sediment samples at time of analysis. EXTREMES FOR PERIOD OF DAILY RECORD. - SPECIFIC CONDUCTANCE: Maximum daily, 920 microsiemens Dec. 17, 1988; minimum daily, 250 microsiemens Sept. 18, 1978, July 20, 1982. WATER TEMPERATURES: Maximum daily, 33.0°C July 25, 1987; minimum daily, 0.0°C on many days during winter period. SEDIMENT CONCENTRATIONS: Maximum daily mean, 4,970 mg/L June 25, 1981; minimum daily mean, 1 mg/L Jan. 21, 22, 1981. SEDIMENT LOADS: Maximum daily, 413,000 tons July 19, 1982; minimum daily, 5.4 tons Jan. 21, 1981. EXTREMES FOR CURRENT YEAR.-SEDIMENT CONCENTRATIONS: Maximum daily mean, 2,350 mg/L June 2; minimum daily mean, 7 mg/L Jan. 22 and Feb. 5-7. SEDIMENT LOADS: Maximum daily, 25,100 tons June 2; minimum daily, 18 tons Feb. 5. | | SPECIFIC | CONDUC | TANCE MIC | ROSIEMENS | | DEG C, | WATER YEAR<br>VALUES | OCTOBER | 1988 TO | SEPTEMBER | 1989 | | |-----|-------------|-------------|-----------|-------------|-----|--------|----------------------|---------|---------|-----------|------|-----| | DAY | OCT | NOA | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 560 | | | 728 | 515 | 727 | | 541 | 345 | | | | | 2 | | | | 745 | | 646 | | | 345 | | | 555 | | 3 | | | 726 | | | 743 | | | | | | 555 | | 4 | 580 | 600 | 739 | | | | 473 | | | | | 585 | | 5 | 580 | 590 | | | | | 434 | 565 | 530 | | | 585 | | 6 | 620 | | 755 | 750 | | | | | 540 | | 535 | 430 | | 7 | | 675 | 750 | 773 | 669 | | 444 | | 545 | 585 | 565 | 425 | | 8 | | 67 <b>5</b> | 710 | 76 <b>8</b> | 645 | | | | | | 575 | | | 9 | 6 <b>20</b> | 605 | | 750 | | 536 | | 500 | | 685 | 670 | | | 10 | 600 | 625 | | | | 537 | | 490 | | 700 | 620 | 325 | | 11 | | | | | | 585 | 485 | | | 675 | | 330 | | 12 | | | 739 | 795 | 732 | 483 | 486 | | 525 | 675 | | | | 13 | | 610 | 748 | 785 | | 456 | 476 | 505 | 525 | | 670 | 455 | | 14 | 600 | 645 | 780 | 835 | | 442 | | 520 | 545 | | 675 | | | 15 | 660 | | 820 | 810 | | | 473 | 515 | | 705 | 655 | | | 16 | | 695 | 902 | | 735 | | 479 | 570 | | 715 | 660 | 495 | | 17 | 650 | 685 | 920 | | 734 | | | 505 | | 705 | | 520 | | 18 | | 675 | 905 | | 720 | 336 | | 500 | | | | 520 | | 19 | | | 810 | 777 | 707 | 336 | | | 540 | | 670 | 530 | | 20 | | | 807 | 795 | 660 | | | | 560 | 665 | 655 | 530 | | 21 | 610 | | | 655 | 659 | | | 565 | 550 | 630 | 660 | | | 22 | 630 | 700 | | | 683 | | | 590 | 575 | 630 | | 565 | | 23 | | 690 | 780 | 650 | 665 | | 535 | 560 | | | | | | 24 | | 690 | 758 | 705 | 617 | 337 | | | | | | | | 25 | 600 | 675 | | 706 | | | 531 | | | | 630 | 585 | | 26 | 575 | | | 695 | | | 530 | 555 | | | | 585 | | 27 | 580 | | | | | | 527 | 500 | | | 585 | 590 | | 28 | 590 | 665 | | | | 449 | | 500 | | | 615 | 600 | | 29 | | 680 | 752 | | | 455 | | 485 | | 615 | 605 | 590 | | 30 | | 688 | 720 | 530 | | 435 | 541 | | | 655 | | | | 31 | | | 709 | 535 | | 413 | | | | 640 | 595 | | # 05465500 IOWA RIVER AT WAPELLO, IA--Continued ## WATER QUALITY RECORDS WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 INSTANTANEOUS VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP .5 .5 ---19.5 ---4.0 ---22.0 1 . 5 \_\_\_ ----3 .5 20.0 ---23.5 ------2.5 ------23.0 ---4 5 19.0 7.5 2.0 13.0 ---------19.0 8.0 ---13.0 14.0 21.5 25.0 6 7 25.0 16.5 3.5 1.0 21.5 27.0 ---3.5 .5 ---8.5 1.0 ---14.0 ---32.0 26.0 22.0 1.0 ------8 8.5 22.0 18.0 ---12.0 9 . 5 1.0 30.0 8.0 27.0 ------22.0 10 12.0 7.0 30.0 2.0 18.0 11 ------------3.5 13.5 ---30.0 ---22.0 .5 1.0 1.5 ------1.0 13.5 ---12 1.0 23.0 31.0 13 14 7.0 13.5 20.0 24.0 ---24.0 25.0 18.0 1.0 5.0 ---12.0 7.0 24.0 .5 .5 21.0 22.0 6.0 15 12.0 30.0 20.0 ---15.5 16 17 18 .5 .5 .5 26.5 8.0 . 5 ------30.0 16.0 21.0 16.0 ---23.0 ---7.5 8.0 .5 30.0 ---22.5 ---23.0 5.0 5.5 ------. 5 . 5 11.0 1.0 29.0 70.0 ---20 1.0 \_\_\_ 28.5 29.0 27.0 24.0 21 22 11.5 11.5 28.0 27.0 .5 23.5 . 5 ---28.0 6.0 5.5 ---.5 ---30.0 20.0 ---23.5 23.5 28.5 ---.5 .5 2.0 2.5 23 ------\_\_\_ 24 25 ------8.5 4.0 3.0 ---------28.0 18.0 26 8.0 3.0 ---21.0 ---27.0 16.5 ---------27.0 25.0 16.5 17.0 ---9.0 ------23.0 ------5.0 ------28 8.5 7.0 23.0 ------29 1.0 7.5 30.0 3.0 20.0 28.0 20.0 30 \_\_\_ 3.5 3.5 3.5 . 5 . 5 30.0 28.0 8.0 30.0 SEDIMENT, SUSPENDED CONCENTRATION (MG/L), WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DAY | MEAN<br>CONCEN-<br>TRATION<br>(MG/L) | LOAD<br>(TONS/<br>DAY) | |----------------------------------|--------------------------------------|-------------------------------------|--------------------------------------|-------------------------------|--------------------------------------|----------------------------------|--------------------------------------|-------------------------------------|--------------------------------------|-------------------------------|---------------------------------------|---------------------------------------------| | | OCTO | BER | NOVEM | BER | DECEM | BER | JANUA | RY | FEBRU. | ARY | MARC | H | | 1 | 63 | 197 | 37 | 101 | 28 | 98 | 16 | 43 | 236 | 2570 | 22 | 55 | | 2 | 64 | 207 | 44 | 126 | 10 | 35 | 39 | 99 | 149 | 1700 | 14 | 34 | | 3 | 55 | 177 | 53 | 169 | 10 | 34 | 49 | 122 | 78 | 526 | 14 | 33 | | 4 | 37 | 114 | 38 | 109 | 12 | 37 | 48 | 119 | 15 | 45 | 54 | 137 | | 5 | 37 | 111 | 37 | 105 | 11 | 33 | 47 | 114 | 7 | 18 | 105 | 255 | | 6<br>7<br>8<br>9<br>10 | 39<br>36<br>33<br>35<br>31 | 114<br>103<br>93<br>98<br>85 | 42<br>31<br>24<br>29<br>33 | 132<br>92<br>72<br>85<br>98 | 14<br>12<br>13<br>13 | 44<br>35<br>34<br>27<br>29 | 61<br>48<br>56<br>36<br>30 | 155<br>143<br>227<br>156<br>134 | 7<br>7<br>47<br>60<br>36 | 23<br>26<br>159<br>178<br>102 | 158<br>98<br>47<br>14<br>13 | 375<br>238<br>127<br>45<br>70 | | 11 | 30 | 82 | 40 | 125 | 13 | 26 | 30 | 117 | 23 | 65 | 45 | 352 | | 12 | 37 | 103 | 42 | 136 | 14 | 29 | 59 | 191 | 17 | 55 | 56 | 605 | | 13 | 41 | 113 | 32 | 104 | 15 | 36 | 60 | 178 | 15 | 63 | 69 | 1010 | | 14 | 35 | 93 | 27 | 90 | 20 | 59 | 17 | 48 | 14 | 55 | 284 | 4850 | | 15 | 67 | 180 | 26 | 86 | 20 | 54 | 13 | 35 | 13 | 47 | 444 | 8210 | | 16 | 63 | 170 | 25 | 80 | 32 | 79 | 12 | 32 | 12 | 42 | 315 | 6680 | | 17 | 56 | 157 | 42 | 137 | 24 | 58 | 11 | 31 | 17 | 57 | 244 | 5580 | | 18 | 50 | 138 | 50 | 197 | 21 | 54 | 10 | 28 | 13 | 42 | 160 | 3610 | | 19 | 45 | 126 | 60 | 246 | 24 | 75 | 11 | 31 | 8 | 25 | 37 | 796 | | 20 | 40 | 113 | 46 | 171 | 15 | 64 | 19 | 62 | 11 | 33 | 10 | 175 | | 21 | 37 | 104 | 28 | 101 | 13 | 55 | 10 | 40 | 23 | 65 | 9 | 143 | | 22 | 38 | 109 | 22 | 78 | 13 | 54 | 7 | 33 | 26 | 70 | 53 | 837 | | 23 | 43 | 135 | 20 | 71 | 12 | 49 | 13 | 50 | 20 | 52 | 77 | 1130 | | 24 | 32 | 103 | 28 | 100 | 12 | 47 | 28 | 109 | 28 | 70 | 66 | 943 | | 25 | 40 | 139 | 32 | 114 | 13 | 40 | 24 | 97 | 31 | 82 | 82 | 1150 | | 26<br>27<br>28<br>29<br>30<br>31 | 43<br>29<br>27<br>32<br>48<br>40 | 142<br>85<br>75<br>92<br>143<br>112 | 41<br>30<br>18<br>18<br>30 | 154<br>112<br>66<br>67<br>113 | 13<br>13<br>13<br>13<br>17<br>14 | 37<br>35<br>33<br>33<br>45<br>42 | 20<br>25<br>24<br>22<br>25<br>188 | 78<br>94<br>91<br>84<br>117<br>1380 | 37<br>38<br>32<br> | 100<br>98<br>82<br> | 140<br>125<br>108<br>84<br>115<br>160 | 1860<br>1480<br>1250<br>993<br>1670<br>2920 | | IATOT | ւ | 3813 | | 3437 | | 1410 | | 4238 | | 6450 | | 47613 | ### WATER QUALITY DATA SEDIMENT, SUSPENDED CONCENTRATION (MG/L), WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DAY | MEAN<br>CONCEN-<br>TRATION<br>(MG/L) | LOAD<br>(TONS/<br>DAY) | |----------------------------------|---------------------------------------------|--------------------------------------|-----------------------------------------|---------------------------------------------------|--------------------------------------------------|--------------------------------------------------------|--------------------------------------|-----------------------------------------------|------------------------------------------|-----------------------------------------------|---------------------------------------------|------------------------------------------------| | | APR | IL | MAY | | JUN | E | JUL | Y | AUGU | ST | SEPTEM | BER | | 1<br>2<br>3<br>4<br>5 | 124<br>113<br>102<br>92<br>99<br>109<br>135 | 2180<br>1710<br>1400<br>1150<br>1160 | 207<br>225<br>195<br>137<br>106 | 1590<br>1930<br>1710<br>1150<br>873<br>921<br>786 | 1690<br>2350<br>1230<br>452<br>538<br>500<br>545 | 9130<br>25100<br>14100<br>3950<br>5110<br>3330<br>2970 | 133<br>128<br>123<br>115<br>107 | 431<br>387<br>359<br>326<br>295<br>275<br>251 | 84<br>78<br>72<br>77<br>124<br>117<br>96 | 214<br>187<br>167<br>181<br>422<br>379<br>243 | 129<br>102<br>177<br>98<br>72<br>220<br>364 | 481<br>330<br>554<br>291<br>191<br>790<br>1740 | | 8<br>9<br>10 | 124<br>100<br>80 | 1190<br>921<br>743 | 85<br>73<br>75 | 640<br>526<br>514 | 550<br>498<br>428 | 2880<br>2530<br>2090 | 82<br>63<br>69 | 213<br>155<br>160 | 130<br>59<br>76 | 309<br>133<br>163 | 296<br>288<br>303 | 1570<br>4180<br>8750 | | 11<br>12<br>13<br>14<br>15 | 62<br>63<br>64<br>75<br>75 | 573<br>558<br>527<br>622<br>585 | 79<br>80<br>76<br>95<br>93 | 525<br>505<br>460<br>546<br>510 | 360<br>363<br>403<br>422<br>238 | 1740<br>1840<br>2300<br>2930<br>1540 | 82<br>65<br>61<br>60<br>57 | 188<br>149<br>142<br>136<br>130 | 83<br>73<br>58<br>56<br>76 | 169<br>145<br>113<br>109<br>152 | 258<br>192<br>155<br>136<br>124 | 7590<br>4870<br>2670<br>1840<br>1200 | | 16<br>17<br>18<br>19<br>20 | 61<br>59<br>55<br>52<br>49 | 481<br>440<br>389<br>358<br>312 | 90<br>139<br>95<br>75<br>73 | 471<br>713<br>477<br>367<br>343 | 230<br>190<br>163<br>138<br>106 | 1180<br>857<br>673<br>540<br>395 | 63<br>75<br>68<br>100<br>135 | 146<br>171<br>152<br>257<br>430 | 57<br>48<br>45<br>35<br>46 | 132<br>112<br>91<br>70<br>95 | 113<br>100<br>93<br>88<br>88 | 824<br>626<br>530<br>463<br>430 | | 21<br>22<br>23<br>24<br>25 | 45<br>45<br>235<br>286<br>265 | 272<br>269<br>1940<br>3130<br>3170 | 58<br>42<br>50<br>60<br>82 | 265<br>189<br>221<br>269<br>372 | 120<br>120<br>106<br>110<br>109 | 428<br>411<br>329<br>350<br>338 | 122<br>113<br>102<br>104<br>132 | 435<br>378<br>311<br>312<br>449 | 93<br>70<br>94<br>146<br>161 | 195<br>152<br>223<br>378<br>431 | 112<br>104<br>90<br>73<br>55 | 517<br>444<br>360<br>280<br>202 | | 26<br>27<br>28<br>29<br>30<br>31 | 245<br>147<br>90<br>88<br>173 | 2480<br>1230<br>705<br>665<br>1340 | 953<br>1380<br>698<br>490<br>343<br>250 | 6640<br>11100<br>4940<br>2870<br>1780<br>1210 | 103<br>100<br>105<br>131<br>134 | 314<br>310<br>326<br>446<br>456 | 120<br>105<br>96<br>84<br>56<br>83 | 386<br>315<br>280<br>238<br>154<br>220 | 120<br>76<br>53<br>86<br>72<br>58 | 295<br>180<br>133<br>225<br>170<br>152 | 37<br>28<br>43<br>44<br>47 | 130<br>91<br>132<br>129<br>135 | | TOTA<br>YEAR | | 33060<br>291018 | | 45413 | | 88893 | | 8231 | | 6120 | | 42340 | PARTICLE-SIZE DISTRIBUTION OF SUSPENDED SEDIMENT, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | | | | | DIS- | | SEDI- | SED. | |---|-----------|------|---------|------------------|---------|---------------|----------------| | | | | | CHARGE,<br>INST. | SEDI- | MENT,<br>DIS- | SUSP.<br>SIEVE | | | | | TEMPER- | CUBIC | MENT. | CHARGE. | DIAM. | | | | | ATURE | FEET | SUS- | SUS- | Z FINER | | | DATE | TIME | WATER | PER | PENDED | PENDED | THAN | | | | | (DEG C) | SECOND | (MG/L) | (T/DAY) | .062 MM | | | | | (00010) | (00061) | (80154) | (80155) | (70331) | | | | | | | | | | | | OCT | | | | | | _ | | | 25 | 1100 | 8.5 | 1270 | 35 | 120 | 97 | | | MAR | | | | | | | | | 23 | 1215 | 6.0 | 5320 | 75 | 1080 | 88 | | ļ | MAY | | | | | | | | | 05 | 1300 | 15.0 | 2920 | 103 | 812 | 97 | | | JUL | 1000 | 22.0 | 067 | 100 | 261 | 00 | | | 07 | 1230 | 32.0 | 967 | 100 | 261 | 90 | | | AUG<br>29 | 1300 | 28.0 | 983 | 100 | 265 | 99 | | | 49 | 1300 | 20.0 | 203 | 100 | 203 | 99 | PARTICLE-SIZE DISTRIBUTION OF SURFACE BED MATERIAL, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | TIME | NUMBER<br>OF<br>SAM-<br>PLING<br>POINTS<br>(COUNT)<br>(00063) | BED<br>MAT.<br>SIEVE<br>DIAM.<br>Z FINER<br>THAN<br>.062 MM<br>(80164) | BED<br>MAT.<br>SIEVE<br>DIAM.<br>I FINER<br>THAN<br>.125 MM<br>(80165) | BED<br>MAT.<br>SIEVE<br>DIAM.<br>Z FINER<br>THAN<br>.250 MM<br>(80166) | BED<br>MAT.<br>SIEVE<br>DIAM.<br>7 FINER<br>THAN<br>.500 MM<br>(80167) | BED<br>MAT.<br>SIEVE<br>DIAM.<br>Z FINER<br>THAN<br>1.00 MM<br>(80168) | BED<br>MAT.<br>SIEVE<br>DIAM.<br>Z FINER<br>THAN<br>2.00 MM<br>(80169) | BED<br>MAT.<br>SIEVE<br>DIAM.<br>7 FINER<br>THAN<br>4.00 MM<br>(80170) | BED<br>MAT.<br>SIEVE<br>DIAM.<br>7 FINER<br>THAN<br>8.00 MM<br>(80171) | | |-----------|------|---------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|--| | OCT | | | | | | | | | | | | | 25 | 1100 | 7 | 1 | 4 | 9 | 47 | 87 | 98 | 100 | | | | MAR<br>23 | 1215 | 6 | | 0 | 2 | 36 | 77 | 97 | 99 | 100 | | | MAY<br>05 | 1300 | 7 | | 0 | 4 | 34 | 66 | 89 | 96 | 100 | | | JUL<br>07 | 1230 | 6 | 1 | 2 | 8 | 58 | 92 | 98 | 100 | | | | AUG<br>29 | 1300 | 5 | 1 | 2 | 8 | 52 | 85 | 96 | 99 | 100 | | | | | | | | | | | | | | | # 05465500 IOWA RIVER AT WAPELLO, IA--Continued ## WATER QUALITY RECORDS WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | PH<br>(STAND-<br>ARD<br>UNITS)<br>(00400) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | TEMPER-<br>ATURE<br>AIR<br>(DEG C)<br>(00020) | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | OXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION)<br>(00301) | BARO-<br>METRIC<br>FRES-<br>SURE<br>(MM<br>OF<br>HG)<br>(00025) | COLI-<br>FORM,<br>FECAL,<br>0.7<br>UM-MF<br>(COLS./<br>100 ML)<br>(31625) | STREP-<br>TOCOCCI<br>FECAL,<br>KF AGAR<br>(COLS.<br>PER<br>100 ML)<br>(31673) | |------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------| | OCT<br>25 | 1100 | 1270 | 520 | 9.30 | 8.5 | 7.0 | 11 | 13.0 | 114 | 746 | 120 | 140 | | DEC<br>13 | 1445 | 900 | 755 | 8.60 | 0.5 | 8.0 | 5.8 | | | 750 | K4 | K30 | | MAR<br>23 | 1215 | 5320 | 346 | 7.80 | 6.0 | 7.0 | 12 | 12.2 | 99 | 752 | 100 | 450 | | MAY<br>05 | 1300 | 2920 | 485 | 9.30 | 15.0 | 9.0 | 25 | 14.6 | 149 | 740 | K85 | 170 | | JUL<br>07 | 1230 | 967 | 400 | 9.20 | 32.0 | 29.0 | 27 | 12.0 | 167 | 753 | К30 | K28 | | AUG<br>29 | 1300 | 983 | 568 | 9.20 | 28.0 | 21.0 | 25 | 15.3 | 199 | 751 | 100 | 96 | | DATE | HARD-<br>NESS<br>NONCARB<br>WH WAT<br>TOT FLD<br>MG/L AS<br>CACO3<br>(00902) | HARD-<br>NESS<br>TOTAL<br>(MG/L<br>AS<br>CACO3)<br>(00900) | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915) | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925) | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | SODIUM<br>PERCENT<br>(00932) | SODIUM<br>AD-<br>SORP-<br>TION<br>RATIO<br>(00931) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | ALKA-<br>LINITY<br>WAT DIS<br>TOT IT<br>FIELD<br>MG/L AS<br>CACO3<br>(39086) | CAR-<br>BONATE<br>WATER<br>DIS IT<br>FIELD<br>MG/L AS<br>CO3<br>(00452) | BICAR-<br>BONATE<br>WATER<br>DIS IT<br>FIELD<br>MG/L AS<br>HCO3<br>(00453) | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)<br>(00945) | | OCT<br>25<br>DEC | 49 | 200 | 43 | 23 | 39 | 29 | 1 | 6.0 | 154 | 22 | 143 | 58 | | 13<br>MAR | 54 | 300 | 75 | 27 | 41 | 23 | 1 | 5.8 | 244 | 6 | 285 | 64 | | 23<br>MAY | 40 | 140 | 38 | 10 | 12 | 15 | 0.5 | 7.9 | 116 | 0 | 141 | 30 | | 05<br>JUL | 58 | 200 | 46 | 20 | <b>2</b> 6 | 22 | 0.8 | 5.0 | 134 | 16 | 131 | 53 | | 07<br>AUG | 45 | 180 | 39 | 21 | 39 | 31 | 1 | 6.1 | 130 | 19 | 121 | 55 | | 29 | 190 | 190 | 45 | 19 | 48 | 35 | 2 | 5.4 | 150 | 3 <b>2</b> | 118 | 48 | | DATE | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)<br>(00950) | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2)<br>(00955) | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L)<br>(70300) | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L)<br>(70301) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>AC-FT)<br>(70303) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>DAY)<br>(70302) | NITRO-<br>GEN,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00605) | NITRO-<br>GEN,<br>NO2+NO3<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00631) | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00613) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,<br>AMMONIA<br>TOTAL<br>(MG/L<br>AS N)<br>(00610) | | OCT 25 | 57 | 0.30 | 0.13 | 334 | 322 | 0.45 | 1150 | | 0.570 | 0.020 | <0.010 | <0.010 | | DEC<br>13 | 60 | 0.30 | 4.6 | 442 | 437 | 0.60 | 1070 | 1.8 | 2.40 | 0.040 | 0.600 | 0.580 | | MAR<br>23<br>MAY | 19 | 0.20 | 8.6 | 213 | 199 | 0.29 | 3060 | 0.80 | 2.80 | 0.070 | 1.60 | 1.60 | | 05<br>JUL | 43 | 0.30 | 0.11 | 296 | 282 | 0.40 | 2330 | 0.88 | 0.970 | 0.041 | 0.010 | 0.021 | | 07<br>AUG | 62 | 0.20 | 1.2 | 312 | 307 | 0.42 | 815 | 3.0 | <0.100 | <0.010 | 0.040 | 0.020 | | 29 | 61 | 0.30 | 2.5 | 328 | 231 | 0.45 | 871 | | 0.200 | 0.030 | <0.010 | <0.010 | K Results based on colony count outside ideal range. # 05465500 IOWA RIVER AT WAPELLO, IA--Continued WATER QUALITY RECORDS WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | NITRO-<br>GEN,AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | PHOS-<br>PHOROUS<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | PHOROU<br>DIS-<br>SOLVE<br>(MG/L<br>AS P) | S PHOS<br>PHORO<br>D TOTA<br>(MG<br>AS | OUS ME<br>AL SU<br>/L PE<br>P) (M | S-<br>NDED<br>G/L) | SEDI<br>MENT<br>DIS<br>CHARG<br>SUS<br>PEND<br>(T/DA'<br>(8015 | , SI<br>E, D<br>- Z F<br>ED T<br>Y) .06 | ED.<br>SUSP.<br>EVE<br>IAM.<br>INER<br>HAN<br>2 MM | ARSENIO<br>DIS-<br>SOLVE<br>(UG/L<br>AS AS<br>(01000 | C IN<br>D SO<br>(U<br>) AS | IS-<br>LVED S<br>G/L<br>AL) | BARIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS BA)<br>(01005) | BERYL-<br>LIUM,<br>DIS-<br>SOLVEI<br>(UG/L<br>AS BE) | CADM<br>DI<br>SOL<br>(UG<br>AS | S-<br>VED<br>/L<br>CD) | |-------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------|------------------------------------------------------|------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------|------------------------| | OCT | | | | _ | | | | | | | _ | | | | | | | 25<br>DEC | 0.60 | 0.160 | _ | 0 0.: | 380 | 35 | 120 | | 97 | į | 2 | <10 | 76 | <0.5 | ) | 1 | | 13<br>MAR | 2.4 | 0.270 | 0.32 | 0 0.4 | 430 | | | | | - | - | | | | • | | | 23<br>MAY | 2.4 | 0.290 | 0.36 | 0 0. | 580 | 75 | 1080 | | 88 | ; | 2 | 60 | 160 | <0.5 | <b>j</b> | <1 | | 05<br>JUL | 0.90 | 0.041 | 0.07 | 0 0.: | 171 | 103 | 812 | | 97 | ; | 2 | 10 | 83 | <0.5 | j | <1 | | 07 | 3.0 | 0.110 | 0.17 | 0 0.2 | 280 | 100 | 261 | | 90 | - | - | | | | • | | | AUG<br>29 | 3.1 | 0.230 | 0.29 | 0 0.4 | 410 | 100 | 265 | | 99 | | 4 | 10 | 100 | <0.5 | <b>i</b> | <1 | | DATI OCT 25 DEC 13 MAR 23 MAY 05 JUL 07 AUG 29 | | M, COE - DI VED SOL - (U CR) AS | S- D<br>NED S<br>G/L (<br>CO) A | PPER,<br>IS-<br>OLVED<br>UG/L<br>S CU)<br>1040) | IRON, DIS- SOLVED (UG/L AS FE) (01046) 41 110 18 12 | | ED<br>L<br>B) | ITHIUM<br>DIS-<br>SOLVED<br>(UG/L<br>AS LI)<br>01130)<br>9<br><br><4<br>9 | MANG<br>NESE<br>DIS<br>SOLV<br>(UG/<br>AS M<br>(0105 | , ME<br>ED S<br>L (<br>IN) A | RCURY<br>DIS-<br>OLVED<br>UG/L<br>S HG)<br>1890)<br><0.1<br><br><0.1<br><0.1 | <1<br><1 | 14, NICKE - DIS DIS DIS (UG/ D) AS N () (0106 | L, NI<br>ED SO<br>L (U | CLE-<br>LUM,<br>DIS-<br>DIS-<br>DIVED<br>G/L<br>S SE)<br>145) | | | DATI | SILV<br>DI<br>SOL<br>E (UG<br>AS | ST<br>ER, T<br>S- D<br>VED SO<br>S/L (U<br>AG) AS | RON- VIUM, DIS-<br>DLVED S<br>G/L (SSR) A | ANA-<br>IUM,<br>DIS-<br>OLVED<br>UG/L<br>S V) | ZINC,<br>DIS-<br>SOLVED<br>(UG/L<br>AS ZN) | ATRA<br>ZINE<br>TOTA<br>(UG/ | - C<br>, A<br>L T<br>L) ( | YAN-<br>ZINE<br>OTAL<br>UG/L)<br>81757) | reco | N C<br>E T<br>R RE<br>) (<br>icide | ALA-<br>HLOR<br>OTAL<br>COVER<br>UG/L)<br>concen | METOLA<br>CHLOS<br>IN<br>WHOLE<br>WATER<br>(UG/L) | A- TRI R FLUR LIN TOTA R RECOV (UG/ | -<br>A-<br>L BUI<br>ER LAI<br>L) (UC<br>ed as t | 'Y-<br>'E<br>5/L) | | | OCT<br>25 | < | 1.0 | 170 | <6 | 24 | | , | | | | | | - <b>-</b> | | | | | DEC 13 | • | | | | | | | | | | | _ | . <del>.</del> | | | | | MAR 23 | _ | 1.0 | 93 | <6 | 30 | ^ | | | 0 | | <0.10 | <0.1 | 10 <0.1 | n - | 0.10 | | | MAY | | | | - | 39 | | 71 | 0.20 | | | | | | | | | | 05<br>JUL | < | 1.0 | 150 | <6 | 7 | | 97 | 0.86 | | 56 | 0.15 | <0.1 | | | 0.10 | | | 07<br>AUG | | | | | | 1. | 1 | 0.46 | 0. | 27 | <0.10 | <0.1 | 10 <0.1 | 0 - | 0.10 | | | 29 | < | 1.0 | 170 | <6 | 4 | | | | | | | - | · <b>-</b> | | | | 120 SKUNK RIVER BASIN #### 05470000 SOUTH SKUNK RIVER NEAR AMES, IA LOCATION.--Lat 42°04'05", long 93°37'02", in NW1/4 SW1/4 sec.23, T.84 N., R.24 W., Story County, Hydrologic Unit 07080105, on left bank 2.5 mi north of Ames, 3.5 mi downstream from Keigley Branch, 5.2 mi upstream from Squaw Creek, and at mile 228.1 upstream from mouth of Skunk River. DRAINAGE AREA. -- 315 mi2 PERIOD OF RECORD.--July 1920 to September 1927, October 1932 to current year. Monthly discharge only for some periods, published in WSP 1308. Prior to October 1966, published as Skunk River near Ames. REVISED RECORDS.--WSP 1438: Drainage area. WSP 1308: 1921, 1925-26, 1934-35 (M), 1937 (M), 1939 (M), 1947-50 (M). WDR Iowa 1967: 1965. WDR IA-74-1: 1973 (P). GAGE.--Water-stage recorder. Concrete control since July 21, 1934. Datum of gage is 893.61 ft above NGVD (Iowa Highway Commission benchmark). Prior to Aug. 25, 1921, nonrecording gage at same site and datum. REMARKS.--Estimated daily discharges: Jan. 2-10, Feb. 3 to Mar. 23, and July 9. Records good except those for Oct. 1 to Nov. 3 which are fair and estimated periods which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. National Weather Service Limited Automatic Remote Collector at station. AVERAGE DISCHARGE. --64 years (water years 1921-27, 1933-89), 161 $ft^3/s$ , 6.94 in/yr, 116,600 acre-ft/yr; median of yearly mean discharges, 120 $ft^3/s$ , 5.2 in/yr, 86,900 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 8,630 ft<sup>3</sup>/s June 10, 1954, gage height, 13.66 ft; maximum gage height, 13.90 ft May 20, 1944; no flow at times in 1934, 1937, 1953-57, 1977. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 1,500 ft3/s and maximum (\*): | | | Discharge | Gage height | | | Discharge | Gage height | |---------|------|----------------------|-------------|------|------|----------------------|-------------| | Date | Time | (ft <sup>3</sup> /s) | (ft) | Date | Time | (ft <sup>3</sup> /s) | (ft) | | Mar. 10 | 0830 | *370 | (a) #4.98 | | | | | (a) Ice jam Minimum discharge, 0.37 ft<sup>3</sup>/s Aug. 18, 19. | | | DISCHARGE | E, CUBIC | FEET PER | SECOND, | WATER YEAR<br>EAN VALUES | OCTOBER | 1988 TO | SEPTEMBER | 1989 | | | |-----------------------------------------------------|--------------------------------------------|-------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|----------------------------------------------------|------------------------------------------|--------------------------------------------|-------------------------------------------------|------------------------------------------|-------------------------------------------|--------------------------------------------------| | DAY | OCT | МОЛ | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | 1.3<br>1.6<br>2.4<br>2.6<br>2.8 | 1.6<br>2.5<br>2.8<br>2.4<br>2.4 | 2.5<br>2.5<br>2.9<br>2.6<br>2.7 | 1.0<br>1.0<br>1.2<br>1.4<br>1.6 | 5.1<br>14<br>10<br>9.4<br>9.0 | 4.2<br>3.7<br>3.9<br>4.1<br>4.2 | 23<br>20<br>18<br>16<br>15 | 21<br>18<br>16<br>15<br>16 | 16<br>15<br>316<br>503<br>297 | 40<br>32<br>25<br>20<br>16 | 5.3<br>4.5<br>3.3<br>3.0<br>2.9 | .76<br>.71<br>.57<br>1.9<br>3.3 | | 6<br>7<br>8<br>9<br>10 | 3.0<br>3.0<br>4.5<br>5.7<br>6.3 | 2.6<br>2.2<br>2.4<br>2.4<br>3.0 | 2.9<br>3.2<br>2.9<br>2.6<br>2.4 | 25<br>35<br>19<br>12<br>9.0 | 8.4<br>8.0<br>7.8<br>7.6<br>7.0 | 4.0<br>3.9<br>3.8<br>75<br>200 | 14<br>14<br>17<br>17<br>16 | 15<br>14<br>13<br>11<br>11 | 175<br>105<br>86<br>194<br>118 | 13<br>11<br>10<br>8.5<br>7.6 | 2.4<br>2.1<br>1.4<br>1.1<br>.88 | 3.3<br>2.9<br>4.8<br>18<br>30 | | 11<br>12<br>13<br>14<br>15 | 8.7<br>7.5<br>8.7<br>4.2<br>3.3 | 2.6<br>4.5<br>5.2<br>3.5<br>4.9 | 2.1<br>1.9<br>1.8<br>1.9 | 17<br>13<br>7.3<br>6.0<br>5.3 | 7.0<br>7.4<br>7.8<br>7.2<br>7.0 | 150<br>115<br>90<br>70<br>48 | 16<br>15<br>14<br>13<br>12 | 9.8<br>8.6<br>8.5<br>8.1<br>7.2 | 78<br>61<br>52<br>49<br>37 | 7.3<br>7.4<br>8.2<br>7.9<br>7.8 | .94<br>.98<br>1.0<br>1.1<br>1.1 | 37<br>27<br>18<br>13<br>10 | | 16<br>17<br>18<br>19<br>20 | 3.9<br>4.0<br>3.7<br>2.2<br>.96 | 9.9<br>6.2<br>6.9<br>5.0<br>4.4 | 1.6<br>1.5<br>1.4<br>1.5 | 4.6<br>4.3<br>4.2<br>4.5<br>5.0 | 7.0<br>7.0<br>6.6<br>6.4<br>6.8 | 40<br>25<br>22<br>24<br>23 | 12<br>12<br>12<br>10<br>9.0 | 6.4<br>5.7<br>6.5<br>8.4<br>8.2 | 30<br>24<br>21<br>18<br>16 | 7.9<br>8.1<br>8.7<br>9.0<br>9.2 | 1.1<br>1.0<br>.62<br>.98<br>1.7 | 7.5<br>5.8<br>4.5<br>3.9<br>3.7 | | 21<br>22<br>23<br>24<br>25 | 1.2<br>2.6<br>2.6<br>1.6 | 4.2<br>4.3<br>3.9<br>4.1<br>4.0 | 1.6<br>1.7<br>1.9<br>2.1<br>2.1 | 6.0<br>5.9<br>5.6<br>5.5<br>5.3 | 6.4<br>6.0<br>5.6<br>5.0<br>4.5 | 22<br>23<br>29<br>37<br>52 | 8.4<br>10<br>14<br>39<br>25 | 7.8<br>6.9<br>6.6<br>107<br>80 | 13<br>12<br>11<br>11<br>17 | 9.6<br>10<br>10<br>10<br>8.9 | 1.6<br>.99<br>.79<br>1.5<br>1.9 | 3.0<br>2.5<br>1.6<br>2.1<br>1.7 | | 26<br>27<br>28<br>29<br>30<br>31 | 2.4<br>2.9<br>2.6<br>3.1<br>.84<br>2.8 | 4.1<br>3.5<br>3.1<br>2.7<br>2.8 | 2.2<br>2.2<br>1.8<br>1.5<br>1.3 | 5.0<br>4.8<br>4.5<br>4.4<br>4.4 | 4.3<br>4.2<br>4.5 | 70<br>72<br>61<br>44<br>33<br>27 | 18<br>14<br>25<br>21<br>22 | 85<br>53<br>34<br>27<br>21<br>17 | 28<br>136<br>133<br>85<br>56 | 7.0<br>6.1<br>5.9<br>5.4<br>7.1<br>6.2 | 2.6<br>2.7<br>2.5<br>2.1<br>1.6<br>.92 | 2.7<br>1.9<br>.90<br>1.1<br>1.7 | | TOTAL<br>MEAN<br>MAX<br>MIN<br>AC-FT<br>CFSM<br>IN. | 103.91<br>3.35<br>8.7<br>.84<br>206<br>.01 | 114.1<br>3.80<br>9.9<br>1.6<br>226<br>.01 | 63.9<br>2.06<br>3.2<br>1.1<br>127<br>.01 | 233.5<br>7.53<br>35<br>1.0<br>463<br>.02 | 197.0<br>7.04<br>14<br>4.2<br>391<br>.02 | 1383.8<br>44.6<br>200<br>3.7<br>2740<br>.14<br>.16 | 491.4<br>16.4<br>39<br>8.4<br>975<br>.05 | 672.7<br>21.7<br>107<br>5.7<br>1330<br>.07 | 2713<br>90.4<br>503<br>11<br>5380<br>.29<br>.32 | 350.8<br>11.3<br>40<br>5.4<br>696<br>.04 | 56.60<br>1.83<br>5.3<br>.62<br>112<br>.01 | 215.84<br>7.19<br>37<br>.57<br>428<br>.02<br>.03 | CAL YR 1988 TOTAL 18532.52 MEAN 50.6 MAX 468 MIN .04 AC-FT 36760 CFSM .16 IN. 2.19 WTR YR 1989 TOTAL 6596.55 MEAN 18.1 MAX 503 MIN .57 AC-FT 13080 CFSM .06 IN. .78 121 05470500 SQUAW CREEK AT AMES, IA LOCATION.--Lat 42°01'21", long 93°37'45", in NE1/4 NW1/4 sec.10, T.83 N., R.24 W., Story County, Hydrological Unit 07080105, on left bank 65 ft downstream from Lincoln Way Bridge in Ames, 0.2 mi, downstream from College Creek, and 2.4 mi, upstream from mouth. DRAINAGE AREA. -- 204 mi2. PERIOD OF RECORD.--May 1919 to September 1927, May 1965 to current year. Monthly discharge only for some periods, published in WSP 1308. REVISED RECORDS. -- WSP 1308: 1920-22 (M), 1923, 1924-25 (M), 1926, 1927 (M), WDR Iowa. 1966: Drainage area, 1965, WDR IA-71-1: 1970 (M). GAGE.--Water-stage recorder and concrete control. Datum of gage is 881.00 ft above NGVD (levels by Iowa State University). Prior to Mar. 11, 1925, nonrecording gage at site 0.6 mi upstream at different datum. Mar. 11, 1925 to Apr. 30, 1927, nonrecording gage at site 65 ft upstream at datum about 4 ft higher. REMARKS.-- Estimated daily discharges: Dec. 26, 27, 29-31, Jan. 1, 2, 4, Mar. 29, Apr. 1-4. Records good except those for estimated daily discharges which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. National Weather Service gage-height telemeter at station. AVERAGE DISCHARGE.-32 years (water years 1920-27,1966-89), 127 ft<sup>3</sup>/s, 8.45 in/yr, 92,012 acre-ft/yr; median of yearly mean discharges, 98 ft<sup>3</sup>/s, 6.5 in/yr, 71,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 11,300 ft<sup>3</sup>/s June 27, 1975, gage height, 14.00 ft, on basis of contracted-opening measurement; no flow at times most years. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 4, 1918, reached a stage of 14.5 ft, from floodmarks, site and datum used 1919-25, discharge, 6,900 ft<sup>3</sup>/s. Flood of Mar. 1, 1965, reached a stage of 10.7 ft, from graph based on gage readings, at present site and datum, discharge, 4,200 ft<sup>3</sup>/s. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 1,600 ft3/s and maximum (\*): Discharge (ft<sup>3</sup>/s) \*2,050 Discharge (ft3/s) Gage height Gage height Date Time Time (ft) Date May 24 1030 No other peak greater than base discharge. No flow part of each day Oct. 1, 2, 5-9, 13-15 and Aug. 17, 18. | | | DISCHAR | GE, CUBIC | FEET PE | R SECOND | , WATER YE.<br>MEAN VALUE | ar octobi<br>S | ER 19 <b>88 T</b> O | SEPTEMBE | R 1989 | | | |-----------------------------------------------------|------------------------------------------|---------------------------------|------------------------------------------|--------------------------------------------|------------------------------------------|----------------------------------------------------|------------------------------------------|------------------------------------------------------|-------------------------------------------------|--------------------------------------------------|------------------------------------------|------------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | .06<br>.17<br>.34<br>.25<br>.11 | .80<br>.26<br>.27<br>.16<br>.24 | .43<br>.52<br>.57<br>.55<br>.80 | .45<br>.48<br>.54<br>.87<br>6.4 | 58<br>31<br>38<br>28<br>25 | 5.8<br>3.8<br>8.4<br>12<br>8.5 | 13<br>11<br>11<br>10<br>9.2 | 9.7<br>8.1<br>12 | 44<br>36<br>56<br>113<br>83 | 48<br>38<br>30<br>24<br>19 | 1.4<br>1.1<br>2.2<br>.83<br>3.6 | .35<br>.35<br>.35<br>17 | | 6<br>7<br>8<br>9<br>10 | .17<br>.21<br>.06<br>.26 | .24<br>.20<br>.19<br>.18<br>.21 | 1.1<br>1.3<br>1.2<br>1.3 | 29<br>36<br>2.4<br>1.7<br>.75 | 16<br>12<br>7.8<br>7.6<br>6.6 | 7.7<br>9.9<br>20<br>283<br>566 | 9.6<br>13<br>14<br>9.7<br>7.9 | 7.9<br>7.0<br>7.0<br>8.2<br>8.3 | 58<br>45<br>77<br>109<br>70 | 15<br>12<br>9.3<br>7.4<br>6.0 | . 58<br>. 56<br>. 53<br>. 42<br>. 32 | .48<br>5.1<br>15<br>19<br>9.1 | | 11<br>12<br>13<br>14<br>15 | .63<br>.35<br>.14<br>.06<br>.14 | . 51 | .69<br>.61<br>.75<br>1.0 | .46<br>.33<br>.31<br>.33<br>.38 | 7.1<br>7.5<br>6.3<br>5.8<br>6.3 | 249<br>122<br>83<br>74<br>31 | 7.3<br>7.2<br>7.2<br>5.8<br>5.0 | 9.8<br>7.1<br>7.0<br>6.5<br>5.4 | 51<br>44<br>35<br>28<br>24 | 4.8<br>39<br>54<br>35<br>24 | .24<br>.20<br>.21<br>.25<br>.27 | 5.9<br>2.7<br>2.0<br>1.2<br>.85 | | 16<br>17<br>18<br>19<br>20 | .16<br>.42<br>.54<br>.32 | 1.7<br>.96 | .69<br>.38<br>.63<br>.52<br>.83 | .44<br>.71<br>.80<br>1.9<br>2.8 | 6.6<br>8.3<br>6.5<br>5.0<br>6.0 | 35<br>5.2<br>20<br>14<br>11 | 5.0<br>5.3<br>5.7<br>4.6<br>3.8 | .90<br>.74<br>5.6<br>3.7<br>3.5 | 21<br>19<br>18<br>16<br>13 | 18<br>13<br>56<br>25<br>19 | .20<br>.02<br>.07<br>6.4<br>.42 | .64<br>.53<br>.50<br>.47<br>.34 | | 21<br>22<br>23<br>24<br>25 | .56<br>.65<br>.64<br>.41 | .40<br>.43<br>.53<br>.56<br>.56 | .48<br>.55<br>.89<br>1.4<br>5.5 | 8.8<br>9.9<br>11<br>8.9 | 5.7<br>7.4<br>5.9<br>6.3<br>6.5 | 11<br>12<br>7.2<br>8.1<br>6.5 | 4.8<br>16<br>9.9<br>12<br>11 | 6.4<br>3.3<br>1.8<br>1350<br>685 | 11<br>11<br>13<br>14<br>53 | 16<br>12<br>8.2<br>6.5<br>5.9 | .28<br>.25<br>1.5<br>.26<br>.22 | .37<br>.40<br>.50<br>.47<br>.42 | | 26<br>27<br>28<br>29<br>30<br>31 | .51<br>.49<br>.54<br>.52<br>.51 | 3.1<br>.68<br>.46<br>.61<br>.50 | .90<br>.60<br>.51<br>.45<br>.45 | 7.8<br>9.0<br>14<br>94<br>129<br>90 | 6.4<br>6.3<br>5.9 | 6.0<br>6.5<br>5.2<br>7.0<br>15 | 9.9<br>14<br>37<br>20<br>14 | 301<br>161<br>110<br>86<br>67<br>53 | 138<br>242<br>125<br>82<br>59 | 5.2<br>4.3<br>2.9<br>4.8<br>2.6<br>2.2 | 5.5<br>.39<br>.39<br>.32<br>.23 | .36<br>.25<br>.34<br>.43<br>.33 | | TOTAL<br>MEAN<br>MAX<br>MIN<br>AC-FT<br>CFSM<br>IN. | 11.12<br>.36<br>.66<br>.06<br>.22<br>.00 | 1.21 | 28.29<br>.91<br>5.5<br>.38<br>.56<br>.00 | 479.45<br>15.5<br>129<br>.31<br>951<br>.08 | 345.8<br>12.3<br>58<br>5.0<br>686<br>.06 | 1669.8<br>53.9<br>566<br>3.8<br>3310<br>.26<br>.30 | 313.9<br>10.5<br>37<br>3.8<br>623<br>.05 | 2966.94<br>95.7<br>1350<br>.74<br>5880<br>.47<br>.54 | 1708<br>56.9<br>242<br>11<br>3390<br>.28<br>.31 | 567.1<br>18.3<br>56<br>2.2<br>1120<br>.09<br>.10 | 29.41<br>.95<br>6.4<br>.02<br>.58<br>.00 | 86.35<br>2.88<br>19<br>.25<br>171<br>.01 | TOTAL 11706.50 MEAN 32.0 MAX 432 MIN .00 AC-FT 23220 CFSM .16 IN. 2.13 TOTAL 8242.58 MEAN 22.6 MAX 1350 MIN .02 AC-FT 16350 CFSM .11 IN. 1.50 CAL YR 1988 WTR YR 1989 122 SKUNK RIVER BASIN #### 05471050 SOUTH SKUNK RIVER AT COLFAX, IA LOCATION.--Lat 41°40'55", long 93°14'47", in NE1/4 NE1/4 SW1/4 sec. 1, T.79 N., R.21 W., Jasper County, Hydrologic Unit 07080105, on left bank 15 ft downstream of bridge on State Highway 117 at north edge of Colfax, 1 mi downstream from Sugar Creek, 2.8 mi upstream from Indian Creek, and at mile 191 upstream from mouth of Skunk #### WATER-DISCHARGE RECORDS DRAINAGE AREA. -- 803 mi2. PERIOD OF RECORD. -- October 1985 to current year. GAGE. -- Water-stage recorder. Datum of gage is 770.00 ft above NGVD. REMARKS.--Estimated daily discharges: Dec. 9 to Mar. 10, and Mar. 18-22. Records good except those for estimated daily discharges, which are poor. U.S. National Weather Service Limited Automatic Remote Collector at station. EXTREMES FOR PERIOD OF RECORD.-- Maximum discharge, 6,850 ft<sup>3</sup>/s Aug. 27, 1987, gage height, 17.35 ft; minimum discharge, 1.2 ft<sup>3</sup>/s Aug. 18, 19, 1988. EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood occurred in late June, 1975, discharge and gage height not determined. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 3,000 ft3/s and maximum (\*): | Date Time<br>Mar. 10 1015 | | ( | Discharge<br>(ft <sup>3</sup> /s)<br>Ice jam<br>e, 6.4 ft <sup>3</sup> /s Dec. | | Gage height (ft) *12.85 | | Date<br>May 25 | | Discharge<br>(ft <sup>3</sup> /s)<br>*2,180 | | Gage heigh<br>(ft)<br>11.98 | | |-----------------------------------------------------|------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------|--------------------------------------------------|------------------------------------------|--------------------------------------------------|-------------------------------------------------|------------------------------------------|----------------------------------------|------------------------------------------| | mini | mum dischar | | · | | | | | | | | | | | | | DISCHAR | GE, CUBI | C FEET PER | | WATER YEAR<br>EAN VALUES | OCTOBER | 1988 TO | SEPTEMBER | 1989 | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | 9.8<br>8.3<br>8.2<br>8.5 | 17<br>17<br>18<br>21<br>21 | 13<br>15<br>19<br>16<br>17 | 8.4<br>7.2<br>6.6<br>7.0 | 100<br>56<br>30<br>25<br>24 | 12<br>13<br>13<br>13<br>12 | 75<br>72<br>66<br>61<br>57 | 93<br>83<br>74<br>69<br>63 | 160<br>143<br>195<br>205<br>560 | 165<br>135<br>115<br>91<br>75 | 34<br>32<br>31<br>32<br>33 | 31<br>25<br>24<br>27<br>30 | | 6<br>7<br>8<br>9<br>10 | 9.0<br>9.5<br>9.8<br>10 | 16<br>14<br>13<br>14<br>14 | 18<br>17<br>12<br>10<br>9.0 | 11<br>10<br>9.0<br>8.5<br>8.0 | 23<br>23<br>21<br>20<br>20 | 13<br>14<br>20<br>100<br>500 | 54<br>52<br>55<br>56<br>51 | 57<br>52<br>46<br>43<br>38 | 415<br>290<br>227<br>205<br>290 | 65<br>59<br>52<br>45<br>42 | 31<br>27<br>25<br>24<br>23 | 31<br>70<br>123<br>234<br>167 | | 11<br>12<br>13<br>14<br>15 | 9.2<br>8.9<br>9.7<br>10 | 13<br>19<br>18<br>16<br>20 | 10<br>12<br>14<br>13<br>12 | 8.5<br>9.0<br>8.6<br>8.2<br>7.8 | 19<br>18<br>18<br>17<br>17 | 1220<br>755<br>417<br>271<br>196 | 48<br>47<br>46<br>44<br>42 | 36<br>33<br>32<br>29<br>27 | 242<br>196<br>168<br>148<br>137 | 45<br>50<br>43<br>89<br>96 | 22<br>21<br>22<br>23<br>24 | 110<br>95<br>86<br>77<br>66 | | 16<br>17<br>18<br>19<br>20 | 11<br>12<br>12<br>12<br>13 | 33<br>24<br>22<br>18<br>16 | 12<br>11<br>11<br>10<br>10 | 7.4<br>7.2<br>7.0<br>7.4<br>7.8 | 16<br>16<br>16<br>15 | 155<br>133<br>80<br>86<br>90 | 41<br>39<br>37<br>35<br>34 | 25<br>23<br>25<br>27<br>23 | 123<br>111<br>102<br>95<br>86 | 76<br>63<br>144<br>175<br>102 | 21<br>20<br>18<br>20<br>24 | 57<br>52<br>45<br>40<br>36 | | 21<br>22<br>23<br>24<br>25 | 15<br>16<br>16<br>14<br>14 | 12<br>13<br>18<br>18<br>16 | 10<br>11<br>12<br>13<br>12 | 8.4<br>9.0<br>8.4<br>7.8<br>7.2 | 14<br>14<br>12<br>12<br>13 | 92<br>94<br>93<br>93<br>97 | 35<br>34<br>36<br>41<br>43 | 21<br>21<br>20<br>654<br>1650 | 81<br>74<br>71<br>68<br>79 | 81<br>81<br>73<br>65<br>57 | 19<br>21<br>34<br>45<br>28 | 34<br>32<br>29<br>29<br>29 | | 26<br>27<br>28<br>29<br>30<br>31 | 14<br>15<br>15<br>14<br>15 | 24<br>19<br>11<br>14<br>15 | 11<br>12<br>12<br>11<br>10<br>9.0 | 7.0<br>10<br>20<br>30<br>40<br>70 | 13<br>12<br>12<br> | 102<br>115<br>120<br>113<br>98<br>83 | 66<br>101<br>241<br>153<br>102 | 815<br>527<br>350<br>273<br>239<br>186 | 115<br>116<br>291<br>284<br>216 | 51<br>47<br>42<br>40<br>41<br>38 | 46<br>30<br>29<br>51<br>34<br>31 | 28<br>26<br>25<br>26<br>25 | | TOTAL<br>MEAN<br>MAX<br>MIN<br>AC-FT<br>CFSM<br>IN. | 367.9<br>11.9<br>17<br>8.2<br>730<br>.01 | 524<br>17.5<br>33<br>11<br>1040<br>.02 | 384.0<br>12.4<br>19<br>9.0<br>762<br>.02 | 382.4<br>12.3<br>70<br>6.6<br>758<br>.02<br>.02 | 611<br>21.8<br>100<br>12<br>1210<br>.03 | 5213<br>168<br>1220<br>12<br>10340<br>.21<br>.24 | 1864<br>62.1<br>241<br>34<br>3700<br>.08 | 5654<br>182<br>1650<br>20<br>11210<br>.23<br>.26 | 5493<br>183<br>560<br>68<br>10900<br>.23<br>.25 | 2343<br>75.6<br>175<br>38<br>4650<br>.09 | 875<br>28.2<br>51<br>18<br>1740<br>.04 | 1709<br>57.0<br>234<br>24<br>3390<br>.07 | CAL YR 1988 TOTAL 48473.0 MEAN 132 MAX 700 MIN 1.4 AC-FT 96150 CFSM .16 IN. 2.25 WTR YR 1989 TOTAL 25420.3 MEAN 69.6 MAX 1650 MIN 6.6 AC-FT 50420 CFSM .09 IN. 1.18 --- 684 \_\_\_ #### SKUNK RIVER BASIN ### 05471050 SOUTH SKUNK RIVER AT COLFAX, IA--Continued WATER-QUALITY RECORDS PERIOD OF RECORD. -- April 1988 to current year. --- PERIOD OF DAILY RECORD. -SPECIFIC CONDUCTANCE: October 1988 to September 1989. WATER TEMPERATURES: October 1988 to September 1989. SUSPENDED-SEDIMENT DISCHARGE: October 1988 to September 1989. REMARKS.--Records of specific conductance are obtained from suspended-sediment samples at time of analysis. Miscellaneous records of specific conductance, water temperature, and suspended-sediment discharge from May 13 to September 30, 1988 on file at the District Office in lowa City. EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 790 microsiemens Feb. 18,1989; minimum daily, 255 microsiemens Mar. 1989 HATER TEMPERATURES: Maximum daily, 31.0°C July 7, 1989; minimum daily, 0.0°C on many days during winter periods. SEDIMENT CONCENTRATIONS: Maximum daily mean, 2,250 mg/L May 25, 1989; minimum daily mean, 3 mg/L Apr. 12, 1989. SEDIMENT LOADS: Maximum daily, 10,100 tons May 25, 1989; minimum daily, 0.05 ton Jan. 7, 8, 1989. EXTREMES FOR CURRENT YEAR. -SEDIMENT CONCENTRATIONS: Maximum daily mean, 2,250 mg/L May 25; minimum daily mean, 3 mg/L Apr. 12, 1989. SEDIMENT LOADS: Maximum daily, 10,100 tons May 25; minimum daily, 0.05 ton Jan. 7, 8. SPECIFIC CONDUCTANCE MICROSIEMENS/CM AT 25 DEG C, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 INSTANTANEOUS VALUES AUG SEP DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JIII. 2 3 ------695 700 \_------725 ------------\_---680 ---------4 5 640 ---\_------705 650 67 ---------\_\_\_ \_\_\_ ---520 535 ------\_\_\_ ------\_\_\_ ---715 716 8 9 10 \_---675 ---------------670 \_---------315 695 ------750 ------------255 11 12 13 14 15 ------------700 585 745 745 ---340 755 680 ---455 465 ---640 \_\_\_ 750 ---\_\_\_ ---730 450 435 ---770 16 17 18 19 20 ---720 \_\_\_ ---\_\_\_ \_\_\_ ------------790 750 ---------------------------------------490 600 21 22 23 24 25 ------\_\_\_ ------755 ------------730 ------375 \_\_\_ ------------------------------------295 ---725 365 ---------------640 ------26 27 28 29 30 ------665 415 ---------------------------------------------------------685 --- --- --- # 05471050 SOUTH SKUNK RIVER AT COLFAX, IA-CONTINUED ### WATER-QUALITY RECORDS | | | WATER | TEMPERATURE, | DEGREES | CELSIUS,<br>INSTAN | WATER Y | YEAR OCTOBER<br>VALUES | 1988 | TO SEPTEMBER | 1989 | | | |----------|------|-------|--------------|---------|--------------------|---------|------------------------|------|--------------|------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | | | | | | 1.0 | | | | | | 30.0 | | 2 | | | | | | | | | | | | 28.0 | | 3 | | | | | | | | 11.0 | | | | 22.0 | | 4 | 11.5 | | | | | | | | | | | | | 5 | | | | | | | | | | 30.0 | | 27.0 | | 6 | | | | | | | | | | | | 30.0 | | 7 | | | | | | | | | | 31.0 | | 22.0 | | 8 | | | | | | | | | | | | 21.0 | | .9 | | | | | | | | | | | | 23.0 | | 10 | | | | | | | | | | | | | | 11 | | | | | | | | | | | | | | 12 | | | | | | | | | 24.0 | 24.0 | | 15.0 | | 13 | | | | .0 | | | | | | | | 18.0 | | 14 | | 8.0 | | | | | | | | | | | | 15 | | | | | | | | | | | | | | 16 | | | | | | | | | 15.5 | | | | | 17 | | | | | | | | | | 25.0 | | | | 18 | | | | | | | | | | | | | | 19 | | | | | | | | | | 21.0 | | | | 20 | | | | | | | | | | 20.0 | | | | 21 | | | . 5 | | | | | | | | | | | 22<br>23 | | | | | | | 14.0 | | | | | | | 23 | | | | | | | 21.0 | | | | 30.0 | | | 24 | | | | | | | | 19.5 | | | | | | 25 | | | | | | | | 20.0 | | | | | | 26<br>27 | | | | | | | | | 25.0 | | | | | 27 | | | | | | | | | | | | | | 28 | | | | | | | 17.0 | | | | | | | 29 | | | | | | | | | | | | | | 30 | | | | | | | | | | | | | | 31 | | | | | | | | | | | | | ### SUSPENDED-SEDIMENT WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DAY | MEAN<br>CONCEN-<br>TRATION<br>(MG/L) | LOAD<br>(TONS/<br>DAY) | |----------------------------------|--------------------------------------|----------------------------------------|--------------------------------------|---------------------------------|--------------------------------------|----------------------------------------|--------------------------------------|----------------------------------------|-----------------------------------------|---------------------------------|--------------------------------------|----------------------------------------| | | OCTO | BER | NOVEMBER | | DECEMBER | | JANUARY | | FEBRUARY | | MARCH | | | 1<br>2<br>3<br>4<br>5 | <br><br> | .24<br>.21<br>.18<br>.13<br>.18 | | .41<br>.37<br>.34<br>.74 | | . 49<br>. 45<br>. 41<br>. 65<br>. 46 | | .11<br>.10<br>.09<br>.08 | ======================================= | 4.6<br>2.0<br>.81<br>.67<br>.60 | 20<br>19<br>19<br>18<br>16 | .65<br>.67<br>.63<br>.52 | | 6<br>7<br>8<br>9 | == | .41<br>.46<br>.42<br>.54 | <br><br> | . 56<br>. 42<br>. 35<br>. 34 | <br><br> | .49<br>.32<br>.16<br>.16 | | .09<br>.05<br>.05<br>.11 | | .40<br>.31<br>.28<br>.27 | 15<br>15<br>89<br>262 | .53<br>.57<br>4.8<br>71 | | 10<br>11<br>12<br>13<br>14<br>15 | <br><br><br> | .51<br>.37<br>.29<br>.50<br>.62<br>.68 | | .30<br>.25<br>.92<br>.83<br>.43 | <br><br><br> | .12<br>.13<br>.16<br>.15<br>.18<br>.23 | <br><br><br> | .28<br>.73<br>1.1<br>.51<br>.35 | <br><br><br>12 | .27<br>.23<br>.24<br>1.1<br>1.1 | 402<br>363<br>239<br>100<br>63<br>53 | 543<br>1200<br>487<br>113<br>46<br>28 | | 16<br>17<br>18<br>19<br>20 | | .65<br>.68<br>.52<br>.49<br>.56 | | 3.8<br>1.9<br>2.1<br>1.1<br>.78 | | .16<br>.15<br>.12<br>.08<br>.08 | <br><br> | .24<br>.21<br>.19<br>.18<br>.17 | 10<br>10<br>7<br>15<br>25 | .49<br>.46<br>.30<br>.61 | 50<br>19<br>18<br>17<br>15 | 21<br>6.8<br>3.9<br>3.9<br>3.6 | | 21<br>22<br>23<br>24<br>25 | <br><br> | .69<br>.95<br>1.7<br>.98<br>.76 | ==<br>==<br>== | .49<br>.42<br>1.2<br>1.4<br>.69 | <br><br> | .76<br>1.0<br>.68<br>.35<br>.65 | | . 57<br>. 68<br>. 50<br>. 38<br>. 25 | 58<br>75<br>65<br>57<br>49 | 2.2<br>2.8<br>2.1<br>2.0<br>2.0 | 12<br>25<br>38<br>25<br>8 | 3.0<br>6.3<br>9.5<br>6.3<br>2.1 | | 26<br>27<br>28<br>29<br>30<br>31 | | .76<br>.69<br>.61<br>.38<br>.40 | | 1.8<br>1.4<br>.68<br>.60<br>.57 | <br><br><br> | .50<br>.45<br>.42<br>.30<br>.22<br>.17 | <br><br> | .21<br>.51<br>2.3<br>9.1<br>6.0<br>5.7 | 40<br>31<br>26<br> | 1.5<br>1.1<br>.84<br> | 15<br>19<br>17<br>12<br>9<br>8 | 4.1<br>5.9<br>5.5<br>3.7<br>2.4<br>1.8 | | TOTAL | ւ | 17.02 | | 27.39 | | 10.65 | | 31.24 | ~~~ | 30.90 | | 2586.84 | MEAN CONCEN- LOAD TRATION (TONS/ (MG/L) DAY) MEAN CONCEN- LOAD TRATION (TONS/ (MG/L) DAY) 125 MEAN CONCEN- LOAD TRATION (TONS/ (MG/L) DAY) ## 05471050 SOUTH SKUNK RIVER AT COLFAX, IA--Continued WATER-QUALITY RECORDS SEDIMENT, SUSPENDED CONCENTRATION (MG/L), WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 MEAN CONCEN- LOAD TRATION (TONS/ (MG/L) DAY) MEAN CONCEN- LOAD TRATION (TONS/ (MG/L) DAY) MEAN CONCENTRATION (TONS/ (MG/L) DAY) | | (1.0,0, | | (12,2) | <i>D111</i> / | (120) 2 | , ,,, | , (120) | | DAL, | (120/12) | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | (1272 | | | |----------------------------------|-----------------------------------|---------------------------------|----------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------| | | | APRIL | | MAY | | JUNE | | Jt | JLY | A | AUGUST | SEPT | EMBER | | | 1<br>2<br>3<br>4<br>5 | 7<br>7<br>6<br>6<br>4 | 1.4<br>1.4<br>1.1<br>.99<br>.62 | 170<br>65<br>43<br>36<br>30 | 1 | | 43<br>42<br>110<br>135<br>320 | 19<br>16<br>58<br>75<br>496 | 50<br>41<br>38<br>34<br>30 | 22<br>15<br>12<br>8.4<br>6.1 | 19<br>14<br>13<br>16<br>23 | 1.2<br>1.1<br>1.4 | 17<br>15<br>18<br>21<br>18 | 1.4<br>1.0<br>1.2<br>1.5 | | | 6<br>7<br>8<br>9<br>10 | 4<br>7<br>23<br>32<br>23 | .58<br>.98<br>3.4<br>4.8<br>3.2 | 26<br>24<br>20<br>18<br>17 | | 4.0<br>3.4<br>2.5<br>2.1<br>1.7 | 229<br>193<br>168 | 308<br>179<br>118<br>93<br>163 | 23<br>16<br>15<br>13<br>13 | 4.0<br>2.5<br>2.1<br>1.6<br>1.5 | 20<br>17<br>13 | 1.5<br>7 1.1<br>3 .84 | 20<br>107<br>179<br>172<br>70 | 1.7<br>20<br>59<br>109<br>32 | | | 11<br>12<br>13<br>14<br>15 | 5<br>3<br>11<br>13<br>10 | .65<br>.38<br>1.4<br>1.5<br>1.1 | 16<br>15<br>13<br>12<br>10 | | 1.6<br>1.3<br>1.1<br>.94<br>.73 | 170<br>123<br>90<br>63<br>42 | 111<br>65<br>41<br>25<br>16 | 20<br>38<br>31<br>54<br>58 | 2.4<br>5.1<br>3.6<br>13<br>15 | ε | 34<br>36<br>37 | 21 | 13<br>5.4<br>4.9<br>4.4<br>3.6 | | | 16<br>17<br>18<br>19<br>20 | 9<br>8<br>11<br>10<br>10 | 1.0<br>.84<br>1.1<br>.94 | 10<br>10<br>7<br>6<br>5 | | .67<br>.62<br>.47<br>.44 | 35<br>34<br>31<br>30<br>27 | 12<br>10<br>8.5<br>7.7<br>6.3 | 19<br>11<br>151<br>423<br>72 | 3.9<br>1.9<br>89<br>206<br>21 | 17<br>12<br>9<br>13<br>24 | 2 .65<br>9 .44<br>3 .70 | 15 | 2.6<br>2.1<br>1.7<br>1.4<br>1.2 | | | 21<br>22<br>23<br>24<br>25 | 10<br>19<br>30<br>44<br>30 | .94<br>1.7<br>2.9<br>4.9<br>3.5 | 5<br>5<br>5<br>2110<br>2250 | 539 | | 24<br>21<br>19<br>16<br>15 | 5.2<br>4.2<br>3.6<br>2.9<br>3.2 | 26<br>38<br>33<br>28<br>26 | 5.7<br>8.3<br>6.5<br>4.9<br>4.0 | 18<br>39 | 1.0<br>3.6<br>3 9.5 | 10<br>9<br>8<br>8<br>22 | .92<br>.78<br>.63<br>.63 | | | 26<br>27<br>28<br>29<br>30<br>31 | 116<br>276<br>2240<br>1550<br>620 | 19<br>85<br>1620<br>640<br>171 | 790<br>289<br>170<br>98<br>79<br>50 | 41<br>16<br>7<br>5 | 4<br>1<br>2<br>1 | 80<br>85<br>182<br>113<br>73 | 29<br>27<br>143<br>87<br>43 | 25<br>22<br>19<br>23<br>25<br>20 | 3.4<br>2.8<br>2.2<br>2.5<br>2.8<br>2.1 | 32<br>28<br>58<br>56 | 2 2.6<br>3 2.2<br>3 8.0<br>5 5.1 | 17<br>14<br>20<br>24<br>19 | 1.3<br>.98<br>1.3<br>1.7<br>1.3 | | | TOTAL | | 2577.24 | | 1807 | 4.11 | 2 | 175.6 | | 481.3 | | 66.01 | | 279.84 | | | YEAR | | 26358,14 | | | | | | | | | | | | | | | | PAI<br>DAT | | IME ( | EMPER-<br>ATURE<br>WATER<br>DEG C) | OF SUSP<br>DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | SEDI-<br>MENT,<br>SUS-<br>PENDED<br>(MG/L)<br>(80154) | IMENT,<br>SEDI<br>MENT<br>DIS<br>CHARG<br>SUS<br>PENI<br>(T/DA<br>(8015 | F,<br>S=<br>SE,<br>S= %<br>DED<br>AY) .0 | SUSP.<br>FALL<br>DIAM.<br>FINER 1<br>THAN<br>02 MM . | SUSP.<br>FALL<br>DIAM.<br>FINER<br>THAN<br>004 MM | SUSP.<br>FALL<br>DIAM.<br>Z FINER :<br>THAN<br>.008 MM | THAN<br>.016 MM . | SED.<br>SUSP.<br>SIEVE<br>DIAM.<br>FINER<br>THAN<br>062 MM | | | | MAR | _ | | | | | | | | | | | | | | | 16<br>APR_ | | 350 | 5.0 | 153 | 28 | 12 | | | | | | 61 | | | | 27<br>JUN | | 015 | 12.5 | 86 | 294 | 68 | | 64 | 75 | 79 | 84 | 99 | | | | 08<br>JUL | . 1 | 240 | 22.0 | 230 | 191 | 119 | | | | | | 98 | | | | 20<br>AUG | . 0 | 930 | 20.0 | 103 | 42 | 12 | | | | | | 96 | | | | 31 | . 1 | 510 | 29.5 | 30 | 29 | 2. | . 3 | | | | | 98 | | D. | ATE | TIME I | NUMBER OF SAM- PLING Z POINTS COUNT) . | IBUTION BED MAT. SIEVE DIAM. FINER THAN 062 MM 80164) | OF SURFA<br>BED<br>MAT.<br>SIEVE<br>DIAM.<br>Z FINER<br>THAN<br>.125 MM<br>(80165) | BED<br>MAT.<br>SIEVE<br>DIAM.<br>Z FINE<br>THAN<br>.250 M | BED<br>MAT.<br>SIEVE<br>DIAM.<br>R Z FINE<br>THAN<br>M .500 M | . SI<br>. SI<br>. DI<br>. Z . F<br> | BED<br>MAT.<br>IEVE<br>IAM.<br>FINER<br>THAN | OCTOBER<br>BED<br>MAT.<br>SIEVE<br>DIAM.<br>Z FINER<br>THAN<br>2.00 MM<br>(80169) | 1988 TO BED MAT. SIEVE DIAM. FINER THAN 4.00 MM (80170) | THAN<br>8.00 MM | 1989<br>BED<br>MAT.<br>SIEVE<br>DIAM.<br>Z FINER<br>THAN<br>16.0 MM<br>(80172) | BED<br>MAT.<br>SIEVE<br>DIAM.<br>Z FINER<br>THAN<br>32.0 MM<br>(80173) | | MA | R<br>16 | 1320 | 5 | 1 | 2 | 1 | 7 8 | 10 | 96 | 98 | 99 | 99 | 100 | | | AP | | 0952 | 5 | 1 | 1 | | | 9 | 90 | 93 | 94 | _ | 100 | | | JU | N<br>08 | 1225 | 5 | | 0 | | | 9 | 94 | 98 | 99 | 100 | | | | JŪ | L<br>20 | 0925 | 1 | 0 | 1 | 1 | | 8 | 94 | 96 | 97 | 98 | 100 | | | AU | G | | | | | | | | | | 94 | 94 | 96 | 100 | | | 31 | 1310 | 5 | 1 | 2 | 1 | υ <i>/</i> | 4 | 91 | 93 | 94 | 34 | 50 | 100 | ### 05471200 INDIAN CREEK NEAR MINGO, IA LOCATION.--Lat 41°48'17", long 93°18'36", in NW1/4 NW1/4 secs. 28, T.81 N., R.21 W., Hydrologic Unit 07080105, Jasper County, on right bank 30 ft downstream from bridge on State Highway 117, 0.7 mi downstream from Wolf Creek, 2.2 mi upstream from Byers Branch, 2.9 mi northwest of Mingo, and 11.3 mi upstream from S. Skunk River. DRAINAGE AREA. -- 276 mi2. PERIOD OF RECORD. -- May 1958 to September 1975; October 1985 to current year. REVISED RECORDS. -- WSP 1728: 1958 (M), 1959 (M). GAGE. -- Water-stage recorder. Datum of gage is 810.47 ft above NGVD. REMARKS.--Estimated daily discharges: Dec. 9 to Mar. 9, 18-24. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. National Weather Service Limited Automatic Remote Collector at station. AVERAGE DISCHARGE.--21 years (water years 1959-75, 1986-89) 181 ft<sup>3</sup>/s, 8.91 in/yr, 131,100 acre-ft/yr; median of yearly mean discharges, 160 ft<sup>3</sup>/s, 7.9 in/yr, 116,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 7,380 ft<sup>3</sup>/s June 12, 1966, gage height, 16.41 ft; no flow part of each day Aug. 13, 16-19, 1989. EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood of May 20, 1944, reached a stage of 21.4 ft, from information by local resident, discharge not determined. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 1,500 ft3/s and maximum (\*): | | | Discharge | Gage height | | | Discharge | Gage height | |--------|------|------------|-------------|------|------|------------|-------------| | Date | Time | $(ft^3/s)$ | (ft) | Date | Time | $(ft^3/s)$ | (ft) | | May 24 | 1015 | *1.010 | *8.13 | | | | | No flow part of each day Aug. 13, 16-19. | | | DISCHA | RGE, CUBIC | FEET PE | R SECOND | , WATER YE<br>MEAN VALUE | AR OCTOBE | ER 1988 TO | SEPTEMB | ER 1989 | | | |-----------------------------------|------------------------------------------|-------------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|----------------------------------------------------|------------------------------------------|---------------------------------------------|------------------------------------------|-------------------------------------------|------------------------------------------|-------------------------------------------| | DAY | ОСТ | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | .82<br>.91<br>.86<br>.87<br>.92 | 1.7<br>3.0<br>3.0<br>1.8<br>1.9 | 5.6<br>5.6<br>4.6<br>4.7<br>4.6 | 1.5<br>1.4<br>1.3<br>1.4<br>2.0 | 19<br>15<br>12<br>9.0<br>6.6 | 2.8<br>2.9<br>2.8<br>2.9<br>3.0 | 8.7<br>8.5<br>8.0<br>7.1<br>6.5 | 17<br>12<br>10<br>10<br>9.0 | 15<br>12<br>85<br>28<br>18 | 2.5<br>2.3<br>1.5<br>1.5 | .80<br>.47<br>1.0<br>1.5<br>1.8 | 2.0<br>.64<br>.52<br>1.4<br>.82 | | 6<br>7<br>8<br>9<br>10 | 1.1<br>1.2<br>1.4<br>1.4 | 1.5<br>1.1<br>1.8<br>2.0<br>1.6 | 4.4<br>4.2<br>4.6<br>4.0<br>3.0 | 3.0<br>2.5<br>2.2<br>2.0<br>1.9 | 5.6<br>4.9<br>4.3<br>4.1<br>3.8 | 3.1<br>3.2<br>10<br>100<br>529 | 5.9<br>5.6<br>8.7<br>9.7<br>8.4 | 8.1<br>7.6<br>7.7<br>7.4<br>6.8 | 14<br>12<br>12<br>11<br>9.3 | 1.1<br>1.1<br>.97<br>1.2<br>.97 | 1.1<br>.19<br>.15<br>.14 | 2.4<br>8.7<br>13<br>71<br>51 | | 11<br>12<br>13<br>14<br>15 | .95<br>1.1<br>1.3<br>1.2<br>1.2 | 2.5<br>5.8<br>6.5<br>5.9<br>7.2 | 3.3<br>3.0<br>2.7<br>2.5<br>2.3 | 2.1<br>2.1<br>2.0<br>2.0<br>1.9 | 4.1<br>4.4<br>4.2<br>4.0<br>3.9 | 241<br>114<br>61<br>46<br>31 | 7.5<br>6.6<br>6.0<br>5.8<br>5.2 | 6.5<br>6.5<br>6.9<br>7.2<br>7.5 | 8.0<br>8.0<br>6.7<br>5.2<br>4.3 | 2.9<br>1.9<br>1.2<br>.81<br>1.2 | 1.2<br>.27<br>.16<br>.45<br>.30 | 29<br>17<br>12<br>7.9<br>6.4 | | 16<br>17<br>18<br>19<br>20 | 1.6<br>2.0<br>1.8<br>1.8<br>2.3 | 12<br>14<br>8.7<br>5.8<br>4.2 | 2.2<br>2.1<br>1.9<br>1.8<br>1.7 | 1.9<br>1.8<br>1.8<br>1.9<br>2.1 | 3.8<br>3.7<br>3.6<br>3.5<br>3.4 | 29<br>21<br>19<br>18<br>17 | 5.6<br>5.1<br>5.3<br>4.9<br>4.9 | 8.4<br>8.8<br>13<br>14<br>16 | 3.9<br>3.6<br>3.6<br>3.4<br>3.5 | 1.0<br>.68<br>91<br>41<br>17 | .11<br>.05<br>.01<br>.24<br>.46 | 5.1<br>4.6<br>3.2<br>2.8<br>2.5 | | 21<br>22<br>23<br>24<br>25 | 2.6<br>1.8<br>2.2<br>1.9<br>2.0 | 3.9<br>4.3<br>4.1<br>4.1<br>3.5 | 1.7<br>1.6<br>1.5<br>1.8<br>1.6 | 2.3<br>2.5<br>2.4<br>2.3<br>2.2 | 3.3<br>3.2<br>3.1<br>2.8<br>3.0 | 16<br>17<br>17<br>18<br>18 | 4.4<br>9.7<br>6.6<br>5.5<br>4.9 | 11<br>11<br>11<br>556<br>259 | 3.0<br>2.8<br>2.6<br>2.6<br>7.5 | 10<br>6.6<br>4.9<br>3.6<br>3.0 | .09<br>.06<br>3.0<br>7.0<br>1.2 | 2.2<br>1.9<br>1.0<br>1.3<br>1.2 | | 26<br>27<br>28<br>29<br>30<br>31 | 1.4<br>1.7<br>1.3<br>1.4<br>1.6<br>2.0 | 5.6<br>4.6<br>6.1<br>6.2<br>5.3 | 1.7<br>1.8<br>1.9<br>1.8<br>1.7 | 2.1<br>2.5<br>5.0<br>8.0<br>15<br>25 | 2.9<br>2.9<br>2.8<br> | 19<br>17<br>15<br>12<br>11<br>9.2 | 5.1<br>5.8<br>13<br>29<br>24 | 97<br>52<br>33<br>27<br>23<br>18 | 13<br>13<br>7.8<br>4.5<br>3.1 | 2.6<br>2.0<br>1.4<br>1.9<br>1.7 | 26<br>11<br>5.7<br>6.3<br>2.3<br>2.5 | .95<br>.95<br>.97<br>1.1<br>1.0 | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 45.93<br>1.48<br>2.6<br>.82<br>91<br>.01 | 139.7<br>4.66<br>14<br>1.1<br>277<br>.02<br>.02 | 87.5<br>2.82<br>5.6<br>1.5<br>174<br>.01 | 108.1<br>3.49<br>25<br>1.3<br>214<br>.01 | 146.9<br>5.25<br>19<br>2.8<br>291<br>.02 | 1425.9<br>46.0<br>529<br>2.8<br>2830<br>.17<br>.19 | 242.0<br>8.07<br>29<br>4.4<br>480<br>.03 | 1288.4<br>41.6<br>556<br>6.5<br>2560<br>.15 | 326.4<br>10.9<br>85<br>2.6<br>647<br>.04 | 211.83<br>6.83<br>91<br>.68<br>420<br>.02 | 75.65<br>2.44<br>26<br>.01<br>150<br>.01 | 254.55<br>8.48<br>71<br>.52<br>505<br>.03 | CAL YR 1988 TOTAL 15897.70 MEAN 43.4 MAX 350 MIN .22 AC-FT 31530 CFSM .16 IN. 2.14 WTR YR 1989 TOTAL 4352.86 MEAN 11.9 MAX 556 MIN .01 AC-FT 8630 CFSM .04 IN. .59 ### 05471500 SOUTH SKUNK RIVER NEAR OSKALOOSA, IA LOCATION.--Lat 41°21'19", long 92°39'31", in NW1/4 SW1/4 sec.25, T.76 N., R.16 W., Mahaska County, Hydrologic Unit 07080105, on right bank 400 ft upstream from bridge on U.S. Highway 63, 0.3 mi downstream from Painter Creek, 4.0 mi north of Oskaloosa, 52.0 mi upstream from confluence with North Skunk River, and at mile 147.3 upstream from mouth of Skunk River. DRAINAGE AREA. -- 1.635 mi2. PERIOD OF RECORD.--October 1945 to current year. Prior to October 1966, published as Skunk River near Oskaloosa. Prior to October 1948, monthly discharge only, published in WSP 1308. REVISED RECORDS. -- WSP 1438: Drainage area. GAGE, --Water-stage recorder. Datum of gage is 685.50 ft above NGVD. Prior to Nov. 21, 1947, nonrecording gage at site 400 ft downstream at same datum. REMARKS.--Estimated daily discharges: Dec. 7 to Mar. 12 and Mar 21, 22. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers data collection platform at station. AVERAGE DISCHARGE.--44 years, 947 ft3/s, 7.87 in/yr, 686,100 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 20,000 ft<sup>3</sup>/s June 15, 1947, gage height, 21.26 ft, from floodmarks; maximum gage height, 22.52 ft Feb. 3, 1973, backwater from ice; minimum daily discharge, 1.8 ft<sup>3</sup>/s Oct. 11-13, 1956. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in May 1944 reached a stage of 25.8 ft, from floodmarks, discharge, 37,000 ft<sup>3</sup>/s, from rating curve extended above 18,000 ft<sup>3</sup>/s on basis of velocity-area study. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 5,000 ft3/s and maximum (\*): | | | Discharge | Gage height | | | Discharge | Gage height | |---------|------|------------|-------------|---------|------|-----------|-------------| | Date | Time | $(ft^3/s)$ | (ft) | Date | Time | (ft³/s) | (ft) | | Mar. 11 | 2130 | Ice iam | *18.00 | Sept. 9 | 1000 | *3.660 | 14.44 | Minimum daily discharge, 12 ft<sup>3</sup>/s Dec. 17. | | | DISCHARGE | , CUBIC | FEET PER | SECOND,<br>M | WATER YEAR<br>EAN VALUES | OCTOBER | 1988 TO | SEPTEMBER | 1989 | | | |-----------------------------------|----------------------------------------|----------------------------|----------------------------------------|------------------------------------------|-------------------------------------------------|--------------------------------------------------|-----------------------------------------|---------------------------------------------------|--------------------------------------------------|-----------------------------------------|-------------------------------------------------|--------------------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 25 | 24 | 45 | 19 | 120 | 33 | 134 | 173 | 446 | 199 | 60 | 114 | | 2 | 23 | 24 | 54 | 18 | 90 | 32 | 126 | 161 | 286 | 167 | 56 | 90 | | 3 | 22 | 26 | 53 | 18 | 80 | 35 | 120 | 136 | 261 | 147 | 52 | 73 | | 4 | 23 | 30 | 39 | 19 | 70 | 50 | 114 | 124 | 334 | 129 | 52 | 64 | | 5 | 21 | 33 | 46 | 22 | 64 | 70 | 107 | 119 | 308 | 114 | 53 | 74 | | 6 | 19 | 35 | 42 | 60 | 60 | 60 | 102 | 110 | 525 | , 103 | 54 | 67 | | 7 | 19 | 35 | 35 | 52 | 58 | 55 | 95 | 97 | 448 | 95 | 55 | 66 | | 8 | 20 | 37 | 30 | 49 | 56 | 50 | 102 | 95 | 351 | 89 | 43 | 1120 | | 9 | 22 | 39 | 33 | 44 | 54 | 100 | 107 | 92 | 285 | 84 | 40 | 2690 | | 10 | 23 | 36 | 29 | 37 | 52 | 500 | 94 | 87 | 252 | 79 | 39 | 1030 | | 11 | 21 | 33 | 25 | 33 | 50 | 1500 | 89 | 83 | 302 | 75 | 37 | 492 | | 12 | 19 | 44 | 20 | 29 | 48 | 1100 | 86 | 78 | 302 | 481 | 34 | 319 | | 13 | 19 | 47 | 22 | 27 | 47 | 855 | 83 | 76 | 244 | 137 | 34 | 257 | | 14 | 20 | 54 | 19 | 33 | 46 | 570 | 83 | 72 | 205 | 82 | 34 | 227 | | 15 | 23 | 66 | 15 | 40 | 45 | 414 | 80 | 69 | 184 | 75 | 31 | 201 | | 16 | 24 | 71 | 13 | 50 | 44 | 306 | 81 | 66 | 176 | 105 | 31 | 179 | | 17 | 23 | 67 | 12 | 56 | 42 | 240 | 79 | 65 | 164 | 101 | 31 | 165 | | 18 | 21 | 66 | 13 | 50 | 41 | 186 | 78 | 67 | 157 | 202 | 29 | 147 | | 19 | 20 | 48 | 14 | 42 | 40 | 161 | 77 | 90 | 157 | 715 | 28 | 130 | | 20 | 21 | 42 | 17 | 37 | 39 | 156 | 73 | 88 | 145 | 356 | 36 | 118 | | 21 | 22 | 39 | 22 | 33 | 38 | 160 | 77 | 71 | 133 | 185 | 34 | 104 | | 22 | 26 | 38 | 20 | 33 | 38 | 155 | 82 | 66 | 125 | 137 | 27 | 94 | | 23 | 32 | 34 | 22 | 38 | 37 | 155 | 79 | 62 | 117 | 120 | 101 | 85 | | 24 | 33 | 32 | 21 | 42 | 37 | 153 | 79 | 1420 | 112 | 109 | 124 | 79 | | 25 | 34 | 35 | 20 | 48 | 36 | 151 | 80 | 1720 | 122 | 96 | 72 | 76 | | 26<br>27<br>28<br>29<br>30<br>31 | 26<br>25<br>23<br>23<br>24<br>25 | 64<br>62<br>67<br>71<br>45 | 19<br>18<br>17<br>19<br>20 | 54<br>68<br>76<br>250<br>350<br>180 | 36<br>35<br>34<br> | 151<br>156<br>164<br>169<br>162<br>148 | 80<br>170<br>187<br>218<br>199 | 1570<br>856<br>583<br>854<br>477<br>373 | 151<br>174<br>165<br>177<br>236 | 87<br>82<br>95<br>69<br>64<br>65 | 427<br>332<br>133<br>95<br>143<br>137 | 74<br>72<br>70<br>69<br>67 | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 721<br>23.3<br>34<br>19<br>1430<br>.01 | 71<br>24 | 793<br>25.6<br>54<br>12<br>1570<br>.02 | 1907<br>61.5<br>350<br>18<br>3780<br>.04 | 1437<br>51.3<br>120<br>34<br>2850<br>.03<br>.03 | 8197<br>264<br>1500<br>32<br>16260<br>.16<br>.19 | 3161<br>105<br>218<br>73<br>6270<br>.06 | 10000<br>323<br>1720<br>62<br>19830<br>.20<br>.23 | 7044<br>235<br>525<br>112<br>13970<br>.14<br>.16 | 4644<br>150<br>715<br>64<br>9210<br>.09 | 2454<br>79.2<br>427<br>27<br>4870<br>.05<br>.06 | 8413<br>280<br>2690<br>64<br>16690<br>.17<br>.19 | CAL YR 1988 TOTAL 102816 MEAN 281 MAX 1500 MIN 12 AC-FT 203900 CFSM .17 IN. 2.34 WTR YR 1989 TOTAL 50115 MEAN 137 MAX 2690 MIN 12 AC-FT 99400 CFSM .08 IN. 1.14 ### 05472500 NORTH SKUNK RIVER NEAR SIGOURNEY, IA LOCATION.--Lat 41°18'03", long 92°12'16", in NE1/4 SE1/4 sec.14, T.75 N., R.12 W., Keokuk County, Hydrologic Unit 07080106, on right bank 20 ft downstream from bridge on State Highway 149, 1.2 mi downstream from Cedar Creek, 2.2 mi south of Sigourney, 4.0 mi upstream from Bridge Creek, and 16.2 mi upstream from confluence with South Skunk River. DRAINAGE AREA. -- 730 mi2. PERIOD OF RECORD. -- October 1945 to current year. REVISED RECORDS.--WSF 1438: Drainage area. WSP 1558: 1946-47 (M). GAGE. --Water-stage recorder. Datum of gage is 651.53 ft above NGVD. Prior to June 10, 1953, nonrecording gage at same site and datum. REMARKS, -- Estimated daily discharges: Dec. 28 to Mar. 12 and Mar. 21 to April 1. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers data collection platform at station. AVERAGE DISCHARGE.--44 years, 440 ft3/s, 8.18 in/yr, 318,800 acre-ft/yr. Discharge (ft3/s) EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 27 daily discharge, 0.1 ft<sup>3</sup>/s Oct. 7 to Nov. 15, 1956. 27,500 ft<sup>3</sup>/s Mar. 31, 1960, gage height, 25.33 ft; minimum EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in May 1944 reached a stage of 22.8 ft, from floodmark, discharge, 14,500 ft<sup>3</sup>/s. Gage height Discharge (ft3/s) EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 3,800 ft3/s and maximum (\*): Gage height | Date<br>Sept. | Time<br>9 1530 | E | ischarge<br>(ft <sup>3</sup> /s)<br>*3,070 | | ge height<br>(ft)<br>14.91 | Dat | e | Time | Dis<br>(f | charge<br>t <sup>3</sup> /s) | Gag | e height<br>(ft) | |-----------------------------------|---------------------------------|-------------------------------------------|--------------------------------------------|--------------------------------------------|----------------------------------------------|------------------------------------------------|------------------------------------------|------------------------------------------------|-------------------------------------------------|-------------------------------------------------|------------------------------------------------|---------------------------------------------------| | Min | imum disch | arge, 6.7 | ft <sup>3</sup> /s Oc | t. 11, 18 | | | | | | | | | | | | DISCHA | RGE, CUBI | C FEET PE | | WATER YEAR<br>AN VALUES | OCTOBER | 1988 TO | SEPTEMBER | 1989 | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | 12<br>11<br>10<br>11<br>9.3 | 9.7<br>8.9<br>9.2<br>13<br>12 | 24<br>22<br>21<br>19<br>17 | 8.8<br>8.4<br>8.0<br>8.6 | 58<br>40<br>50<br>30<br>21 | 10<br>11<br>14<br>68<br>52 | 49<br>47<br>54<br>43<br>40 | 118<br>90<br>72<br>65<br>56 | 372<br>326<br>595<br>290<br>104 | 35<br>25<br>20<br>17<br>15 | 28<br>24<br>29<br>65<br>30 | 232<br>210<br>147<br>101<br>77 | | 6<br>7<br>8<br>9<br>10 | 8.7<br>7.9<br>7.1<br>7.5<br>7.3 | 11<br>10<br>11<br>13<br>15 | 17<br>17<br>14<br>14<br>13 | 20<br>22<br>11<br>13<br>17 | 16<br>14<br>14<br>13<br>13 | 39<br>32<br>42<br>54<br>160 | 34<br>34<br>40<br>39<br>42 | 48<br>43<br>38<br>34<br>29 | 72<br>59<br>51<br>41<br>38 | 14<br>13<br>12<br>11<br>11 | 23<br>20<br>21<br>48<br>40 | 84<br>78<br>458<br>2810<br>2620 | | 11<br>12<br>13<br>14<br>15 | 6.9<br>7.6<br>8.0<br>7.6<br>8.0 | 15<br>15<br>18<br>18<br>24 | 10<br>9.4<br>9.0<br>9.8<br>9.3 | 15<br>14<br>13<br>14<br>15 | 14<br>15<br>16<br>15<br>14 | 600<br>520<br>455<br>294<br>191 | 50<br>48<br>35<br>29<br>27 | 26<br>23<br>23<br>21<br>20 | 37<br>64<br>94<br>74<br>51 | 11<br>31<br>214<br>88<br>44 | 29<br>28<br>28<br>25<br>25 | 2820<br>1760<br>623<br>445<br>344 | | 16<br>17<br>18<br>19<br>20 | 8.4<br>7.7<br>7.0<br>12<br>12 | 82<br>45<br>47<br>39<br>40 | 8.4<br>11<br>10<br>9.7 | 16<br>20<br>18<br>16<br>15 | 13<br>13<br>12<br>12<br>13 | 150<br>127<br>110<br>81<br>64 | 26<br>26<br>26<br>28<br>27 | 20<br>19<br>21<br>26<br>102 | 43<br>35<br>30<br>26<br>23 | 28<br>23<br>22<br>445<br>427 | 24<br>26<br>29<br>39<br>43 | 269<br>216<br>181<br>158<br>138 | | 21<br>22<br>23<br>24<br>25 | 9.4<br>8.7<br>7.7<br>9.1<br>9.1 | 34<br>26<br>23<br>21<br>19 | 9.5<br>9.7<br>11<br>13<br>11 | 14<br>14<br>15<br>16<br>17 | 13<br>12<br>11<br>11<br>12 | 58<br>52<br>49<br>47<br>46 | 27<br>28<br>29<br>29<br>28 | 65<br>41<br>30<br>420<br>790 | 21<br>19<br>18<br>17<br>17 | 334<br>130<br>110<br>89<br>57 | 48<br>57<br>373<br>773<br>341 | 122<br>107<br>98<br>89<br>83 | | 26<br>27<br>28<br>29<br>30<br>31 | 12<br>12<br>18<br>15<br>12 | 24<br>26<br>26<br>27<br>31 | 12<br>17<br>10<br>9.4<br>9.4<br>9.2 | 18<br>18<br>19<br>35<br>80<br>150 | 12<br>11<br>11<br> | 46<br>44<br>46<br>48<br>50<br>52 | 47<br>69<br>103<br>83<br>104 | 502<br>268<br>134<br>146<br>285<br>178 | 45<br>125<br>70<br>66<br>53 | 49<br>41<br>30<br>26<br>39<br>42 | 178<br>187<br>299<br>179<br>143<br>117 | 74<br>69<br>64<br>61<br>59 | | TOTAL MEAN MAX MIN AC-FI CFSM IN. | 9.71<br>18<br>6.9 | 712.8<br>23.8<br>82<br>8.9<br>1410<br>.03 | 395.8<br>12.8<br>24<br>8.4<br>785<br>.02 | 679.8<br>21.9<br>150<br>8.0<br>1350<br>.03 | 499<br>17.8<br>58<br>11<br>990<br>.02<br>.03 | 3612<br>117<br>600<br>10<br>7160<br>.16<br>.18 | 1291<br>43.0<br>104<br>26<br>2560<br>.06 | 3753<br>121<br>790<br>19<br>7440<br>.17<br>.19 | 2876<br>95.9<br>595<br>17<br>5700<br>.13<br>.15 | 2453<br>79.1<br>445<br>11<br>4870<br>.11<br>.13 | 3319<br>107<br>773<br>20<br>6580<br>.15<br>.17 | 14597<br>487<br>2820<br>59<br>28950<br>.67<br>.74 | CAL YR 1988 TOTAL 43244.7 MEAN 118 MAX 720 MIN 6.9 AC-FT 85780 CFSM .16 IN. 2.20 WTR YR 1989 TOTAL 34489.4 MEAN 94.5 MAX 2820 MIN 6.9 AC-FT 68410 CFSM .13 IN. 1.76 ### 05473400 CEDAR CREEK NEAR OAKLAND MILLS, IA LOCATION.--Lat. 40°55'20", long 91°40'10", in SE1/4 NW1/4 sec.28, T.71 N., R.7 W., Henry County, Hydrologic Unit 07080107, on left bank 30 ft upstream from bridge on county highway H46, 3.0 mi west of Oakland Mills, 2.9 mi upstream from Wolf Creek, and 4.3 mi upstream from mouth. DRAINAGE AREA. -- 530 mi2. PERIOD OF RECORD. --Occasional low-flow measurements, water years 1957 to 1977. July 1977 to current year. GAGE. -- Water-stage recorder. Datum of gage is 565.07 ft above NGVD. REMARKS.--Estimated daily discharges: Dec. 28,29, Feb. 2 to Mar. 11, and June 22 to July 5. Records good except those for estimated daily discharges, which are poor. Occasional high-water measurements were made by U.S. Army Corps of Engineers in 1965, 1966, 1970 and 1974 and by U.S. Geological Survey in 1966 and 1967. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. AVERAGE DISCHARGE.--12 years, 350 ft3/s, 8.97 in/yr, 253,600 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 8,560 ft<sup>3</sup>/s Apr. 3, 1983, gage height, 19.68 ft; minimum daily discharge, 0.42 ft<sup>3</sup>/s Sept. 17, 1988. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of April 22, 1973 reached a stage of 24.09 ft, discharge not determined. Flood of June 1905 reached a stage approximately 2 feet higher from information by local resident. EXTREMES FOR CURRENT FERIOD. -- Peak discharges greater than base discharge of 3,000 ft3/s and maximum (\*): | | | Discharge | Gage height | | | Discharge | Gage height | |----------|------|----------------------|-------------|------------|-------------|----------------------|-------------| | Date | Time | (ft <sup>3</sup> /s) | (ft) | Date | Time | (ft <sup>3</sup> /s) | (ft) | | Sept. 10 | 1615 | *3,660 | *13.54 | No other p | eak greater | than base discharg | ge. | DISCHARGE CURIC FEET PER SECOND WATER YEAR OCTORER 1988 TO SEPTEMBER 1989 Minimum discharge, 0.57 ft3/s Oct. 13, 14. | | | DISCHARGE | , CUBIC | FEET PER | SECOND, | WATER YEAI<br>EAN VALUES | R OCTOBER | . 1988 TO | SEPTEMBER | 1989 | | | |-----------------------------------------------------|-------------------------------------------|---------------------------------|-----------------------------------------|------------------------------------------|------------------------------------------|---------------------------------------------|---------------------------------------------|----------------------------------------------------|-------------------------------------------------|----------------------------------------------------|----------------------------------------------------|--------------------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | 71<br>32<br>17<br>10<br>6.6 | 2.1<br>2.1<br>2.1<br>2.4<br>2.7 | 7.5<br>7.3<br>6.8<br>5.7<br>4.9 | 9.2<br>8.6<br>7.6<br>8.2 | 16<br>12<br>10<br>11<br>9.4 | 4.5<br>4.3<br>5.0<br>22<br>80 | 18<br>17<br>14<br>12<br>9.6 | 70<br>105<br>208<br>103<br>62 | 195<br>87<br>163<br>1350<br>325 | 70<br>41<br>31<br>26<br>22 | 36<br>19<br>14<br>12<br>36 | 373<br>216<br>71<br>36<br>23 | | 6<br>7<br>8<br>9<br>10 | 4.1<br>2.9<br>2.4<br>2.1<br>2.0 | 3.1<br>3.3<br>3.8<br>4.5<br>6.7 | 4.8<br>4.8<br>3.9<br>3.1<br>3.2 | 9.9<br>11<br>15<br>16<br>12 | 8.0<br>8.0<br>7.2<br>6.2<br>5.4 | 90<br>54<br>45<br>40<br>38 | 7.5<br>6.8<br>9.1<br>9.7 | 43<br>32<br>25<br>271<br>233 | 123<br>75<br>51<br>39<br>53 | 17<br>15<br>13<br>12<br>10 | 68<br>31<br>19<br>14<br>10 | 154<br>107<br>205<br>2110<br>3420 | | 11<br>12<br>13<br>14<br>15 | 1.7<br>1.4<br>.86<br>.65 | 5.6<br>6.2<br>6.3<br>11<br>28 | 3.3<br>4.0<br>4.0<br>4.4<br>4.0 | 11<br>13<br>12<br>8.9<br>7.9 | 5.0<br>4.9<br>5.4<br>5.0<br>5.2 | 40<br>100<br>98<br>65<br>45 | 13<br>8.3<br>7.3<br>7.1<br>6.3 | 62<br>32<br>21<br>17<br>14 | 63<br>474<br>387<br>189<br>102 | 10<br>9.3<br>686<br>850<br>124 | 9.2<br>7.9<br>6.8<br>6.6<br>7.2 | 1000<br>305<br>202<br>120<br>87 | | 16<br>17<br>18<br>19<br>20 | .75<br>.84<br>.86<br>.95<br>.97 | 17<br>41<br>146<br>55<br>29 | 4.0<br>3.6<br>3.5<br>3.8<br>4.9 | 6.8<br>6.7<br>7.1<br>6.9<br>7.5 | 5.0<br>4.8<br>4.7<br>4.6<br>4.5 | 33<br>27<br>22<br>19<br>17 | 5.2<br>4.7<br>5.2<br>5.7<br>5.8 | 12<br>9.4<br>8.5<br>8.9 | 61<br>44<br>34<br>28<br>24 | 63<br>40<br>31<br>33<br>60 | 6.4<br>5.6<br>5.5<br>4.9<br>6.9 | 69<br>53<br>42<br>35<br>29 | | 21<br>22<br>23<br>24<br>25 | .97<br>1.0<br>1.8<br>1.8<br>2.1 | 18<br>13<br>11<br>8.1<br>5.5 | 4.9<br>4.8<br>5.4<br>6.7<br>5.7 | 6.3<br>7.5<br>7.4<br>7.6 | 4.5<br>4.4<br>4.2<br>4.5<br>4.4 | 14<br>13<br>12<br>12<br>11 | 7.5<br>7.3<br>6.2<br>5.6<br>7.3 | 94<br>43<br>24<br>21<br>2010 | 21<br>17<br>16<br>14<br>13 | 78<br>48<br>33<br>37<br>72 | 6.2<br>9.6<br>953<br>477<br>175 | 23<br>21<br>19<br>18<br>16 | | 26<br>27<br>28<br>29<br>30<br>31 | 2.7<br>5.0<br>3.0<br>2.0<br>1.6<br>2.0 | 6.6<br>9.6<br>8.4 | 7.0<br>11<br>8.0<br>7.0<br>11 | 11<br>7.8<br>9.4<br>14<br>13 | 4.6<br>4.9<br>4.4<br> | 10<br>9.4<br>11<br>11<br>26<br>23 | 9.6<br>199<br>285<br>287<br>133 | 642<br>141<br>81<br>57<br>50<br>51 | 12<br>70<br>400<br>370<br>120 | 40<br>26<br>20<br>17<br>20<br>89 | 77<br>35<br>29<br>24<br>23<br>96 | 15<br>14<br>13<br>13<br>13 | | TOTAL<br>MEAN<br>MAX<br>MIN<br>AC-FT<br>CFSM<br>IN. | 183.77<br>5.93<br>71<br>.65<br>365<br>.01 | | 77.0<br>5.71<br>14<br>3.1<br>351<br>.01 | 304.3<br>9.82<br>16<br>6.3<br>604<br>.02 | 178.2<br>6.36<br>16<br>4.2<br>353<br>.01 | 1001.2<br>32.3<br>100<br>4.3<br>1990<br>.06 | 1131.8<br>37.7<br>287<br>4.7<br>2240<br>.07 | 4560.8<br>147<br>2010<br>8.5<br>9050<br>.28<br>.32 | 4920<br>164<br>1350<br>12<br>9760<br>.31<br>.35 | 2643.3<br>85.3<br>850<br>9.3<br>5240<br>.16<br>.19 | 2230.8<br>72.0<br>953<br>4.9<br>4420<br>.14<br>.16 | 8822<br>294<br>3420<br>13<br>17500<br>.55<br>.62 | CAL YR 1988 TOTAL 21321.97 MEAN 58.3 MAX 825 MIN .42 AC-FT 42290 CFSM .11 IN. 1.50 WTR YR 1989 TOTAL 26627.77 MEAN 73.0 MAX 3420 MIN .65 AC-FT 52820 CFSM .14 IN. 1.87 ### 05474000 SKUNK RIVER AT AUGUSTA, IA (National stream-quality accounting network station) LOCATION.--Lat 40°45'13", long 91°16'40", in NE1/4 NE1/4 sec.26, T.69 N., R.4 W., Des Moines County, Hydrologic Unit 07080107, on left bank 300 ft upstream from bridge on State Highway 394 at Augusta, 2.0 mi upstream from Long Creek, and at mile 12.5. DRAINAGE AREA. -- 4,303 mi2. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--September to November 1913, October 1914 to current year. Monthly discharge only for some periods, published in WSP 1308. REVISED RECORDS,--WSP 1308: 1915 (M), 1919-27 (M), 1932-34 (M), 1936, 1937-38 (M), 1942 (M). WSP 1438: Drainage area. WDR IA-71-1: 1966 (M). GAGE.--Water-stage recorder. Datum of gage is 521.24 ft above NGVD. Prior to Nov. 15, 1913, nonrecording gage at site 400 ft upstream at datum about 0.7 ft higher. May 27, 1915, to Jan. 14, 1935, nonrecording gage at site 400 ft upstream at present datum. REMARKS. -- Estimated daily discharges: Feb. 3-25 and March 4-12. Records good except those for estimated daily discharges, which are poor. U.S. Army Corps of Engineers data collection platform at station. AVERAGE DISCHARGE.--75 years (water years 1915-89), 2,428 ft<sup>3</sup>/s, 7.66 in/yr, 1,759,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, daily discharge, 7 ft<sup>3</sup>/s Aug. 27 to Sept. 1, 1934. 66,800 ft<sup>3</sup>/s Apr. 23, 1973, gage height, 27.05 ft; minimum EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 1, 1903, reached a stage of about 21 ft, discharge, about 45,000 ft<sup>3</sup>/s. Stage and discharge for flood of April 1973 are believed to be the greatest since 1851. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 15,000 ft3/s and maximum (\*): | Date<br>Sept.9 | Time<br>2400 | Discharge<br>(ft <sup>3</sup> /s)<br>*10,600 | Gage height<br>(ft)<br>*10.80 | Date | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height<br>(ft) | |----------------|--------------|----------------------------------------------|-------------------------------|------|------|-----------------------------------|---------------------| | Minimum | discharge, | $35 \text{ ft}^3/\text{s Dec. 1}$ | 1. | | | | | | | | DISCHARGE | , CUBIC | FEET PER | SECOND, | WATER YEAR<br>EAN VALUES | OCTOBER | 1988 TO | SEPTEMBER | 1989 | | | |--------|------|-----------|---------|----------|---------|--------------------------|---------|---------|-----------|-------|------------|--------| | DAY | OCT | VOИ | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 203 | 63 | 101 | 94 | 157 | 82 | 293 | 505 | 1410 | 456 | 216 | 1040 | | 2 | 155 | 65 | 100 | 93 | 629 | 77 | 286 | 470 | 1660 | 367 | 183 | 1070 | | 2<br>3 | 113 | 65 | 101 | 83 | 400 | 80 | 285 | 700 | 1240 | 305 | 149 | 753 | | 4 | 95 | 72 | | | | | | | | | | | | 5 | | | 94 | 67 | 140 | 150 | 265 | 761 | 2570 | 324 | 139 | 562 | | 3 | 82 | 72 | 95 | 81 | 110 | 400 | 236 | 560 | 3480 | 287 | 129 | 449 | | 6 | 71 | 68 | 94 | 100 | 94 | 330 | 208 | 415 | 1840 | 240 | 137 | 511 | | 7 | 67 | 77 | 91 | 104 | 90 | 270 | 191 | 348 | 904 | 199 | 279 | 1420 | | 8 | 64 | 71 | 86 | 63 | 90 | 260 | 212 | 291 | 678 | 177 | 198 | 1360 | | 9 | 62 | 71 | 67 | 83 | 88 | 240 | 222 | 296 | 593 | 160 | 133 | 7120 | | 10 | 62 | 74 | 71 | 94 | 88 | 280 | 207 | 563 | 684 | 144 | 115 | 10500 | | 11 | 60 | 74 | 44 | 102 | 91 | 400 | 189 | 522 | 651 | 134 | 103 | 9700 | | 12 | 55 | 90 | 56 | 103 | 94 | 520 | 191 | 342 | 927 | 129 | 100 | 6610 | | 13 | 53 | 96 | 58 | 89 | 100 | 2150 | 178 | 230 | 1640 | 134 | 100 | 4860 | | 14 | 53 | 109 | 70 | 96 | 105 | 2880 | 171 | 179 | 1000 | 1080 | 100 | 3510 | | 15 | 53 | 108 | 63 | 102 | 98 | 2100 | 171 | 160 | 804 | 1110 | 101 | 2100 | | | | | 05 | | 30 | 2100 | 1/1 | | 504 | | 101 | | | 16 | 54 | 119 | 51 | 107 | 94 | 1440 | 164 | 147 | 640 | 734 | 94 | 1320 | | 17 | 55 | 150 | 52 | 125 | 92 | 998 | 156 | 137 | 496 | 437 | 86 | 1010 | | 18 | 54 | 112 | 57 | 124 | 90 | 800 | 153 | 128 | 408 | 281 | 82 | 841 | | 19 | 54 | 232 | 56 | 120 | 89 | 672 | 150 | 128 | 358 | 303 | 81 | 726 | | 20 | 52 | 284 | 72 | 110 | 88 | 547 | 145 | 125 | 315 | 270 | 89 | 636 | | | | | | | | | | | | | | | | 21 | 55 | 178 | 68 | 92 | 88 | 457 | 140 | 117 | 285 | 245 | 90 | 562 | | 22 | 56 | 136 | 68 | 95 | 86 | 378 | 139 | 156 | 257 | 784 | 88 | 502 | | 23 | 72 | 124 | 79 | 101 | 80 | 328 | 147 | 195 | 244 | 930 | 1430 | 447 | | 24 | 63 | 118 | 79 | 107 | 79 | 295 | 143 | 184 | 208 | 663 | 3090 | 397 | | 25 | 69 | 113 | 59 | 107 | 86 | 290 | 147 | 331 | 181 | 470 | 957 | 361 | | 26 | 66 | 121 | 70 | 109 | 91 | 284 | 174 | 3150 | 175 | 441 | 726 | 333 | | 27 | 62 | 120 | 95 | iii | 86 | 270 | 262 | 3100 | 240 | 341 | 823 | 303 | | 28 | 59 | 117 | 54 | 110 | 81 | 281 | 520 | 2580 | 1400 | 251 | 718 | 280 | | 29 | 61 | 108 | 82 | 107 | | 297 | 748 | 1990 | 1950 | 200 | 519 | 264 | | 30 | 61 | 101 | 96 | 125 | | | 673 | 1250 | 724 | 201 | 620 | 246 | | 31 | 62 | 101 | 99 | 143 | | 321 | 6/3 | | 724 | 176 | 636 | . 240 | | 21 | 02 | | 99 | 143 | | 308 | | 968 | | 1/6 | 636 | | | TOTAL | 2203 | 3308 | 2328 | 3147 | 3504 | 18185 | 7166 | 21028 | 27962 | 11973 | 12311 | 59793 | | MEAN | 71.1 | | 75.1 | 102 | 125 | 587 | 239 | 678 | 932 | 386 | 397 | 1993 | | MAX | 203 | 284 | 101 | 143 | 629 | 2880 | 748 | 3150 | 3480 | 1110 | 3090 | 10500 | | MIN | 52 | 63 | 44 | 63 | 79 | 77 | 139 | 117 | 175 | 129 | 81 | 246 | | AC-FT | 4370 | | 4620 | 6240 | 6950 | 36070 | 14210 | 41710 | 55460 | 23750 | 24420 | 118600 | | CFSM | .02 | | | .02 | | | .06 | .16 | .22 | .09 | | .46 | | IN. | .02 | .03 | .02 | | .03 | .14 | | | | | .09<br>.11 | .52 | | TIM. | .02 | .03 | .02 | . 03 | .03 | . 16 | .06 | .18 | .24 | . 10 | .11 | . 54 | TOTAL 258964 MEAN 708 MAX 4600 MIN 44 AC-FT 513700 CFSM .16 IN. 2.24 TOTAL 172908 MEAN 474 MAX 10500 MIN 44 AC-FT 343000 CFSM .11 IN. 1.49 **CAL YR 1988** WTR YR 1989 ## 05474000 SKUNK RIVER AT AUGUSTA, IA--Continued (National stream-quality accounting network station) LOCATION. -- Samples collected at bridge on State Highway 394, 300 ft downstream from gage. PERIOD OF RECORD. -- Water years 1975 to current year. PERIOD OF DAILY RECORD. -SPECIFIC CONDUCTANCE: October 1975 to current year. WATER TEMPERATURES: October 1975 to current year. SUSPENDED-SEDIMENT DISCHARGE: October 1975 to current year. REMARKS.--During periods of ice effect, sediment samples are collected in open water channel. Records of specific conductance are obtained from suspended sediment samples at time of analysis. EXTREMES FOR PERIOD OF DAILY RECORD. -SPECIFIC CONDUCTANCE: Maximum daily, 950 microsiemens Dec. 20, 1979, Feb. 12, 1980; minimum daily, 180 microsiemens Aug. 17, 1986. WATER TEMPERATURES: Maximum daily, 34.0°C July 20, 1980, Aug. 15-17, 1988, July 10-13, 1989; minimum daily, 0.0°C on many days during winter periods. SEDIMENT CONCENTRATIONS: Maximum daily mean, 8,550 mg/L June 25, 1981; minimum daily mean, 1 mg/L Mar. 8, 9, 12, 1978, Jan. 5, 6, 1984. SEDIMENT LOADS: Maximum daily, 499,000 tons Mar. 21, 1978; minimum daily, 1.4 tons Dec. 11, 1989. EXTREMES FOR CURRENT YEAR. -SPECIFIC CONDUCTANCE: Maximum daily, 915 microsiemens Jan. 10; minimum daily, 210 microsiemens July 15. TEMPERATURES: Maximum daily, 34.0°C July 10-13; minimum daily, 0.0°C on many days during winter periods. SEDIMENT CONCENTRATIONS: Maximum daily mean, 4,260 mg/L May 26; minimum daily mean, 7 mg/L Dec. 7, Jan. 20, 21. SEDIMENT LOADS: Maximum daily, 54,700 tons Sept. 10; minimum daily, 1.4 tons Dec. 11. | | SPECIFIC | CONDUCTA | NCE MICRO | SIEMENS/C | M AT 25 D<br>INSTANTA | DEG C,<br>NEOUS | WATER YEAR<br>VALUES | OCTOBER | 1988 <b>T</b> O | SEPTEMBER | 1989 | | |------------------------|------------|------------|--------------------|-------------------|-----------------------|-----------------|----------------------|---------------------------|-------------------|------------|-------------|------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 400 | 612 | 645 | 774 | 550 | 683 | 589 | 530 | 510 | 430 | 445 | 320 | | 2 | 360 | 613 | 680 | 642 | 525 | 652 | 627 | 525 | 430 | 435 | 450 | 330 | | 3 | 380 | 582 | 670 | 660 | 498 | 670 | 642 | 571 | 430 | 435 | 475 | 315 | | 2<br>3<br>4<br>5 | 500<br>540 | 617<br>550 | 688<br>659 | 670<br>676 | 505 | 490 | 620<br>625 | 617<br>541 | 435<br>340 | 470 | 430 | 375 | | _ | 540 | 550 | 659 | 676 | 498 | 635 | 625 | 541 | 340 | 520 | 445 | 390 | | 6<br>7<br>8<br>9<br>10 | 500 | 626 | 640 | 602 | 498 | 400 | 626 | <b>5</b> 87 | 300 | 520 | 430 | 385 | | 7 | 460 | 645 | 618 | 614 | 455 | 420 | 610 | 606 | 330 | 520 | 485 | 330 | | 8 | 430 | 643 | 652 | 633 | 448 | 477 | 597 | 588 | 360<br>415 | 485 | 510 | 280 | | . 9 | 400 | 666 | 683<br>700 | 850<br><b>915</b> | 457<br>451 | 456 | 623<br>671 | 575 | 415 | 510 | 475 | 250<br>225 | | 10 | 420 | 672 | 700 | 915 | 451 | 430 | 671 | 637 | 540 | 530 | <b>52</b> 0 | 225 | | 11 | 430 | 657 | 735 | 850 | 455 | 430 | 645 | 502 | 505 | 510 | 531 | 235 | | 12<br>13<br>14<br>15 | 440 | 675 | 779 | 708 | 462 | 450 | 627 | 525 | 450 | 510 | 520 | 270 | | 13 | 460 | 659 | 745<br>65 <b>2</b> | 726 | 452 | 477 | 640<br>628 | 585<br>619<br>65 <b>5</b> | 415 | 475 | 520 | 290 | | 14 | 480 | 695 | 65 <b>2</b> | 680<br>695 | 459 | 354 | 628 | 619 | 400 | 490 | 525 | 325<br>375 | | 15 | 500 | 770 | 645 | 695 | 428 | 287 | 621 | 65 <b>5</b> | 480 | 210 | 470 | 375 | | 16<br>17 | 500 | 645 | 630 | 712 | 445 | 285 | 620 | 670 | 560 | 370 | 510 | 440<br>475 | | 17 | | 635 | 684 | 717 | 462 | 287 | 626 | 650 | 580<br>595 | 400 | 490 | 475 | | 18 | 476 | 765 | 684<br>67 <b>5</b> | 688 | 485 | 296 | 626<br>592 | 638 | 595 | 390 | 500 | 510 | | 19 | 526 | 766 | 698 | 680 | 501 | 314 | 605 | 657 | 600<br>615 | 350 | 520 | 475 | | 20 | 550 | 755 | 626 | 680 | 508 | 331 | 632 | 682 | 615 | 400 | 540 | 510 | | 21 | 538 | 836 | 591 | 675 | 536 | 357 | 654 | 713<br>665 | 585<br>590 | 370 | 555 | 530<br>555 | | 22 | 540 | 740 | 613<br>610 | 670 | <b>533</b> | 374 | 657<br>670 | 665 | 590 | 410 | 550 | 555 | | 23 | 553 | 690 | 610 | 616 | 614 | 445 | 670 | 665 | 605 | 375 | 390 | 540 | | 24 | 580 | 680 | 636 | 580 | 647 | 465 | 692<br>69 <b>5</b> | 700 | 625 | 350 | 215 | 560 | | 22<br>23<br>24<br>25 | 592 | 630 | 688 | 580<br>572 | 654 | 479 | 695 | 690 | 605<br>625<br>615 | 350 | 245 | 540 | | 26<br>27<br>28 | 582 | 587 | 710 | 542 | 650 | 465 | 688 | 275 | 585 | 355<br>355 | 320 | 530<br>525 | | 27 | 615 | 592 | 634 | 529 | 637 | 465 | 6 <b>5</b> 8 | 345 | 480 | 355 | 405 | 525 | | 28 | 640 | 579 | 664 | 528 | 640 | 465 | 760 | 310 | 435 | 385 | 265 | 500 | | 29 | 633 | 597 | 713 | 534 | | 495 | 653 | 36 <b>5</b> | 430 | 380 | 275 | 480 | | 30 | 646 | 624 | 808 | 534<br>555 | | 519 | 609 | 380 | 430 | 400 | 305 | 460 | | 31 | 622 | | 807 | 554 | | 560 | | 410 | | 400 | 385 | | ## 05474000 SKUNK RIVER AT AUGUSTA, IA--Continued ### WATER-QUALITY RECORDS | | | WATER | TEMPERATURE, | DEGREES | CELSIUS,<br>INSTAN | WATER<br>TANEOUS | YEAR OCTOBER VALUES | 1988 T | O SEPTEMBER | 1989 | | | |----------------------------------|--------------------------------------|-----------------------------------|---------------------------------|---------------------------------|---------------------------------|--------------------------------------|--------------------------------------|----------------------------------------------|--------------------------------------|----------------------------------------------|----------------------------------------------|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | 22.0<br>21.0<br>19.0<br>19.0<br>15.0 | 9.0<br>9.0<br>10.0<br>10.0<br>9.0 | 3.0<br>4.0<br>5.0<br>4.0<br>4.0 | 2.0<br>1.0<br>1.0<br>2.0<br>2.0 | 5.0<br>5.0<br>.0<br>.0 | 1.0<br>1.0<br>1.0<br>1.0 | 11.0<br>10.0<br>11.0<br>11.0 | 14.0<br>16.0<br>19.0<br>16.0<br>16.0 | 25.0<br>25.0<br>25.0<br>23.0<br>23.0 | 28.0<br>30.0<br>30.0<br>32.0<br>30.0 | 30.0<br>31.0<br>31.0<br>33.0<br>33.0 | 26.0<br>26.0<br>24.0<br>24.0<br>25.0 | | 6<br>7<br>8<br>9<br>10 | 15.0<br>14.0<br>14.0<br>15.0<br>16.0 | 9.0<br>6.0<br>7.0<br>8.0<br>8.0 | 6.0<br>6.0<br>2.0<br>2.0<br>2.0 | 2.0<br>2.0<br>1.0<br>1.0 | .0<br>.0<br>.0<br>.0 | 2.0<br>2.0<br>2.0<br>2.0<br>3.0 | 11.0<br>13.0<br>9.0<br>9.0<br>10.0 | 12.0<br>17.0<br>17.0<br>20.0<br>21.0 | 25.0<br>26.0<br>26.0<br>22.0<br>21.0 | 33.0<br>33.0<br>33.0<br>33.0<br>34.0 | 27.0<br>25.0<br>25.5<br>27.0<br>27.0 | 26.0<br>27.0<br>24.0<br>20.0<br>20.0 | | 11<br>12<br>13<br>14<br>15 | 16.0<br>15.0<br>15.0<br>14.0<br>17.0 | 6.0<br>6.0<br>7.0<br>10.0<br>12.0 | 2.0<br>2.0<br>2.5<br>2.0<br>1.0 | 2.0<br>2.0<br>3.0<br>2.0<br>1.0 | 1.0<br>1.0<br>1.0<br>1.0 | 8.0<br>8.0<br>5.0<br>7.0<br>5.0 | 11.0<br>11.0<br>15.0<br>15.0<br>15.0 | 21.0<br>21.0<br>21.0<br>23.0<br>21.0 | 21.0<br>24.0<br>23.0<br>23.0<br>20.0 | 34.0<br>34.0<br>34.0<br>30.0<br>24.0 | 28.0<br>28.0<br>28.0<br>29.0<br>28.0 | 22.0<br>19.0<br>18.0<br>19.0<br>18.0 | | 16<br>17<br>18<br>19<br>20 | 18.0<br>15.0<br>13.0<br>11.0 | 7.0<br>8.0<br>8.0<br>8.0<br>5.0 | 1.0<br>1.0<br>2.0<br>3.0<br>2.0 | 1.0<br>3.0<br>3.0<br>3.0<br>3.0 | 1.0<br>1.0<br>1.0<br>1.0 | 7.0<br>4.0<br>5.0<br>4.0<br>4.0 | 18.0<br>18.0<br>15.0<br>15.0<br>19.0 | 22.0<br>24.0<br>24.0<br>24.0<br>24.0 | 24.0<br>25.0<br>25.0<br>27.0<br>29.0 | 28.0<br>28.0<br>28.0<br>24.0<br>27.0 | 28.0<br>27.0<br>27.0<br>24.0<br>27.0 | 20.0<br>22.0<br>24.0<br>24.0<br>23.0 | | 21<br>22<br>23<br>24<br>25 | 12.0<br>12.0<br>11.0<br>9.0<br>10.0 | 5.0<br>5.0<br>8.0<br>10.0<br>8.0 | 2.0<br>3.0<br>3.0<br>3.0<br>2.0 | 3.0<br>5.0<br>4.0<br>5.0<br>5.0 | 1.0<br>1.0<br>2.0<br>2.0<br>2.0 | 5.0<br>7.0<br>10.0<br>15.0<br>15.0 | 21.0<br>17.0<br>17.0<br>24.0<br>27.0 | 22.0<br>21.0<br>22.0<br>26.0<br>23.0 | 30.0<br>30.0<br>30.0<br>31.0<br>31.0 | 24.0<br>26.0<br>26.0<br>29.0<br>31.0 | 26.0<br>28.0<br>23.0<br>22.0<br>24.0 | 23.0<br>20.0<br>18.0<br>17.0<br>18.0 | | 26<br>27<br>28<br>29<br>30<br>31 | 8.5<br>8.0<br>8.0<br>6.0<br>8.0 | 8.0<br>7.0<br>4.0<br>4.0 | 2.0<br>1.0<br>1.0<br>1.0<br>1.0 | 4.0<br>5.0<br>5.0<br>5.0<br>5.0 | 2.0<br>2.0<br>2.0 | 19.0<br>20.0<br>18.0<br>16.0<br>12.0 | 27.0<br>25.0<br>23.0<br>20.0<br>20.0 | 19.0<br>21.0<br>19.0<br>21.0<br>25.0<br>25.0 | 31.0<br>29.0<br>28.0<br>26.0<br>28.0 | 31.0<br>30.0<br>31.0<br>28.0<br>28.0<br>30.0 | 25.0<br>27.0<br>27.0<br>28.0<br>28.0<br>27.0 | 19.0<br>19.0<br>19.0<br>20.0<br>20.0 | | CEDIMENT | CHCDENDED | CONCENTRATION | /MC/TA | LIA TED | VEAD | OCTODED. | 1000 | TO | CEDTEMBED | 1080 | | |-----------|-----------|---------------|---------|---------|------|----------|------|----|-----------|------|--| | DEDIMENT. | SUSPENDED | CONCENTRATION | (MG/L). | WATER | YEAR | OCTOBER | 1988 | TU | SEPTEMBER | 1989 | | | DAY | MEAN<br>CONCEN-<br>TRATION<br>(MG/L) | LOAD<br>(TONS/<br>DAY) | |----------------------------------|--------------------------------------|----------------------------------------|--------------------------------------|---------------------------------|--------------------------------------|----------------------------------------|--------------------------------------|----------------------------------------|--------------------------------------|---------------------------------|--------------------------------------|----------------------------------| | | OCTO | BER | NOVEM | BER | DECEM | BER | JANUA | RY | FEBRU. | ARY | MARC | H | | 1<br>2<br>3<br>4<br>5 | 125<br>119<br>212<br>142<br>69 | 69<br>50<br>65<br>36<br>15 | 28<br>20<br>22<br>65<br>42 | 4.8<br>3.5<br>3.9<br>13<br>8.2 | 30<br>13<br>13<br>13<br>13 | 8.2<br>3.5<br>3.5<br>3.3<br>3.3 | 13<br>23<br>16<br>16<br>18 | 3.3<br>5.8<br>3.6<br>2.9<br>3.9 | 24<br>87<br>105<br>75<br>85 | 10<br>148<br>113<br>28<br>25 | 9<br>8<br>8<br>40<br>84 | 2.0<br>1.7<br>1.7<br>16<br>91 | | 6<br>7<br>8<br>9<br>10 | 59<br>55<br>54<br>94<br>87 | 9.9<br>9.3<br>16<br>15 | 34<br>24<br>18<br>21<br>28 | 6.2<br>5.0<br>3.5<br>4.0<br>5.6 | 24<br>31<br>31<br>73<br>31 | 6.1<br>7.6<br>7.2<br>13<br>5.9 | 45<br>44<br>51<br>26<br>17 | 12<br>12<br>8.7<br>5.8<br>4.3 | 71<br>79<br>80<br>77<br>83 | 18<br>19<br>19<br>18<br>20 | 67<br>53<br>55<br>36<br>35 | 60<br>39<br>39<br>23<br>26 | | 11<br>12<br>13<br>14<br>15 | 76<br>50<br>47<br>68<br>75 | 12<br>7.4<br>6.7<br>9.7<br>11 | 20<br>24<br>181<br>39<br>35 | 4.0<br>5.8<br>47<br>11<br>10 | 12<br>32<br>31<br>30<br>26 | 1.4<br>4.8<br>4.9<br>5.7<br>4.4 | 21<br>28<br>22<br>20<br>18 | 5.8<br>7.8<br>5.3<br>5.2<br>5.0 | 105<br>97<br>90<br>72<br>82 | 26<br>25<br>24<br>20<br>22 | 44<br>44<br>301<br>580<br>362 | 48<br>62<br>2200<br>4510<br>2050 | | 16<br>17<br>18<br>19<br>20 | 97<br>102<br>101<br>149<br>157 | 14<br>15<br>15<br>22<br>22 | 68<br>34<br>47<br>36<br>108 | 22<br>14<br>14<br>23<br>83 | 35<br>36<br>39<br>36<br>29 | 4.8<br>5.1<br>6.0<br>5.4<br>5.6 | 14<br>11<br>10<br>8<br>7 | 4.0<br>3.7<br>3.3<br>2.6<br>2.1 | 74<br>55<br>58<br>53<br>41 | 19<br>14<br>14<br>13<br>9.7 | 263<br>172<br>113<br>74<br>51 | 1020<br>463<br>244<br>134<br>75 | | 21<br>22<br>23<br>24<br>25 | 253<br>134<br>115<br>114<br>73 | 38<br>20<br>22<br>19<br>14 | 45<br>24<br>19<br>21<br>69 | 22<br>8.8<br>6.4<br>6.7<br>21 | 18<br>16<br>22<br>29<br>30 | 3.3<br>2.9<br>4.7<br>6.2<br>4.8 | 7<br>25<br>37<br>37<br>31 | 1.7<br>6.4<br>10<br>11<br>9.0 | 30<br>25<br>22<br>19<br>12 | 7.1<br>5.8<br>4.8<br>4.1<br>2.8 | 40<br>38<br>55<br>45<br>43 | 49<br>39<br>49<br>36<br>34 | | 26<br>27<br>28<br>29<br>30<br>31 | 23<br>29<br>30<br>45<br>34<br>30 | 4.1<br>4.9<br>4.8<br>7.4<br>5.6<br>5.0 | 95<br>53<br>58<br>51<br>66 | 31<br>17<br>18<br>15<br>18 | 20<br>36<br>33<br>20<br>9<br>7 | 3.8<br>9.2<br>4.8<br>4.4<br>2.3<br>1.9 | 23<br>16<br>15<br>19<br>15<br>21 | 6.8<br>4.8<br>4.5<br>5.5<br>5.1<br>8.1 | 12<br>12<br>10<br> | 2.9<br>2.8<br>2.2 | 55<br>54<br>68<br>69<br>49<br>32 | 42<br>39<br>52<br>55<br>42<br>27 | | TOTA | L | 575.8 | | 455.4 | | 158.0 | | 180.0 | | 637.2 | | 11569.4 | ## 05474000 SKUNK RIVER AT AUGUSTA, IA--Continued 133 ## WATER-QUALITY RECORDS SEDIMENT, SUSPENDED CONCENTRATION (MG/L), WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DAY | MEAN<br>CONCEN-<br>TRATION<br>(MG/L) | LOAD<br>(TONS/<br>DAY) | MEAN<br>CONCEN-<br>TRATION<br>(MG/L) | LOAD<br>(TONS/<br>DAY) | MEAN<br>CONCEN-<br>TRATION<br>(MG/L) | LOAD<br>(TONS/<br>DAY) | MEAN<br>CONCEN-<br>TRATION<br>(MG/L) | LOAD<br>(TONS/<br>DAY) | MEAN<br>CONCE<br>TRATIC<br>(MG/L) | ON (TONS/ | MEA<br>CONC<br>TRAT<br>(MG/ | ION (TONS/ | |----------------------------------|--------------------------------------|-------------------------------|---------------------------------------------|--------------------------------------------------|--------------------------------------|----------------------------------|----------------------------------------|-------------------------------------|----------------------------------------|----------------------------------------------------|-----------------------------|----------------------------| | | AF | RIL | M | AY | JU | NE | JUL | Y | AUGUS | ST | SEPTE | MBER | | 1 | 25 | 20 | 167 | 228 | 720 | 2740 | 234 | 288 | 102 | 59 | 388 | 1090 | | 2 | 30 | 23 | 233 | 296 | 1320 | 5920 | 141 | 140 | 125 | 62 | 350 | 1010 | | 3 | 42 | 32 | 185 | 350 | 710 | 2380 | 109 | 90 | 128 | 51 | 295 | 600 | | 4 | 49 | 35 | 180 | 370 | 1500 | 10400 | 96 | 84 | 114 | 43 | 225 | 341 | | 5 | 48 | 31 | 181 | 274 | 1890 | 17800 | 79 | 61 | 124 | 43 | 167 | 202 | | 6 | 54 | 30 | 135 | 151 | 1300 | 6460 | 67 | 43 | 114 | 42 | 205 | 283 | | 7 | 65 | 34 | 85 | 80 | 730 | 1780 | 59 | 32 | 111 | 84 | 533 | 2040 | | 8 | 45 | 26 | 96 | 75 | 520 | 952 | 64 | 31 | 94 | 50 | 624 | 2900 | | 9 | 20 | 12 | 107 | 86 | 390 | 624 | 62 | 27 | 62 | 22 | 2190 | 45000 | | 10 | 20 | 11 | 136 | 207 | 350 | 646 | 54 | 21 | 67 | 21 | 1930 | 54700 | | 11 | 23 | 12 | 120 | 169 | 1300 | 2290 | 65 | 24 | 65 | 18 | 1150 | 30100 | | 12 | 37 | 19 | 128 | 118 | 502 | 1300 | 55 | 19 | 52 | 14 | 800 | 14300 | | 13 | 50 | 24 | 134 | 83 | 768 | 3400 | 58 | 21 | 45 | 12 | 560 | 7350 | | 14 | 44 | 20 | 94 | 45 | 560 | 1510 | 264 | 1500 | 65 | 18 | 390 | 3700 | | 15 | 44 | 20 | 77 | 33 | 376 | 816 | 580 | 1740 | 70 | 19 | 298 | 1690 | | 16 | 67 | 30 | 67 | 27 | 283 | 489 | 322 | 638 | 68 | 17 | 208 | 741 | | 17 | 54 | 23 | 78 | 29 | 193 | 258 | 187 | 221 | 70 | 16 | 141 | 385 | | 18 | 51 | 21 | 78 | 27 | 133 | 147 | 150 | 114 | 65 | 14 | 122 | 277 | | 19 | 54 | 22 | 68 | 24 | 108 | 104 | 149 | 122 | 64 | 14 | 104 | 204 | | 20 | 44 | 17 | 59 | 20 | 74 | 63 | 152 | 111 | 72 | 17 | 93 | 160 | | 21 | 33 | 12 | 70 | 22 | 47 | 36 | 150 | 99 | 69 | 17 | 89 | 135 | | 22 | 52 | 20 | 94 | 40 | 35 | 24 | 311 | 692 | 68 | 16 | 75 | 102 | | 23 | 78 | 31 | 75 | 39 | 35 | 23 | 328 | 824 | 1400 | 5410 | 70 | 84 | | 24 | 44 | 17 | 66 | 33 | 37 | 21 | 300 | 537 | 2320 | 15000 | 65 | 70 | | 25 | 38 | 15 | 100 | 197 | 35 | 17 | 287 | 364 | 650 | 22700 | 43 | 42 | | 26<br>27<br>28<br>29<br>30<br>31 | 58<br>168<br>66<br>102<br>98 | 27<br>119<br>93<br>206<br>178 | 4260<br>3480<br>3590<br>3130<br>1260<br>690 | 37100<br>29100<br>25000<br>16800<br>4250<br>1800 | 32<br>41<br>659<br>1330<br>513 | 15<br>27<br>4130<br>7250<br>1070 | 258<br>204<br>155<br>133<br>127<br>124 | 307<br>188<br>105<br>72<br>69<br>59 | 365<br>152<br>102<br>107<br>148<br>285 | 715<br>338<br>19 <del>8</del><br>150<br>248<br>489 | 40<br>40<br>40<br>39<br>35 | 36<br>33<br>30<br>28<br>23 | | TOTA | ւ | 1180 | | 117073 | | 72692 | | 8643 | | 45917 | | 167656 | | YEAR | | 426736.8 | | | | | | | | | | | ## PARTICLE-SIZE DISTRIBUTION OF SUSPENDED SEDIMENT, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | | DATE | TIME | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | SEDI-<br>MENT,<br>SUS-<br>PENDED<br>(MG/L)<br>(80154) | SEDI-<br>MENT,<br>DIS-<br>CHARGE,<br>SUS-<br>PENDED<br>(T/DAY)<br>(80155) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>Z FINER<br>THAN<br>.002 MM<br>(70337) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>Z FINER<br>THAN<br>.004 MM<br>(70338) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>Z FINER<br>THAN<br>.008 MM<br>(70339) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>Z FINER<br>THAN<br>.016 MM<br>(70340) | SED.<br>SUSP.<br>SIEVE<br>DIAM.<br>Z FINER<br>THAN<br>.062 MM<br>(70331) | |-----|------|------|-------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------| | OCT | • | | | | | | | | | | | | MAR | 26 | 1145 | 7.5 | 66 | 18 | 3.2 | | | | | 10 <b>0</b> | | MAY | 22 | 1545 | 6.0 | 373 | 39 | 39 | | | | | 100 | | 0 | 2 | 1300 | 16.0 | 444 | 214 | 257 | 83 | 90<br>71 | 94 | 96<br>97 | 100 | | 2 | 26 | 1815 | 19.0 | 3430 | 4630 | 42900 | 44 | 71 | 90 | 97 | 100 | | JUL | 5 | 1400 | 29.5 | 284 | 84 | 64 | | | | | 99 | | AUG | | 1400 | 28.3 | 404 | 04 | 04 | | | | | 99 | | 2 | 22 | 1300 | 27.5 | 87 | 58 | 16 | | | | | 100 | ## 05474000 SKUNK RIVER AT AUGUSTA, IA--Continued ## WATER-QUALITY RECORDS WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | PH<br>(STAND-<br>ARD<br>UNITS)<br>(00400) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | TEMPER-<br>ATURE<br>AIR<br>(DEG C)<br>(00020) | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | OXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION)<br>(00301) | BARO-<br>METRIC<br>PRES-<br>SURE<br>(MM<br>OF<br>HG)<br>(00025) | COLI-<br>FORM,<br>FECAL,<br>0.7<br>UM-MF<br>(COLS./<br>100 ML)<br>(31625) | STREP-<br>TOCOCCI<br>FECAL,<br>KF AGAR<br>(COLS.<br>PER<br>100 ML)<br>(31673) | |------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------| | OCT<br>26 | 1145 | 66 | 542 | 8.60 | 7.5 | 3.0 | 5.8 | 11.4 | 97 | 751 | 88 | K60 | | DEC<br>13 | 1145 | 53 | 742 | 8.90 | 0.5 | 4.0 | 4.9 | 20.0 | 141 | 751 | K10 | K27 | | MAR<br>22 | 1545 | <b>37</b> 3 | 360 | 7.90 | 6.0 | 6.0 | 4.0 | 12.8 | 104 | 752 | К8 | 100 | | 02 | 1300 | 444 | 462 | 8.20 | 16.0 | 10.5 | 130 | 8.0 | 82 | 754 | 320 | 220 | | JUL<br>05<br>AUG | 1400 | 284 | 490 | 9.00 | 29.5 | 28.5 | 33 | 14.8 | 197 | <b>75</b> 3 | 160 | K68 | | 22 | 1300 | 87 | 518 | 8.60 | 27.5 | 28.0 | 22 | 7.3 | 94 | 749 | 92 | K190 | | DATE | HARD-<br>NESS<br>NONCARB<br>WH WAT<br>TOT FLD<br>MG/L AS<br>CACO3<br>(00902) | HARD-<br>NESS<br>TOTAL<br>(MG/L<br>AS<br>CACO3)<br>(00900) | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915) | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925) | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | SODIUM<br>PERCENT<br>(00932) | SODIUM<br>AD-<br>SORP-<br>TION<br>RATIO<br>(00931) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | ALKA-<br>LINITY<br>WAT DIS<br>TOT IT<br>FIELD<br>MG/L AS<br>CACO3<br>(39086) | CAR-<br>BONATE<br>WATER<br>DIS IT<br>FIELD<br>MG/L AS<br>CO3<br>(00452) | BICAR-<br>BONATE<br>WATER<br>DIS IT<br>FIELD<br>MG/L AS<br>HCO3<br>(00453) | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)<br>(00945) | | OCT26 | 45 | 240 | 59 | 22 | 26 | 19 | 0.8 | 5.3 | 186 | 0 | 226 | 70 | | DEC<br>13 | 64 | 270 | 64 | 26 | 47 | 27 | 1 | 6.4 | 206 | 10 | 232 | 100 | | MAR<br>22 | 45 | 150 | 40 | 11 | 13 | 15 | 0.5 | 7.4 | 107 | 0 | 131 | 45 | | MAY<br>02 | 57 | 180 | 48 | 15 | 20 | 19 | 0.7 | 7.4 | 106 | 0 | 129 | 64 | | JUL<br>05 | 52 | 210 | 55 | 18 | 21 | 17 | 0.7 | 6.9 | 158 | 20 | 153 | 54 | | AUG<br>22 | 36 | 230 | 57 | 21 | 21 | 16 | 0.6 | 6.4 | 195 | 3 | 232 | 49 | | DATE | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)<br>(00950) | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2)<br>(00955) | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L)<br>(70300) | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L)<br>(70301) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>AC-FT)<br>(70303) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>DAY)<br>(70302) | NITRO-<br>GEN,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00605) | NITRO-<br>GEN,<br>NO2+NO3<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00631) | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00613) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,<br>AMMONÍA<br>TOTAL<br>(MG/L<br>AS N)<br>(00610) | | OCT 26 | 38 | 0.30 | 0.75 | 332 | 339 | 0.45 | 59.0 | | 0.430 | <0.010 | <0.010 | <0.010 | | DEC 13 | 45 | 0.40 | 0.91 | 423 | 412 | 0.58 | 61.0 | 1.1 | 0.100 | 0.020 | 0.030 | 0.030 | | MAR<br>22<br>MAY | 17 | 0.20 | 8.2 | 226 | 213 | 0.31 | 228 | 1.0 | 1.90 | 0.040 | 1.30 | 1.30 | | 02<br>JUL | 19 | 0.40 | 6.4 | 277 | 264 | 0.38 | 332 | 0.87 | 1.60 | 0.110 | 0.860 | 0.830 | | 05<br>AUG | 24 | 0.30 | 5.9 | 285 | 286 | 0.39 | 219 | 2.2 | 1.10 | 0.030 | 0.050 | 0.040 | | 22 | 23 | 0.40 | 0.48 | 314 | 295 | 0.43 | 73.7 | | <0.100 | <0.010 | 0.030 | <0.010 | | v n. | 1 4 - 1 | | | | | | | | | | | | K Results based on colony count outside ideal range. ## 05474000 SKUNK RIVER AT AUGUSTA, IA--Continued 135 ## WATER-QUALITY RECORDS WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | NITRO-<br>GEN AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | PHOS<br>PHORO<br>ORTH<br>DIS-<br>SOLVE<br>(MG/I<br>AS P)<br>(0067 | OUS PHO<br>HO, PHO<br>ED SC<br>(1) | DIS- PHO<br>DLVED TO<br>MG/L (1<br>S P) AS | OROUS MOTAL S<br>MG/L F<br>S P) ( | SEDI-<br>MENT,<br>SUS-<br>PENDED<br>(MG/L)<br>30154) | SEDI<br>MENT<br>DIS<br>CHARG<br>SUS<br>PEND<br>(T/DA<br>(8015 | ; SI<br>E, SI<br>E, Z F<br>ED I | ED.<br>USP.<br>EVE<br>DIAM.<br>'INER<br>'HAN<br>62 MM<br>(331) | ARSEN<br>DIS<br>SOLV<br>(UG/<br>AS A<br>(0100 | IIC IN<br>3- D<br>ZED SO<br>L (U<br>LS) AS | IS- I<br>LVED SO<br>G/L (<br>AL) A | ARIUM,<br>DIS-<br>DLVED<br>(UG/L<br>AS BA) | BERYL-<br>LIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS BE)<br>01010) | CADMIUM<br>DIS-<br>SOLVED<br>(UG/L<br>AS CD)<br>(01025) | |------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------| | OCT<br>26 | 0.80 | <0.0 | 010 ( | 0.030 | 0.060 | 18 | 3. | 2 | 100 | | 1 | <10 | 140 | <0.5 | <1 | | DEC<br>13 | 1.1 | 0.0 | 010 ( | 0.020 | 0.060 | | | | | | | | | | | | MAR<br>22 | 2.3 | 0.1 | 170 ( | 0.200 | 0.260 | 39 | 39 | | 100 | | 2 | 20 | 130 | <0.5 | <1 | | MAY<br>02 | 1.7 | 0.0 | 90 ( | 0.120 | 0.190 | 214 | 257 | | 100 | | 1 | 20 | 190 | <0.5 | <1 | | JUL<br>05 | 2.2 | 0.0 | 050 ( | 0.070 | 0.130 | 84 | 64 | | 99 | | | | | | | | AUG<br>22 | 0.60 | 0.0 | 070 ( | 0.090 | 0.110 | 68 | 16 | | 100 | | 1 | 50 | 140 | <0.5 | <1 | | DAT | CHR<br>MIU<br>DIS<br>SOL<br>E (UG<br>AS<br>(010 | M, (<br>VED S<br>/L<br>CR) | COBALT,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CO)<br>(01035) | COPPER,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CU)<br>(01040) | IRON,<br>DIS-<br>SOLVEI<br>(UG/L<br>AS FE) | (UG<br>AS | S-<br>VED<br>/L<br>PB) | DIS-<br>SOLVED<br>(UG/L<br>AS LI)<br>01130) | MANG<br>NESE<br>DIS<br>SOLV<br>(UG/<br>AS M | ED<br>L<br>IN) | MERCURY<br>DIS-<br>SOLVED<br>(UG/L<br>AS HG)<br>(71890) | MOLYB-<br>DENUM<br>DIS-<br>SOLVEI<br>(UG/L<br>AS MO) | , NICKEL<br>DIS-<br>D SOLVE<br>(UG/I<br>) AS NI | DI<br>D SOI<br>(UG<br>) AS | IM,<br>:S-<br>:VED<br>:/L<br>:SE) | | OCT<br>26 | | <1 | <3 | 4 | 10 | ) | 6 | 12 | | 8 | <0.1 | <10 | <b>3</b> | 3 | <1 | | DEC<br>13 | | | | | | - | | | | | | | | - | | | MAR<br>22<br>MAY | | <1 | <3 | 3 | 41 | l | <5 | 5 | | 75 | <0.1 | <10 | ס | 5 | 1 | | 02<br>JUL | | <1 | <3 | 3 | 28 | 3 | <1 | 10 | | 40 | <0.1 | <10 | ) | 7 | <1 | | 05<br>AUG | | | | | | • | | | | | | | | - | | | 22 | | <1 | <3 | 4 | 10 | ) | <1 | 9 | | 51 | <0.1 | <10 | ) | 3 | <1 | | DAT | SILV<br>DI<br>SOL<br>E (UG<br>AS | S-<br>VED<br>/L<br>AG) | STRON-<br>TIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS SR) | VANA-<br>DIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS V) | ZINC,<br>DIS-<br>SOLVEI<br>(UG/L<br>AS ZN) | TOT. | E, A<br>AL I<br>/L) ( | CYAN-<br>AZINE<br>COTAL<br>(UG/L) | reco | N<br>ER F<br>Licide | ole ] | METOLA-<br>CHLOR<br>IN<br>WHOLE<br>WATER<br>(UG/L)<br>tration<br>(39356 | FLURA<br>LIN<br>TOTAL<br>RECOVE<br>(UG/I<br>expresse | BUTY<br>R LATE<br>) (UG)<br>d as to | L)<br>tal | | OCT | (010 | 73) | (01000) | (01063) | (01090) | ) (390 | 30) ( | (01/3/) | (0140 | ,6) ( | (77023) | (39336) | (39030 | (338 | ,01) | | 26<br>DEC | < | 1.0 | 200 | <6 | 7 | 7 | | | | | | | | - | | | 13 | | | | | | - | | | | | | | | - | | | 22 | < | 1.0 | 110 | <6 | 15 | 5 0 | . 42 | 0.14 | 0. | 33 | <0.10 | <0.10 | <0.10 | <0 | .10 | | MAY<br>02<br>JUL | < | 1.0 | 170 | <6 | 33 | 3 22 | | .29.0 | 11. | 0 | 3.90 | 0.10 | 0.55 | <0 | 0.10 | | 05<br>AUG | | | | | | | . 3 | 4.3 | 1. | .00 | 0.20 | <0.10 | 0 <0.10 | <( | 0.10 | | 22 | < | 1.0 | 200 | <6 | 7 | 7 | | | | | | | | - | | ### MISSISSIPPI RIVER MAIN STEM ### 05474500 MISSISSIPPI RIVER AT KEOKUK, IA LOCATION.--Lat 40°23'37", long 91°22'27", in SE1/4 SW1/4 sec.30, T.65 N., R.4 W., Lee County, Hydrologic Unit 07080104, near right bank in tailwater of dam and powerplant of Union Electric Co. at Keokuk, 0.2 mi upstream from bridge on U.S. Highway 136, 2.7 mi upstream from Des Moines River, and at mile 364.2 upstream from Ohio River. DRAINAGE AREA. -- 119,000 mi<sup>2</sup>, approximately. PERIOD OF RECORD. -- January 1878 to current year. GAGE.--Water-stage recorder. Datum of gage is 477.41 ft above NGVD (levels by U.S. Army Corps of Engineers). Jan. 1, 1878 to May 1913, nonrecording gage at Galland (formerly Nashville), 8 mi upstream; zero of gage was set to low-water mark of 1864, or 496.52 ft above NGVD. REMARKS.--Discharge computed from records of operation of turbines in powerplant and spillway gates in dam. Minor flow regulation caused by powerplant since 1913 and navigation dams. Records for May 1913 to September 1937 adjusted for change in contents in Keokuk Reservoir, those after September 1937 unadjusted. COOPERATION .-- Records provided by Union Electric Co. AVERAGE DISCHARGE.--111 years, 63,900 ft3/s, 7.29 in/yr, 46,296,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 344,000 ft<sup>3</sup>/s Apr. 24, 1973; maximum gage height, 23.35 ft Apr. 24, 1973; minimum daily discharge, 5,000 ft<sup>3</sup>/s Dec. 27, 1933. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 6, 1851, reached a stage of 21.0 ft, present site and datum, estimated as 13.5 ft at Galland, discharge, 360,000 ft<sup>3</sup>/s. EXTREMES FOR CURRENT YEAR.--Maximum daily discharge, 126,000 ft<sup>3</sup>/s Apr. 8; minimum daily discharge, 11,300 ft<sup>3</sup>/s Aug. 12. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DAY OCT | | MEAN VALUES | | | | | | | | | | | | | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------|----------------|--------|--------|--------|----------------|---------|---------|---------|--------|--------|---------|--| | 2 22900 19700 33860 30300 45100 27400 112000 59100 34400 18400 25300 4500 27400 112000 67900 77000 37800 19600 42900 4 33100 23000 29300 29000 32300 28000 113000 63300 80900 34400 29500 39100 5 32500 25600 28900 28400 20200 30300 117000 60100 80000 34400 29500 39100 6 30600 25600 28900 28400 20200 30300 117000 60100 80000 34400 29500 39100 7 28300 26100 29900 29600 23400 37000 122000 50000 84000 30100 34000 32300 8 23300 28300 23400 23500 12000 60400 79500 29300 31500 40900 9 19900 30100 32300 19700 26200 33200 124000 60400 79500 29300 31500 40900 10 17600 25200 31800 22000 27800 33200 124000 60400 79500 29300 31500 40900 10 17600 25200 31800 22000 27800 33200 124000 664700 81700 27200 29700 57100 11 68800 21300 28500 23300 32000 116000 63300 86100 24900 25300 72700 11 68300 25800 21100 28500 32000 44900 10000 62800 75500 28100 11300 60100 13 17100 28900 15900 27800 32000 71400 95400 64400 52000 24000 11300 66100 13 17100 28900 15900 28400 31000 28600 32000 74300 88200 60500 52300 24000 11300 44000 14 6800 28600 12000 28600 32000 74300 88200 60500 52300 24000 11300 44000 15 16300 29800 13200 28400 31000 77700 91500 97700 48400 22000 14000 40000 15 16300 29800 13200 28600 31000 77900 89300 54600 23900 15800 15800 15800 15800 15800 27000 30000 77900 89300 54600 23900 15800 15800 15800 15800 15800 27000 30000 77900 89300 54600 23900 15800 15800 15800 15800 27000 30000 77900 89300 54600 23900 15800 15800 15800 27000 30400 77900 8100 55200 29000 15800 15800 15800 27000 30400 77900 8100 55200 29000 15800 24200 18800 22000 25000 28000 27000 30000 78000 85600 33100 40000 29000 28000 28000 28000 28000 30500 64800 77900 8100 55200 29000 15800 24200 18800 22200 40000 28000 28000 28000 28000 59000 33700 18100 24200 18900 22200 38000 38000 28000 28000 28000 28000 28000 38000 77000 30000 77000 30000 77000 30000 77000 30000 77000 30000 77000 30000 77000 30000 77000 30000 77000 30000 77000 30000 77000 30000 77000 30000 77000 30000 77000 30000 77000 30000 77000 30000 77000 30000 77000 30000 77000 30000 77000 30000 77000 30000 7 | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | 2 22900 19700 33860 30300 45100 27400 112000 59100 34400 18400 25300 4500 27400 112000 67900 77000 37800 19600 42900 4 33100 23000 29300 29000 32300 28000 113000 63300 80900 34400 29500 39100 5 32500 25600 28900 28400 20200 30300 117000 60100 80000 34400 29500 39100 6 30600 25600 28900 28400 20200 30300 117000 60100 80000 34400 29500 39100 7 28300 26100 29900 29600 23400 37000 122000 50000 84000 30100 34000 32300 8 23300 28300 23400 23500 12000 60400 79500 29300 31500 40900 9 19900 30100 32300 19700 26200 33200 124000 60400 79500 29300 31500 40900 10 17600 25200 31800 22000 27800 33200 124000 60400 79500 29300 31500 40900 10 17600 25200 31800 22000 27800 33200 124000 664700 81700 27200 29700 57100 11 68800 21300 28500 23300 32000 116000 63300 86100 24900 25300 72700 11 68300 25800 21100 28500 32000 44900 10000 62800 75500 28100 11300 60100 13 17100 28900 15900 27800 32000 71400 95400 64400 52000 24000 11300 66100 13 17100 28900 15900 28400 31000 28600 32000 74300 88200 60500 52300 24000 11300 44000 14 6800 28600 12000 28600 32000 74300 88200 60500 52300 24000 11300 44000 15 16300 29800 13200 28400 31000 77700 91500 97700 48400 22000 14000 40000 15 16300 29800 13200 28600 31000 77900 89300 54600 23900 15800 15800 15800 15800 15800 27000 30000 77900 89300 54600 23900 15800 15800 15800 15800 15800 27000 30000 77900 89300 54600 23900 15800 15800 15800 15800 27000 30000 77900 89300 54600 23900 15800 15800 15800 27000 30400 77900 8100 55200 29000 15800 15800 15800 27000 30400 77900 8100 55200 29000 15800 24200 18800 22000 25000 28000 27000 30000 78000 85600 33100 40000 29000 28000 28000 28000 28000 30500 64800 77900 8100 55200 29000 15800 24200 18800 22200 40000 28000 28000 28000 28000 59000 33700 18100 24200 18900 22200 38000 38000 28000 28000 28000 28000 28000 38000 77000 30000 77000 30000 77000 30000 77000 30000 77000 30000 77000 30000 77000 30000 77000 30000 77000 30000 77000 30000 77000 30000 77000 30000 77000 30000 77000 30000 77000 30000 77000 30000 77000 30000 77000 30000 77000 30000 77000 30000 77000 30000 7 | 1 | 20400 | 20800 | 39100 | 30400 | 41800 | 28600 | 101000 | 65300 | 57000 | 30600 | 17200 | 31600 | | | 4 33100 23000 29000 32300 28000 113000 63300 80900 34700 20900 39100 6 30600 26100 29900 29600 16800 32100 12000 56600 85600 30600 37100 30800 7 28300 26300 31300 29600 23400 23600 23700 34400 25600 32700 34400 26000 31000 34000 23000 27600 32700 34400 16000 66400 79500 29300 31500 40900 91900 30100 32900 19700 26200 33200 124000 64700 81700 27200 29700 57100 11 16800 21300 28500 23000 24400 14600 6300 86100 24400 18800 72700 11 16800 21300 28500 29300 24400 34600 10900 62600 84300 24400 18800 72700 | | | | | | | | | | | | | | | | 4 33100 23000 29000 32300 28000 113000 63300 80900 34700 20900 39100 6 30600 26100 29900 29600 16800 32100 12000 56600 85600 30600 37100 30800 7 28300 26300 31300 29600 23400 23600 23700 34400 25600 32700 34400 26000 31000 34000 23000 27600 32700 34400 16000 66400 79500 29300 31500 40900 91900 30100 32900 19700 26200 33200 124000 64700 81700 27200 29700 57100 11 16800 21300 28500 23000 24400 14600 6300 86100 24400 18800 72700 11 16800 21300 28500 29300 24400 34600 10900 62600 84300 24400 18800 72700 | 3 | | | | | | | | | | | | | | | 5 32500 25600 28900 28400 20200 30300 117000 60100 80000 34400 29500 33500 6 30600 26100 29900 29600 23400 32100 120000 68000 84000 30100 34000 32300 8 23300 27600 32400 25800 23700 34400 126000 60400 79500 29300 31500 49900 9 19900 30100 32900 19700 26200 32500 116000 64700 81700 27200 29700 57100 10 17600 25200 31800 22000 27800 32500 116000 63300 86100 24400 18800 72700 11 16800 21300 28500 29300 28400 34600 10900 62500 84300 24400 18800 72700 11 16800 25800 21100 28500 32000 < | ŭ | | | | | | | | | | | | | | | 6 30600 26100 29900 29800 18600 32100 120000 58600 85600 30600 37100 30800 7 28300 26300 31300 29800 23400 37000 122000 60000 84000 30100 34000 32300 8 23300 27600 32400 25800 23700 34400 126000 60400 79500 29300 31500 46900 9 19900 30100 32900 19700 26200 33200 124000 64700 81700 27200 29700 57100 10 17600 25200 31800 22000 27800 32500 116000 63300 86100 24900 25300 72700 11 1 16800 21300 28500 29300 28400 30200 66500 84300 24400 18800 72700 12 16300 25800 21100 28500 32000 44900 102000 62800 75500 26100 11300 65100 13 17100 28900 15900 27300 32300 70400 95400 61400 59200 28000 11900 46400 14 16800 29800 15900 27300 32300 70400 95400 61400 59200 28000 11900 46400 15 16300 29800 13200 26400 31800 77700 91500 59700 48400 22000 14000 40000 16 17 19000 25600 19500 28200 31800 77700 91500 59700 48400 22000 14000 40000 16 17 19000 25600 19500 27000 30000 77900 88300 55200 29000 15800 15800 32400 16000 18800 18200 27400 18 23100 31300 20900 27000 30000 77900 91500 59700 48400 22000 14000 40000 18 23100 31300 20900 27000 30000 77900 91500 59700 48400 22000 15800 16200 27400 18 23100 31300 20900 27000 30000 77900 91100 55200 29000 15800 16200 27400 18 23100 31300 20900 27000 30000 78100 86600 5000 33700 18800 15200 22000 18800 1900 25200 40000 26000 27100 30400 78100 86600 5000 33700 18100 24200 18800 1900 25200 244000 26000 27000 30400 78100 86600 5000 33700 18100 24200 1900 22 24000 40700 27000 25800 30600 76300 77100 50300 44600 26900 21200 28800 23 24500 40000 20000 27000 30000 78100 86600 5000 33700 18100 24200 28000 22 24000 40700 27000 25800 30500 76300 77100 50300 44600 26900 21200 28800 23 24500 40000 20000 27000 30000 78100 86600 5000 33700 18100 24200 18000 2000 27000 30400 78000 85600 5000 33000 25900 23000 15000 24000 2000 24000 2000 24400 40000 26000 27000 30400 78000 86000 30000 78000 26000 27000 30400 78000 86000 30000 78000 8600 30000 78000 26000 27000 30000 78000 36000 37000 18000 26000 27000 30000 78000 38000 38000 38000 38000 38000 38000 38000 38000 38000 38000 38000 38000 38000 38000 38000 38000 38 | | | | | | | | | | | | | | | | 8 23300 27600 32400 25800 23700 34400 126000 66400 79500 29300 31500 40900 10 17600 25200 31800 22000 27800 33200 124000 64700 81700 2200 25300 72700 11 16800 21300 28500 29300 28400 34600 10900 62600 84300 24400 18800 72300 12 16300 25800 21100 28600 32000 44900 102000 62600 84300 24400 18800 72300 13 17100 28900 15900 27300 32900 71400 95400 61400 59200 28000 11300 66100 48400 22000 14000 46400 14000 46400 14000 48400 22000 14000 46000 46400 1200 48400 22000 14000 40000 1200 48400 22000 14000 <td></td> <td></td> <td>23000</td> <td>20300</td> <td>20400</td> <td>20200</td> <td>30300</td> <td>117000</td> <td>00100</td> <td>00000</td> <td>34400</td> <td>23300</td> <td>33300</td> | | | 23000 | 20300 | 20400 | 20200 | 30300 | 117000 | 00100 | 00000 | 34400 | 23300 | 33300 | | | 8 23300 27600 32400 25800 23700 34400 126000 66400 79500 29300 31500 40900 10 17600 25200 31800 22000 27800 33200 124000 64700 81700 2200 25300 72700 11 16800 21300 28500 29300 28400 34600 10900 62600 84300 24400 18800 72300 12 16300 25800 21100 28600 32000 44900 102000 62600 84300 24400 18800 72300 13 17100 28900 15900 27300 32900 71400 95400 61400 59200 28000 11300 66100 48400 22000 14000 46400 14000 46400 14000 48400 22000 14000 46000 46400 1200 48400 22000 14000 40000 1200 48400 22000 14000 <td>6</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>32100</td> <td>120000</td> <td></td> <td></td> <td></td> <td></td> <td></td> | 6 | | | | | | 32100 | 120000 | | | | | | | | 9 19900 30100 32900 19700 22000 33200 12000 633200 64700 81700 27200 29700 57100 10 17600 25200 31800 22000 27800 32500 116000 63300 86100 24900 25300 72700 11 16800 21300 28500 29300 28400 34600 109000 62800 75500 26100 11300 60100 12 16300 25800 21100 28600 32000 44900 102000 62800 75500 26100 11300 60100 13 17100 29900 15900 27300 32300 70400 95400 61400 59200 28000 11900 46400 14 16800 29800 12100 26300 32900 71300 89200 60500 52300 24000 12200 44800 15 16300 29800 13200 26400 31800 77700 91500 59700 48400 22000 14000 40000 16 17100 27100 14300 28000 32100 77900 89300 57500 35700 18800 15800 34400 17 19000 25600 19500 28200 33100 72800 89900 54600 23900 15800 16200 27400 18 23100 31300 20900 27000 30000 77900 91100 55200 29000 15200 22000 18800 19 25000 36500 21000 27000 30000 78100 86600 59900 33700 18100 24200 19900 20 25200 40000 20800 27100 30400 70800 85600 53100 40200 25000 24300 19100 21 24400 40800 29300 28300 30500 76300 77100 50300 44500 26900 21200 22800 22 24000 40700 27200 25800 30600 76300 77100 50300 44600 26900 21200 22800 23 24500 40800 29300 28300 30500 64800 74700 48600 43000 26900 22400 30200 24 23800 40300 29500 28100 29400 56500 77100 50300 44600 26900 21200 22800 25 22800 38900 28400 28100 29300 48900 67200 38600 41100 27200 26500 24300 26 21300 37500 29300 30300 29700 50100 70100 40400 36400 27100 26100 27500 27 20900 38400 33100 28200 29600 53200 71300 40900 27000 27000 2000 28 19700 38900 31000 28200 29600 53200 71300 40900 27100 26100 27500 24300 29 21400 36800 29500 30400 81000 67300 46900 30400 19300 25900 22400 30 23900 38700 28300 30000 7 81000 67300 46900 30400 19300 25900 22400 31 23300 29300 39000 97600 50500 5010 709400 1621100 793200 713500 1024400 MEAN 22580 31110 26740 28290 30490 56250 93450 55140 54040 25590 23020 34150 MEAN 33100 40800 393100 39000 45400 97600 12000 12000 12000 25000 37100 37100 37000 37100 77000 | | | | | | | | | | | | | | | | 17600 25200 31800 22000 27800 32500 116000 63300 86100 24900 25300 72700 | | | | 32400 | 25800 | 23700 | 34400 | 126000 | 60400 | 79500 | 29300 | 31500 | | | | 11 16800 21300 28500 29300 28400 34600 109000 62500 84300 24400 18800 72300 12 16300 25800 21100 22800 32000 44900 102000 62800 75500 26100 11300 60100 13 17100 28900 15900 27300 32200 70400 95400 61400 59200 28000 11900 46400 14 16800 29800 13200 26400 31800 77700 91500 59700 48400 22000 14000 46000 15 16300 29800 13200 26400 31800 77700 91500 59700 48400 22000 14000 40000 16 17100 27100 14300 28000 32100 77900 89300 57500 35700 18800 15800 16200 27400 18 23100 31300 29000 33100 | | | 30100 | 32900 | 19700 | 26200 | 33200 | 124000 | 64700 | 81700 | 27200 | 29700 | | | | 12 16300 25800 21100 28800 32000 744900 10200 62800 75500 26100 11300 60100 13 17100 28900 15900 27300 32300 71300 89200 60500 52300 24000 12200 44800 15 16300 29800 13200 26400 31800 77700 91500 59700 48400 22000 14000 40000 16 17100 27100 14300 28000 32100 77900 89300 57500 35700 18800 15800 34400 17 19000 25600 19500 28200 33100 72800 89900 57500 35700 18800 15800 34400 18 23100 31300 20900 27000 30000 77800 91500 5200 29000 15800 16200 27400 19 25000 36500 21000 27000 30000 78100 86600 50900 33700 18100 24200 19900 20 25200 40000 20800 27100 30400 70800 85600 53100 40200 25000 24300 19100 22 24000 40700 27200 25800 30500 76500 59000 44600 26900 21200 22800 22 24000 40700 27200 25800 30500 76300 77100 50300 44600 26900 21200 22800 23 24500 40800 29300 28300 30500 64800 74700 48600 43000 26900 22400 30200 24 23800 25 22800 38900 28400 28300 30500 64800 74700 48600 43000 26900 22400 30200 25 22800 38900 28400 28300 30500 64800 74700 48600 43000 26900 22400 30200 25 22800 38900 28400 28300 30500 64800 74700 48600 43000 26900 22400 30200 25 22800 38900 28400 28300 28400 28300 30500 64800 74700 48600 43000 26900 22400 30200 25 22800 38900 28400 28300 28400 28300 30500 64800 74700 48600 43000 26900 22400 30200 25 22800 38900 28400 28100 29400 56500 76200 44900 41800 26800 28200 29500 28400 28300 30500 64800 74700 48600 43000 27000 27000 28200 29500 28400 38000 28400 28100 29300 48900 67500 44900 41800 26800 28200 29500 28400 38000 30000 76500 76300 76300 76500 38600 41100 27200 26500 24300 28600 23000 38400 33100 28200 29600 53200 71300 49900 29300 24600 25300 18300 28200 29600 53200 71300 49900 29300 24600 25300 18300 29 21400 36800 29500 38400 33100 28200 29600 59400 67500 44600 27100 27100 24600 18300 29 21400 36800 38000 30000 7000 7000 7000 7000 7000 | 10 | 17600 | 25200 | 31800 | 22000 | 27800 | 32 <b>5</b> 00 | 116000 | 63300 | 86100 | 24900 | 25300 | 72700 | | | 12 16300 25800 21100 28800 32000 744900 10200 62800 75500 26100 11300 60100 13 17100 28900 15900 27300 32300 71300 89200 60500 52300 24000 12200 44800 15 16300 29800 13200 26400 31800 77700 91500 59700 48400 22000 14000 40000 16 17100 27100 14300 28000 32100 77900 89300 57500 35700 18800 15800 34400 17 19000 25600 19500 28200 33100 72800 89900 57500 35700 18800 15800 34400 18 23100 31300 20900 27000 30000 77800 91500 5200 29000 15800 16200 27400 19 25000 36500 21000 27000 30000 78100 86600 50900 33700 18100 24200 19900 20 25200 40000 20800 27100 30400 70800 85600 53100 40200 25000 24300 19100 22 24000 40700 27200 25800 30500 76500 59000 44600 26900 21200 22800 22 24000 40700 27200 25800 30500 76300 77100 50300 44600 26900 21200 22800 23 24500 40800 29300 28300 30500 64800 74700 48600 43000 26900 22400 30200 24 23800 25 22800 38900 28400 28300 30500 64800 74700 48600 43000 26900 22400 30200 25 22800 38900 28400 28300 30500 64800 74700 48600 43000 26900 22400 30200 25 22800 38900 28400 28300 30500 64800 74700 48600 43000 26900 22400 30200 25 22800 38900 28400 28300 28400 28300 30500 64800 74700 48600 43000 26900 22400 30200 25 22800 38900 28400 28300 28400 28300 30500 64800 74700 48600 43000 26900 22400 30200 25 22800 38900 28400 28100 29400 56500 76200 44900 41800 26800 28200 29500 28400 28300 30500 64800 74700 48600 43000 27000 27000 28200 29500 28400 38000 28400 28100 29300 48900 67500 44900 41800 26800 28200 29500 28400 38000 30000 76500 76300 76300 76500 38600 41100 27200 26500 24300 28600 23000 38400 33100 28200 29600 53200 71300 49900 29300 24600 25300 18300 28200 29600 53200 71300 49900 29300 24600 25300 18300 29 21400 36800 29500 38400 33100 28200 29600 59400 67500 44600 27100 27100 24600 18300 29 21400 36800 38000 30000 7000 7000 7000 7000 7000 | 11 | 16800 | 21300 | 28500 | 29300 | 28400 | 34600 | 109000 | 62600 | 84300 | 24400 | 18800 | 72300 | | | 13 17100 28900 15900 27300 32300 70400 89260 61400 59200 28000 11900 46400 14 16800 29600 12100 26300 32900 71300 89200 60500 52300 24000 12200 44800 15 16300 29800 13200 26400 31800 77700 91500 59700 48400 22000 14000 40000 16 17100 27100 14300 28000 32100 77900 89300 57500 35700 18800 15800 34400 17 19000 25600 19500 28200 33100 72800 89900 54600 23900 15800 16200 27400 18 23100 31300 20900 27000 30000 77900 91100 55200 29000 15800 18800 19 25000 36500 21000 27000 30000 78100 86600 5900 33700 18100 24200 19900 20 | | 16300 | | | | | | | | | | 11300 | 60100 | | | 14 16800 29600 12100 26300 32900 71300 89200 60500 52300 24000 12200 44800 15 16300 29800 13200 26400 31800 77700 91500 59700 48400 22000 14000 40000 16 17100 27100 14300 28000 32100 77900 89300 57500 35700 18800 15800 34400 17 19000 25600 19500 28200 33100 77900 91100 55200 29000 15800 16200 27400 18 23100 31300 29900 27000 30000 77900 91100 55200 29000 15200 22000 18800 19 25000 36500 21000 27000 30000 77800 85600 53100 40200 25000 24300 19900 21 24400 40800 256000 25900 300600 | | | | | | | | | | | | | | | | 15 16300 29800 13200 26400 31800 77700 91500 59700 48400 22000 14000 40000 16 17100 27100 14300 28000 32100 77900 89300 57500 35700 18800 15800 34400 17 19000 25600 19500 28200 33100 72800 89900 54600 23900 15800 16200 27400 18 23100 31300 20900 27000 30000 77900 86600 5900 33700 18100 24200 19900 20 25200 40000 20800 27100 30400 70800 85600 53100 40200 25000 24300 19100 21 24400 40800 25900 30000 73500 76500 50900 44300 26600 23300 18900 22 24000 40700 27200 25800 30600 76300 <td< td=""><td></td><td>16800</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>44800</td></td<> | | 16800 | | | | | | | | | | | 44800 | | | 16 17100 27100 14300 28000 32100 77900 89300 57500 35700 18800 15800 34400 17 19000 25600 19500 28200 33100 72800 89900 54600 23900 15800 16200 27400 18 23100 31300 20900 27000 30000 77900 91100 55200 29000 15200 22000 18800 19 25000 36500 21000 27000 30000 78100 86600 50900 33700 18100 24200 19900 20 25200 40000 20800 27100 30400 70800 85600 53100 40200 25000 24300 19100 21 24400 40800 26000 25900 30000 73500 76500 50900 44300 26600 23300 18900 22 24000 40700 27200 25800 30600 76300 77100 50300 44600 26900 22400 30200 | | | | | | | | | | | | | | | | 17 19000 25600 19500 28200 33100 72800 89900 54600 23900 15800 16200 27400 18 23100 31300 20900 27000 30000 77900 91100 55200 29000 15200 22000 18800 19 25000 36500 21000 27000 30000 78100 86600 50900 33700 18100 24200 19900 20 25200 40000 20800 27100 30400 76500 50900 33700 18100 24200 19900 21 24400 40800 26000 25900 30000 73500 76500 50900 44300 26600 23300 18900 22 24000 40700 27200 25800 30600 76300 77100 50300 44600 26900 21200 22800 23 24500 40800 29300 28100 29400 56500 <t< td=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<> | | - | | | | | | | | | | | | | | 18 23100 31300 20900 27000 30000 77900 91100 55200 29000 15200 22000 18800 19 25000 36500 21000 27000 30000 78100 86600 50900 33700 18100 24200 19900 20 25200 40000 20800 27100 30400 70800 85600 53100 40200 25000 24300 19100 21 24400 40800 26000 25900 30000 73500 76500 50900 44300 26600 23300 18900 22 24000 40700 27200 25800 30600 76300 77100 50300 44600 26900 21200 22800 23 24500 40800 29300 28300 30500 64800 74700 48600 43000 26900 22400 30200 24 23800 40300 28400 28100 29400 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<> | | | | | | | | | | | | | | | | 19 25000 36500 21000 27000 30000 78100 86600 50900 33700 18100 24200 19900 20 25200 40000 20800 27100 30400 70800 85600 53100 40200 25000 24300 19100 21 24400 40800 26000 25900 30000 73500 76500 50900 44300 26600 23300 18900 22 24000 40700 27200 25800 30600 76300 77100 50300 44600 26900 21200 22800 23 24500 40800 29300 28300 30500 64800 74700 48600 43000 26900 22400 30200 24 23800 43800 28100 29400 56500 76200 44900 41800 26600 22400 29500 25 22800 38400 33100 28200 29700 50100 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<> | | | | | | | | | | | | | | | | 20 25200 40000 20800 27100 30400 70800 85600 53100 40200 25000 24300 19100 21 24400 40800 26000 25900 30000 73500 76500 50900 44300 26600 23300 18900 22 24000 40700 27200 25800 30600 76300 77100 50300 44600 26900 21200 22800 23 24500 40800 29300 28300 30500 64800 74700 48600 43000 26900 22400 30200 24 23800 40300 29500 28100 29400 56500 76200 44900 41800 26800 28200 29500 25 22800 38900 28400 28100 29300 48900 67200 38600 41100 27200 26500 24300 26 21300 37500 29300 30300 29700 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>77900</td><td>91100</td><td></td><td></td><td></td><td></td><td></td></t<> | | | | | | | 77900 | 91100 | | | | | | | | 21 24400 40800 26000 25900 30000 73500 76500 50900 44300 26600 23300 18900 22 24000 40700 27200 25800 30600 76300 77100 50300 44600 26900 21200 22800 23 24500 40800 29300 28300 30500 64800 74700 48600 43000 26900 22400 30200 24 23800 40300 29500 28100 29400 56500 76200 44900 41800 26800 28200 29500 25 22800 38900 28400 28100 29300 48900 67200 38600 41100 27200 26500 24300 26 21300 37500 29300 30300 29700 50100 70100 40400 36400 27100 26100 20100 27 20900 38400 33100 28200 29600 53200 71300 43900 29300 24600 25300 18300 | | 25000 | 36 <b>5</b> 00 | 21000 | 27000 | 30000 | 78100 | 86600 | 50900 | 33700 | 18100 | 24200 | | | | 22 24000 40700 27200 25800 30600 76300 77100 50300 44600 26900 21200 22800 23 24500 40800 29300 28300 30500 64800 74700 48600 43000 26900 22400 30200 24 23800 40300 29500 28100 29400 56500 76200 44900 41800 26800 28200 29500 25 22800 38900 28400 28100 29300 48900 67200 38600 41100 26500 24300 26 21300 37500 29300 30300 29700 50100 70100 40400 36400 27100 26100 20100 27 20900 38400 33100 28200 29000 59400 67500 44600 27100 26100 25300 18300 28 19700 38800 31000 28200 29000 59400 <t< td=""><td>20</td><td>25200</td><td>40000</td><td>20800</td><td>27100</td><td>30400</td><td>70800</td><td>85600</td><td>53100</td><td>40200</td><td>25000</td><td>24300</td><td>19100</td></t<> | 20 | 25200 | 40000 | 20800 | 27100 | 30400 | 70800 | 85600 | 53100 | 40200 | 25000 | 24300 | 19100 | | | 22 24000 40700 27200 25800 30600 76300 77100 50300 44600 26900 21200 22800 23 24500 40800 29300 28300 30500 64800 74700 48600 43000 26900 22400 30200 24 23800 40300 29500 28100 29400 56500 76200 44900 41800 26800 28200 29500 25 22800 38900 28400 28100 29300 48900 67200 38600 41100 26500 24300 26 21300 37500 29300 30300 29700 50100 70100 40400 36400 27100 26100 20100 27 20900 38400 33100 28200 29000 59400 67500 44600 27100 26100 25300 18300 28 19700 38800 31000 28200 29000 59400 <t< td=""><td>21</td><td>24400</td><td>40900</td><td>26000</td><td>25000</td><td>20000</td><td>72500</td><td>76600</td><td>50000</td><td>44300</td><td>26600</td><td>23300</td><td>19000</td></t<> | 21 | 24400 | 40900 | 26000 | 25000 | 20000 | 72500 | 76600 | 50000 | 44300 | 26600 | 23300 | 19000 | | | 23 24500 40800 29300 28300 30500 64800 74700 48600 43000 26900 22400 30200 24 23800 40300 29500 28100 29400 56500 76200 44900 41800 26800 28200 29500 25 22800 38900 28400 28100 29300 48900 67200 38600 41100 27200 26500 24300 26 21300 37500 29300 30300 29700 50100 70100 40400 36400 27100 26100 20100 27 20900 38400 33100 28200 29600 53200 71300 43900 29300 24600 25300 18300 28 19700 38800 31000 28200 29600 53200 71300 43900 29300 24600 25300 18300 29 21400 36800 29500 30400 | | | | | | | | | | | | | | | | 24 23800 40300 29500 28100 29400 56500 76200 44900 41800 26800 28200 29500 25 22800 38900 28400 28100 29300 48900 67200 38600 41100 27200 26500 24300 26 21300 37500 29300 30300 29700 50100 70100 40400 36400 27100 26100 20100 27 20900 38400 33100 28200 29600 53200 71300 43900 29300 24600 25300 18300 28 19700 38900 31000 28200 29000 59400 67500 44600 27100 21700 24600 18300 29 21400 36800 29500 30400 81000 67500 46900 30400 19300 25900 20200 30 23900 38700 28100 33900 94 | | | | | | | | | | | | | | | | 25 | | | | | | | | | | | | | | | | 26 21300 37500 29300 30300 29700 50100 70100 40400 36400 27100 26100 20100 27 20900 38400 33100 28200 29600 53200 71300 43900 29300 24600 25300 18300 28 19700 38900 31000 28200 29000 59400 67500 44600 27100 21700 24600 18300 29 21400 36800 29500 30400 81000 67300 46900 30400 19300 25900 20200 30 23900 38700 28100 33900 94600 69900 46000 30000 16600 28300 22400 31 23300 29300 39000 97600 50500 18100 27800 TOTAL 700000 933400 829000 877000 853800 1743900 2803400 1709400 1621100 793200 713500 1024400 MEAN 22580 31110 26740 28290 30490 56250 93450 55140 54040 25590 23020 34150 MAX 33100 40800 39100 39000 45400 97600 126000 67900 86100 37800 37100 72700 | | | | | | | | | | | | | | | | 27 20900 38400 33100 28200 29600 53200 71300 43900 29300 24600 25300 18300 28 19700 38900 31000 28200 29000 59400 67500 44600 27100 21700 24600 18300 29 21400 36800 29500 30400 81000 67300 46900 30400 19300 25900 20200 30 23900 38700 28100 33900 94600 69900 46000 30000 16600 28300 22400 31 23300 29300 39000 97600 50500 18100 27800 TOTAL 700000 933400 829000 877000 853800 1743900 2803400 1709400 1621100 793200 713500 1024400 MEAN 22580 31110 26740 28290 30490 | 23 | 22000 | 30900 | 28400 | 20100 | 29300 | 48900 | 6/200 | 30000 | 41100 | 2/200 | 20300 | 24300 | | | 27 20900 38400 33100 28200 29600 53200 71300 43900 29300 24600 25300 18300 28 19700 38900 31000 28200 29000 59400 67500 44600 27100 21700 24600 18300 29 21400 36800 29500 30400 81000 67300 46900 30400 19300 25900 20200 30 23900 38700 28100 33900 94600 69900 46000 30000 16600 28300 22400 31 23300 29300 39000 97600 50500 18100 27800 TOTAL 700000 933400 829000 877000 853800 1743900 2803400 1709400 1621100 793200 713500 1024400 MEAN 22580 31110 26740 28290 30490 56250 93450 55140 54040 25590 23020 34150 MAX 33100 40800 39100 39000 45400 97600 126000 67900 86100 37800 | | 21300 | 37500 | 29300 | 30300 | 29700 | 50100 | 70100 | 40400 | 36400 | | | | | | 29 21400 36800 29500 30400 81000 67300 46900 30400 19300 25900 20200 30 23900 38700 28100 33900 94600 69900 46000 30000 16600 28300 22400 31 23300 29300 39000 97600 50500 18100 27800 TOTAL 700000 933400 829000 877000 853800 1743900 2803400 1709400 1621100 793200 713500 1024400 MEAN 22580 31110 26740 28290 30490 56250 93450 55140 54040 25590 23020 34150 MAX 33100 40800 39100 39000 45400 97600 126000 67900 86100 37800 37100 72700 | 27 | 20900 | 38400 | 33100 | 28200 | 29600 | 53200 | 71300 | 43900 | 29300 | 24600 | 25300 | | | | 30 23900 38700 28100 33900 94600 69900 46000 30000 16600 28300 22400 31 23300 29300 39000 97600 50500 18100 27800 TOTAL 700000 933400 829000 877000 853800 1743900 2803400 1709400 1621100 793200 713500 1024400 MEAN 22580 31110 26740 28290 30490 56250 93450 55140 54040 25590 23020 34150 MAX 33100 40800 39100 39000 45400 97600 126000 67900 86100 37800 37100 72700 | 28 | 19700 | 38900 | 31000 | 28200 | 29000 | 59400 | 67500 | 44600 | 27100 | 21700 | 24600 | | | | 31 23300 29300 39000 97600 50500 18100 27800 TOTAL 700000 933400 829000 877000 853800 1743900 2803400 1709400 1621100 793200 713500 1024400 MEAN 22580 31110 26740 28290 30490 56250 93450 55140 54040 25590 23020 34150 MAX 33100 40800 39100 39000 45400 97600 126000 67900 86100 37800 37100 72700 | 29 | 21400 | 36800 | 29500 | 30400 | | 81000 | 67300 | 46900 | 30400 | 19300 | 25900 | 20200 | | | 31 23300 29300 39000 97600 50500 18100 27800 TOTAL 700000 933400 829000 877000 853800 1743900 2803400 1709400 1621100 793200 713500 1024400 MEAN 22580 31110 26740 28290 30490 56250 93450 55140 54040 25590 23020 34150 MAX 33100 40800 39100 39000 45400 97600 126000 67900 86100 37800 37100 72700 | 30 | 23900 | 38700 | 28100 | 33900 | | 94600 | 69900 | 46000 | 30000 | 16600 | 28300 | 22400 | | | MEAN 22580 31110 26740 28290 30490 56250 93450 55140 54040 25590 23020 34150 MAX 33100 40800 39100 39000 45400 97600 126000 67900 86100 37800 37100 72700 | | | | | | | | | | | 18100 | 27800 | | | | MEAN 22580 31110 26740 28290 30490 56250 93450 55140 54040 25590 23020 34150 MAX 33100 40800 39100 39000 45400 97600 126000 67900 86100 37800 37100 72700 | TOTAL | 700000 | 033400 | 829000 | 877000 | 853800 | 17/3000 | 2803400 | 1709400 | 1621100 | 793200 | 713500 | 1024400 | | | MAX 33100 40800 39100 39000 45400 97600 126000 67900 86100 37800 37100 72700 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | AC-FT 1388000 1851000 1644000 1740000 1694000 3459000 5561000 3391000 3215000 1573000 1415000 2032000 | | | | | | | | | | | | | | | CAL YR 1988 TOTAL 14239900 MEAN 38910 MAX 107000 MIN 11900 AC-FT 28240000 WTR YR 1989 TOTAL 14602100 MEAN 40010 MAX 126000 MIN 11300 AC-FT 28960000 137 ### 05476500 DES MOINES RIVER AT ESTHERVILLE, IA LOCATION.--Lat 43°23'51", long 94°50'38", in SW1/4 SE1/4 sec.10, T.99 N., R.34 W., Emmet County, Hydrologic Unit 07100002, on right bank in city park, 1,200 ft downstream from bridge on State Highway 9 at Estherville, 0.1 mi upstream from School Creek, 2.3 mi upstream from Brown Creek, and at mile 404.2. DRAINAGE AREA. -- 1,372 mi2. PERIOD OF RECORD. --October 1951 to current year. Prior to November 1951, monthly discharge only, published in WSP 1728. REVISED RECORDS. -- WSP 1438: Drainage area. GAGE. -- Water-stage recorder and concrete control. Datum of gage is 1,247.55 ft above NGVD. REMARKS.--Estimated daily discharges: Nov. 18-20, Jan. 2, 3, 7-10, and Feb. 2-10, 21-24. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers data collection platform at station. AVERAGE DISCHARGE.--38 years, 382 $ft^3/s$ , 3.78 in/yr, 276,800 acre-ft/yr; median of yearly mean discharges, 250 $ft^3/s$ , 2.5 in/yr, 181,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 16,000 ft<sup>3</sup>/s Apr. 12, 1969, gage height, 17.68 ft, from flood-mark; no flow Jan. 16-18, 1977. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 1,500 ft<sup>3</sup>/s and maximum (\*): | | | Discharge | Gage height | | | Discharge | Gage height | |-----------------|--------------|------------------------------|---------------|------|------|----------------------|-------------| | Date<br>Mar. 29 | Time<br>0630 | (ft <sup>3</sup> /s)<br>*915 | (ft)<br>*4.50 | Date | Time | (ft <sup>3</sup> /s) | (ft) | Minimum discharge, 2.7 ft3/s Sept. 30. | | | DISCHA | RGE, CUBIC | FEET PER | SECOND, | WATER YEAR<br>MEAN VALUES | OCTOBER | 1988 TO | SEPTEMBER | 1989 | | | |-----------------------------------------------------|------------------------------------------|------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|----------------------------------------------------|------------------------------------------------|------------------------------------------|-----------------------------------------|------------------------------------------|-------------------------------------------|------------------------------------------| | DAY | OCT | NOA | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | 10<br>8.9<br>10<br>9.1<br>7.8 | 9.3<br>9.1<br>9.4<br>7.5 | 9.8<br>9.1<br>8.9<br>8.0<br>7.6 | 4.8<br>4.0<br>4.1<br>4.4 | 7.7<br>4.0<br>3.8<br>4.0<br>4.1 | 4.5<br>4.4<br>4.3<br>4.3<br>4.3 | 407<br>329<br>288<br>259<br>237 | 166<br>154<br>148<br>149<br>148 | 64<br>68<br>80<br>83<br>71 | 22<br>16<br>20<br>37<br>41 | 39<br>36<br>34<br>30<br>32 | 9.0<br>8.1<br>18<br>29 | | 6<br>7<br>8<br>9<br>10 | 6.5<br>6.2<br>5.8<br>5.5<br>5.2 | 7.4<br>8.4<br>9.9<br>9.1<br>9.0 | 7.9<br>8.1<br>7.7<br>7.3<br>7.0 | 4.4<br>4.0<br>3.9<br>3.8<br>3.9 | 4.2<br>4.5<br>4.8<br>4.5<br>4.4 | 4.4<br>4.2<br>4.2<br>7.3<br>105 | 200<br>178<br>179<br>170<br>155 | 140<br>127<br>111<br>100<br>97 | 65<br>61<br>64<br>60<br>57 | 40<br>37<br>35<br>30<br>24 | 27<br>22<br>19<br>15<br>12 | 13<br>18<br>18<br>14<br>10 | | 11<br>12<br>13<br>14<br>15 | 4.5<br>4.4<br>4.6<br>5.1<br>5.5 | 7.3<br>7.2<br>7.3<br>7.5 | 6.1<br>5.8<br>6.0<br>6.3<br>6.0 | 4.2<br>4.0<br>4.0<br>4.0 | 4.6<br>4.6<br>4.7<br>4.7<br>4.5 | 283<br>227<br>257<br>204<br>126 | 136<br>126<br>120<br>120<br>119 | 93<br>89<br>87<br>82<br>72 | 50<br>45<br>46<br>53<br>48 | 54<br>83<br>55<br>55<br>83 | 9.3<br>8.1<br>24<br>13<br>11 | 8.1<br>6.4<br>5.5<br>5.0<br>4.3 | | 16<br>17<br>18<br>19<br>20 | 4.6<br>4.7<br>4.8<br>12<br>7.0 | 13<br>10<br>11<br>9.8<br>8.8 | 5.3<br>5.3<br>5.3<br>5.5<br>5.8 | 4.1<br>4.1<br>4.2<br>4.4<br>4.6 | 4.5<br>4.4<br>4.4<br>4.3 | 122<br>67<br>76<br>170<br>189 | 115<br>106<br>101<br>90<br>86 | 66<br>62<br>60<br>63<br>64 | 41<br>33<br>27<br>20<br>17 | 77<br>79<br>94<br>108<br>111 | 9.3<br>8.3<br>9.8<br>8.3 | 4.0<br>3.9<br>4.1<br>4.9<br>4.4 | | 21<br>22<br>23<br>24<br>25 | 5.1<br>5.1<br>7.3<br>5.9<br>7.7 | 8.4<br>8.7<br>8.7<br>9.3<br>9.9 | 5.6<br>5.8<br>6.0<br>6.0<br>5.8 | 4.8<br>4.8<br>5.1<br>5.4<br>5.6 | 4.4<br>4.0<br>4.2<br>4.0<br>4.3 | 156<br>173<br>220<br>295<br>397 | 85<br>85<br>82<br>111<br>107 | 59<br>54<br>58<br>70<br>61 | 18<br>24<br>15<br>22<br>25 | 115<br>109<br>84<br>51<br>45 | 12<br>12<br>14<br>12<br>12 | 4.7<br>5.2<br>5.8<br>5.7<br>4.8 | | 26<br>27<br>28<br>29<br>30<br>31 | 7.2<br>7.2<br>7.7<br>8.4<br>7.9<br>7.9 | 11<br>10<br>7.1<br>8.8<br>11 | 5.7<br>5.8<br>5.3<br>4.7<br>4.5<br>4.6 | 5.6<br>5.8<br>5.9<br>6.5<br>7.9 | 4.4<br>4.4<br>4.3<br> | 541<br>567<br>791<br>858<br>658<br>511 | 146<br>151<br>167<br>180<br>175 | 44<br>33<br>25<br>24<br>20<br>41 | 24<br>23<br>26<br>29<br>26 | 46<br>47<br>45<br>47<br>45<br>43 | 21<br>12<br>13<br>13<br>16 | 4.0<br>3.9<br>3.5<br>3.3<br>3.0 | | TOTAL<br>MEAN<br>MAX<br>MIN<br>AC-FT<br>CFSM<br>IN. | 209.6<br>6.76<br>12<br>4.4<br>416<br>.00 | 275.9<br>9.20<br>13<br>7.1<br>547<br>.01 | 198.6<br>6.41<br>9.8<br>4.5<br>394<br>.00 | 146.4<br>4.72<br>7.9<br>3.8<br>290<br>.00 | 125.1<br>4.47<br>7.7<br>3.8<br>248<br>.00 | 7034.9<br>227<br>858<br>4.2<br>13950<br>.17<br>.19 | 4810<br>160<br>407<br>82<br>9540<br>.12<br>.13 | 2567<br>82.8<br>166<br>20<br>5090<br>.06 | 1285<br>42.8<br>83<br>15<br>2550<br>.03 | 1778<br>57.4<br>115<br>16<br>3530<br>.04 | 530.1<br>17.1<br>39<br>8.1<br>1050<br>.01 | 240.6<br>8.02<br>29<br>3.0<br>477<br>.01 | CAL YR 1988 TOTAL 55708.3 MEAN 152 MAX 978 MIN 2.8 AC-FT 110500 CFSM .11 IN. 1.51 WTR YR 1989 TOTAL 19201.2 MEAN 52.6 MAX 858 MIN 3.0 AC-FT 38090 CFSM .04 IN. .52 ### 05476750 DES MOINES RIVER AT HUMBOLDT, IA LOCATION.--Lat 42°43'12", long 94°13'06", in SE1/4 SW1/4 sec.1, T.91 N., R.29 W., Humboldt County, Hydrologic Unit 07100002 on left bank 5 ft downstream from First Avenue in city of Humboldt, about 700 ft downstream from City of Humboldt water plant, 3.2 mi downstream from dam, 3.2 mi upstream from Indian Creek, 3.9 mi upstream from East Fork Des Moines River, and at mile 334.3 upstream form mouth of Des Moines River. DRAINAGE AREA. -- 2.256 mi<sup>2</sup>. PERIOD OF RECORD. --October 1964 to current year. Prior to October 1970, published as West Fork Des Moines River at Humboldt. GAGE.--Water-stage recorder. Datum of gage is 1,053.54 ft above NGVD. Prior to Oct. 3, 1966, nonrecording gage at same site and datum. REMARKS.--Estimated daily discharges: Nov. 28, Dec. 25-29, Jan. 24-26, and Feb. 2-26. Records good except those for estimated daily discharges, which are poor. Daily nonrecording gage readings available in Iowa City district office for period Mar. 7, 1940, to Sept. 30, 1964. Discharge not published for this period because of extreme regulation at dam 3.2 mi upstream from gage. Power generation and streamflow regulation discontinued August 1964. Low-flow discharges occasionally affected by minor regulation. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corp of Engineers data collection platform at station. AVERAGE DISCHARGE.--25 years, 918 $ft^3/s$ , 5.53 in/yr, 665,100 acre-ft/yr; median of yearly mean discharges, 750 $ft^3/s$ , 4.5 in/yr, 543,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 18,000 ft<sup>3</sup>/s Apr. 14, 1969, gage height, 15.40 ft; minimum daily discharge, 13 ft<sup>3</sup>/s Nov. 12, 1976, Jan. 12 to Feb. 2, 1977. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 23, 1947, reached a stage of 12.2 ft, discharge, 11,000 ft<sup>3</sup>/s at present site and datum. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 2,800 ft3/s and maximum (\*): | | | Discharge | Gage height | | | Discharge | Gage height | |---------|------|----------------------|-------------|------|------|----------------------|-------------| | Date | Time | (ft <sup>3</sup> /s) | (ft) | Date | Time | (ft <sup>3</sup> /s) | (ft) | | Mar. 30 | 1545 | *994 | *4.57 | | | | | Minimum discharge, 12 ft3/s Sept. 22, caused by sluicing at dam upstream of the station. | | | DISCHARGE | , CUBIC | FEET PER | | WATER YEAR<br>EAN VALUES | OCTOBER | 1988 TO | SEPTEMBER | 1989 | | | |-----------------------------------------------------|-----------------------------------------|-------------------------------|-----------------------------------------|------------------------------------------------|------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|-----------------------------------------|------------------------------------------|-----------------------------------------|-----------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | 92<br>81<br>77<br>73<br>71 | 72<br>71<br>69<br>76<br>182 | 64<br>81<br>84<br>84 | 56<br>56<br>53<br>50<br>78 | 62<br>40<br>34<br>35<br>37 | 44<br>43<br>43<br>43 | 708<br>585<br>503<br>450<br>414 | 329<br>311<br>299<br>292<br>281 | 157<br>144<br>149<br>155<br>150 | 77<br>75<br>74<br>68<br>63 | 87<br>95<br>78<br>77<br>81 | 42<br>36<br>37<br>86<br>60 | | 6<br>7<br>8<br>9<br>10 | 69<br>68<br>68<br>68<br>56 | 83<br>71<br>71<br>71<br>73 | 78<br>76<br>73<br>65<br>58 | 75<br>68<br>66<br>59<br>54 | 39<br>38<br>40<br>38<br>41 | 35<br>34<br>34<br>68<br>157 | 381<br>360<br>351<br>325<br>311 | 270<br>265<br>262<br>253<br>245 | 142<br>139<br>137<br>131<br>129 | 59<br>66<br>71<br>71<br>69 | 69<br>60<br>58<br>55<br>53 | 51<br>76<br>90<br>75<br>64 | | 11<br>12<br>13<br>14<br>15 | 50<br>54<br>55<br>57<br>60 | 68<br>89<br>89<br>81<br>98 | 57<br>56<br>56<br>58<br>58 | 48<br>44<br>43<br>42<br>41 | 39<br>43<br>45<br>43<br>42 | 446<br>784<br>774<br>531<br>332 | 222<br>277<br>271<br>259<br>247 | 231<br>228<br>230<br>230<br>225 | 130<br>139<br>131<br>121<br>118 | 151<br>108<br>86<br>89<br>101 | 50<br>49<br>53<br>69<br>64 | 71<br>61<br>59<br>58<br>57 | | 16<br>17<br>18<br>19<br>20 | 63<br>78<br>71<br>71<br>66 | 112<br>83<br>91<br>100<br>80 | 56<br>53<br>52<br>54<br>79 | 43<br>43<br>43<br>47<br>47 | 44<br>41<br>42<br>40<br>42 | 409<br>244<br>197<br>235<br>260 | 244<br>234<br>228<br>218<br>216 | 213<br>191<br>200<br>207<br>181 | 117<br>115<br>112<br>105<br>95 | 91<br>93<br>128<br>120<br>130 | 56<br>53<br>52<br>51<br>51 | 54<br>52<br>48<br>34<br>32 | | 21<br>22<br>23<br>24<br>25 | 71<br>68<br>83<br>70<br>75 | 57<br>66<br>103<br>112<br>108 | 67<br>66<br>69<br>68<br>66 | 48<br>52<br>54<br>52<br>48 | 43<br>40<br>38<br>43<br><b>52</b> | 257<br>284<br>328<br>416<br>559 | 208<br>220<br>207<br>205<br>203 | 168<br>160<br>163<br>467<br>698 | 86<br>97<br>94<br>84<br>106 | 139<br>134<br>136<br>138<br>135 | 52<br>52<br>41<br>34<br>35 | 32<br>28<br>23<br>23<br>28 | | 26<br>27<br>28<br>29<br>30<br>31 | 70<br>78<br>61<br>49<br>57<br>67 | 118<br>116<br>93<br>65<br>58 | 60<br>56<br>58<br>60<br>56<br>56 | 46<br>54<br>56<br>56<br>58<br>69 | 49<br>46<br>46<br> | 632<br>695<br>829<br>811<br>965<br>891 | 270<br>300<br>367<br>368<br>340 | 442<br>310<br>239<br>227<br>193<br>170 | 116<br>102<br>94<br>89<br>83 | 116<br>97<br>82<br>100<br>91<br>86 | 42<br>48<br>56<br>63<br>54<br>46 | 26<br>25<br>28<br>26<br>25 | | TOTAL<br>MEAN<br>MAX<br>MIN<br>AC-FT<br>CFSM<br>IN. | 2097<br>67.6<br>92<br>49<br>4160<br>.03 | 87.5<br>182<br>57 | 2005<br>64.7<br>84<br>52<br>3980<br>.03 | 1649<br>53.2<br>78<br>41<br>3270<br>.02<br>.03 | 1182<br>42.2<br>62<br>34<br>2340<br>.02<br>.02 | 11420<br>368<br>965<br>34<br>22650<br>.16<br>.19 | 9492<br>316<br>708<br>203<br>18830<br>.14<br>.16 | 8180<br>264<br>698<br>160<br>16230<br>.12<br>.13 | 3567<br>119<br>157<br>83<br>7080<br>.05 | 3044<br>98.2<br>151<br>59<br>6040<br>.04 | 1784<br>57.5<br>95<br>34<br>3540<br>.03 | 1407<br>46.9<br>90<br>23<br>2790<br>.02 | CAL YR 1988 TOTAL 123807 MEAN 338 MAX 2080 MIN 36 AC-FT 245600 CFSM .15 IN. 2.04 WTR YR 1989 TOTAL 48453 MEAN 133 MAX 965 MIN 23 AC-FT 96110 CFSM .06 IN. .80 LOCATION.--Lat 42°43'26", long 94°11'30", in NW1/4 SE1/4 sec.6, T.91 N., R.28 W., Humboldt County, Hydrologic Unit 07100003, on right bank 50 ft upstream from old mill dam, in city park at east edge of Dakota City, 500 ft upstream from bridge on county highway P56, 0.6 mi downstream from bridge on State Highway 3, 3.4 mi upstream from confluence with Des Moines River, and at mile 333.8 upstream from mouth of Des Moines River. 05479000 EAST FORK DES MOINES RIVER AT DAKOTA CITY, IA DRAINAGE AREA. -- 1,308 mi<sup>2</sup>. PERIOD OF RECORD. -- March 1940 to current year. Prior to October 1954, published as "near Hardy". REVISED RECORDS. -- WSP 1438: Drainage area. WSP 1508: 1944, 1945-47 (M). GAGE.--Water-stage recorder. Datum of gage is 1,038.71 ft above NGVD. Prior to Oct. 1, 1954, nonrecording gage at site 8 mi upstream at different datum. REMARKS.--Estimated daily discharges: Nov. 20, 21, 26-30, Dec. 1, and Jan. 1 to Mar. 26. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers data collection platform at station. AVERAGE DISCHARGE.--49 years, 542 ft<sup>3</sup>/s, 5 490 ft<sup>3</sup>/s, 5.1 in/yr, 355,000 acre-ft/yr. 5.63 in/yr, 392,700 acre-ft/yr; median of yearly mean discharges, EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 18,800 ft<sup>3</sup>/s June 21, 1954, gage height, 16.95 ft, from flood-mark, site and datum then in use; minimum daily discharge, 4.8 ft<sup>3</sup>/s Jan. 11-14, 1977. EXTREMES OUTSIDE PERIOD OF RECORD. --Flood of June 21, 1954, reached a stage of 24.02 ft, discharge, 17,400 ft<sup>3</sup>/s at present site. Flood of September 1938 reached a stage of 17.4 ft, discharge, about 22,000 ft<sup>3</sup>/s, site and datum in use during the period 1940-54. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 1,700 ft3/s and maximum (\*): | | | Discharge | Gage height | | | | Gage height | |--------|------|----------------------|-------------|-----------------|---------|----------------------|-------------| | Date | Time | (ft <sup>3</sup> /s) | (ft) | | 'ime | (ft <sup>3</sup> /s) | (ft) | | May 24 | 2300 | *1,840 | *11.11 | No other peak g | greater | than base discharge | · . | Minimum discharge, 9.7 ft3/s Sept. 2, 3. | | | DISCHARG | E, CUBIC | FEET PER | SECOND, | WATER YEAR<br>EAN VALUES | OCTOBER | 1988 TO | SEPTEMBER | 1989 | | | |-----------------------------------------------------|-----------------------------------------------|-----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|-------------------------------------------------|-----------------------------------------|--------------------------------------------|------------------------------------------|------------------------------------------|-----------------------------------------------|---------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | 54<br>42<br>34<br>30<br>28 | 37<br>35<br>34<br>38<br>37 | 34<br>38<br>35<br>33<br>35 | 27<br>23<br>25<br>37<br>34 | 34<br>30<br>22<br>20<br>21 | 22<br>21<br>22<br>23<br>22 | 221<br>180<br>155<br>135<br>119 | 624<br>503<br>381<br>312<br>275 | 157<br>138<br>124<br>113<br>103 | 75<br>76<br>63<br>49<br>43 | 28<br>25<br>22<br>22<br>24 | 12<br>11<br>10<br>26<br>27 | | 6<br>7<br>8<br>9 | 26<br>26<br>25<br>24<br>25 | 39<br>39<br>39<br>38<br>39 | 35<br>30<br>25<br>25<br>26 | 33<br>24<br>20<br>19<br>19 | 21<br>22<br>23<br>22<br>25 | 22<br>21<br>56<br>96<br>140 | 111<br>105<br>105<br>99<br>94 | 241<br>221<br>205<br>186<br>173 | 93<br>85<br>83<br>76<br>73 | 36<br>32<br>28<br>25<br>24 | 22<br>20<br>19<br>18<br>16 | 22<br>28<br>35<br>28<br>23 | | 11<br>12<br>13<br>14<br>15 | 24<br>23<br>24<br>22<br>23 | 40<br>45<br>44<br>44 | 21<br>23<br>26<br>27<br>24 | 22<br>21<br>23<br>24<br>26 | 27<br>24<br>22<br>23<br>22 | 195<br>380<br>460<br>430<br>340 | 88<br>81<br>78<br>75<br>71 | 159<br>147<br>133<br>124<br>118 | 70<br>74<br>71<br>64<br>61 | 43<br>101<br>108<br>75<br>62 | 16<br>15<br>19<br>27<br>26 | 19<br>19<br>18<br>17<br>16 | | 16<br>17<br>18<br>19<br>20 | 25<br>30<br>31<br>29<br>31 | 53<br>48<br>44<br>45<br>34 | 19<br>19<br>21<br>24<br>36 | 28<br>27<br>28<br>23<br>21 | 21<br>20<br>22<br>21<br>20 | 350°<br>440<br>210<br>230<br>210 | 68<br>67<br>62<br>61<br>60 | 111<br>107<br>104<br>112<br>110 | 56<br>53<br>51<br>48<br>42 | 50<br>43<br>69<br>65<br>74 | 24<br>22<br>21<br>20<br>18 | 16<br>15<br>14<br>14<br>14 | | 21<br>22<br>23<br>24<br>25 | 33<br>33<br>34<br>35<br>33 | 33<br>44<br>43<br>39<br>39 | 35<br>32<br>34<br>38<br>36 | 26<br>28<br>27<br>26<br>25 | 21<br>20<br>19<br>24<br>27 | 200<br>170<br>165<br>185<br>220 | 59<br>95<br>149<br>202<br>360 | 104<br>110<br>104<br>1300<br>1620 | 38<br>40<br>41<br>39<br>45 | 74<br>67<br>53<br>46<br>40 | 17<br>17<br>15<br>14<br>13 | 13<br>13<br>12<br>12<br>12 | | 26<br>27<br>28<br>29<br>30<br>31 | 35<br>33<br>36<br>33<br>33 | 45<br>43<br>38<br>38<br>35 | 35<br>32<br>29<br>27<br>27<br>28 | 23<br>26<br>25<br>25<br>27<br>39 | 25<br>24<br>23<br> | 350<br>505<br>523<br>437<br>357<br>283 | 298<br>244<br>394<br>517<br>607 | 824<br>452<br>309<br>279<br>220<br>181 | 93<br>120<br>82<br>65<br>61 | 36<br>33<br>31<br>33<br>30<br>29 | 16<br>18<br>18<br>17<br>15 | 12<br>11<br>11<br>11<br>10 | | TOTAL<br>MEAN<br>MAX<br>MIN<br>AC-FT<br>CFSM<br>IN. | 948<br>30.6<br>54<br>22<br>1880<br>.02<br>.03 | 1214<br>40.5<br>53<br>33<br>2410<br>.03 | 909<br>29.3<br>38<br>19<br>1800<br>.02 | 801<br>25.8<br>39<br>19<br>1590<br>.02 | 645<br>23.0<br>34<br>19<br>1280<br>.02 | 7085<br>229<br>523<br>21<br>14050<br>.17<br>.20 | 4960<br>165<br>607<br>59<br>9840<br>.13 | 9849<br>318<br>1620<br>104<br>19540<br>.24 | 2259<br>75.3<br>157<br>38<br>4480<br>.06 | 1613<br>52.0<br>108<br>24<br>3200<br>.04 | 597<br>19.3<br>28<br>13<br>1180<br>.01<br>.02 | 501<br>16.7<br>35<br>10<br>994<br>.01 | TOTAL 73258 MEAN 200 MAX 1630 MIN 14 AC-FT 145300 CFSM .15 IN. 2.08 TOTAL 31381 MEAN 86.0 MAX 1620 MIN 10 AC-FT 62240 CFSM .07 IN. .89 CAL YR 1988 WTR YR 1989 ### 05480500 DES MOINES RIVER AT FORT DODGE, IA LOCATION.--Lat 42°30'22", long 94°12'04", in NW1/4 SW1/4 sec.19, T.89 N., R.28 W., Webster County, Hydrologic Unit 07100004, on right bank 400 ft upstream from Soldier Creek, 1,800 ft downstream from Illinois Central Railroad bridge in Fort Dodge, 2,000 ft downstream from Lizard Creek, and at mile 314.6. DRAINAGE AREA. -- 4, 190 mi2. PERIOD OF RECORD.--April 1905 to July 1906 (no winter records), October 1913 to September 1927 (published as "at Kalo"), October 1946 to current year. Monthly discharge only for some periods, published in WSP 1308. REVISED RECORDS. -- WSP 1438: Drainage area. WSP 1308: 1924, 1925 (M). GAGE.--Water-stage recorder. Datum of gage is 969.38 ft above NGVD. See WSP 1728 for history of changes prior to Dec. 8, 1949. REMARKS.--Estimated daily discharges: Nov. 30, Dec. 15-18, 24-29, Jan. 1, 2, 6-9, 26, 27, Feb. 1 to March 12, and May 24-30. Records good, except for estimated daily discharges, which are poor. Occasional minor regulation caused by dam 0.8 mi upstream from gage. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain-gage and data collection platform and City of Fort Dodge gage-height telemeter at statiom. AVERAGE DISCHARGE.--57 years (water years 1914-27, 1947-89), 1,543 ft<sup>3</sup>/s, 5.00 in/yr, 1,118,000 acre-ft/yr; median of yearly mean discharges, 1,250 ft<sup>3</sup>/s, 4.1 in/yr, 906,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 35,600 ft<sup>3</sup>/s Apr. 8, 1965, gage height, 17.79 ft; maximum gage height, 19.62 ft, from floodmark, June 23, 1947, present site and datum; minimum daily discharge, 14 ft<sup>3</sup>/s Nov. 3, 1955. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 6,000 ft3/s and maximum (\*): | | | Discharge | Gage height | | | | Discharge | Gage height | |----------------|------|-------------------------------|---------------|---|------|------|----------------------|-------------| | Date<br>May 25 | Time | (ft <sup>3</sup> /s)<br>*3130 | (ft)<br>*5,20 | • | Date | Time | (ft <sup>3</sup> /s) | (ft) | Minimum discharge, 51 ft3/s Sept. 26. | | | DISCHARGE | , CUBIC | FEET PE | R SECOND, | WATER YEAR<br>MEAN VALUES | OCTOBER | 1988 TO | SEPTEMBER | 1989 | | | |-----------------------------------------------------|-----------------------------------------|---------------------------------|------------------------------------------|-------------------------------------------------|------------------------------------------|----------------------------------------------|---------------------------------------------------|----------------------------------------------------|-------------------------------------------|-------------------------------------------|------------------------------------------|-------------------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | 304<br>265<br>217<br>185<br>169 | 104<br>108<br>104<br>110<br>142 | 139<br>192<br>173<br>154<br>157 | 140<br>135<br>128<br>120<br>248 | 120<br>102<br>90<br>96<br>94 | 76<br>80<br>96<br>94<br>95 | 940<br>778<br>681<br>601<br>544 | 1020<br>911<br>768<br>692<br>641 | 441<br>395<br>612<br>463<br>382 | 213<br>215<br>190<br>157<br>141 | 136<br>123<br>115<br>110<br>109 | 71<br>65<br>63<br>132<br>128 | | 6<br>7<br>8<br>9 | 157<br>150<br>145<br>141<br>136 | 175<br>114<br>107<br>112<br>109 | 160<br>148<br>113<br>121<br>116 | 230<br>225<br>220<br>200<br>176 | 100<br>109<br>120<br>115 | 98<br>88<br>85<br>130<br>210 | 507<br>489<br>504<br>474<br>453 | 587<br>556<br>546<br>532<br>519 | 337<br>329<br>426<br>318<br>289 | 132<br>124<br>121<br>115<br>110 | 111<br>96<br>89<br>86<br>84 | 107<br>136<br>317<br>227<br>181 | | 11<br>12<br>13<br>14<br>15 | 120<br>111<br>110<br>112<br>113 | 100<br>126<br>137<br>131<br>149 | 101<br>108<br>116<br>137<br>100 | 145<br>134<br>111<br>105<br>105 | 108<br>104<br>98<br>94<br>90 | 320<br>500<br>1830<br>1490<br>1080 | 439<br>357<br>404<br>389<br>368 | 516<br>517<br>515<br>507<br>493 | 269<br>276<br>266<br>248<br>231 | 235<br>295<br>266<br>220<br>206 | 81<br>79<br>83<br>127<br>115 | 144<br>119<br>107<br>98<br>90 | | 16<br>17<br>18<br>19<br>20 | 114<br>124<br>129<br>120<br>114 | 212<br>189<br>187<br>191<br>186 | 105<br>110<br>118<br>107<br>194 | 104<br>102<br>105<br>109<br>125 | 84<br>86<br>90<br>86<br>95 | 916<br>966<br>602<br>696<br>634 | 357<br>349<br>335<br>321<br>315 | 456<br>409<br>398<br>413<br>356 | 222<br>210<br>207<br>195<br>180 | 184<br>163<br>261<br>275<br>254 | 96<br>87<br>83<br>80<br>80 | 84<br>79<br>75<br>71<br>69 | | 21<br>22<br>23<br>24<br>25 | 113<br>114<br>109<br>117<br>110 | 128<br>202<br>205<br>208<br>204 | 162<br>183<br>221<br>200<br>150 | 149<br>122<br>125<br>124<br>121 | 98<br>94<br>96<br>102<br>100 | 671<br>616<br>590<br>712<br>887 | 311<br>387<br>435<br>417<br>550 | 316<br>304<br>320<br>1760<br>2960 | 160<br>182<br>183<br>169<br>196 | 240<br>230<br>216<br>204<br>197 | 76<br>75<br>74<br>68<br>64 | 66<br>66<br>59<br>55<br>56 | | 26<br>27<br>28<br>29<br>30<br>31 | 109<br>103<br>107<br>96<br>92<br>99 | 212<br>232<br>145<br>141<br>135 | 160<br>130<br>120<br>130<br>149<br>151 | 115<br>130<br>129<br>125<br>138<br>177 | 98<br>90<br>80<br> | 1030<br>1170<br>1340<br>1220<br>1220<br>1150 | 565<br>576<br>721<br>941<br>991 | 1830<br>1060<br>812<br>690<br>602<br>503 | 260<br>375<br>318<br>265<br>228 | 179<br>157<br>145<br>161<br>173<br>144 | 78<br>78<br>78<br>82<br>81<br>76 | 54<br>56<br>56<br>58<br>56 | | TOTAL<br>MEAN<br>MAX<br>MIN<br>AC-FT<br>CFSM<br>IN. | 4205<br>136<br>304<br>92<br>8340<br>.03 | 153<br>232<br>100 | 4425<br>143<br>221<br>100<br>8780<br>.03 | 4422<br>143<br>248<br>102<br>8770<br>.03<br>.04 | 2749<br>98.2<br>120<br>80<br>5450<br>.02 | 667<br>1830<br>76 | 15499<br>517<br>991<br>311<br>30740<br>.12<br>.14 | 22509<br>726<br>2960<br>304<br>44650<br>.17<br>.20 | 8632<br>288<br>612<br>160<br>17120<br>.07 | 5923<br>191<br>295<br>110<br>11750<br>.05 | 2800<br>90.3<br>136<br>64<br>5550<br>.02 | 2945<br>98.2<br>317<br>54<br>5840<br>.02<br>.03 | CAL YR 1988 TOTAL 237164 MEAN 648 MAX 4050 MIN 73 AC-FT 470400 CFSM .15 IN. 2.11 WTR YR 1989 TOTAL 99406 MEAN 272 MAX 2960 MIN 54 AC-FT 197200 CFSM .06 IN. .88 ### 05481000 BOONE RIVER NEAR WEBSTER CITY, IA LOCATION.--Lat 42°26'01", long 93°48'12", in NW1/4 SE1/4 sec. 18, T.88 N., R.25 W., Hamilton County, Hydrologic Unit 07100005, on right bank 100 ft upstream from bridge on State Highway 17, 2.5 mi south of Webster City, and 3.2 mi downstream from Brewers Creek. DRAINAGE AREA. -- 844 mi2. PERIOD OF RECORD. -- March 1940 to current year. REVISED RECORDS.--WSP 1438: Drainage area. WSP 1308: 1940 (M), WSP 1708: 1956. GAGE.--Water-stage recorder. Datum of gage is 989.57 ft above NGVD. Prior to June 26, 1940, nonrecording gage at same site and datum. REMARKS.--Estimated daily discharges: Dec. 1 to Mar. 22, June 30 to July 2, July 7-11, 17, 23-25, 30, 31, Aug. 3, 4, 14, 22, and Aug. 26-30. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain-gage and gage-height satellite data collection platform at station. AVERAGE DISCHARGE.--49 years, 409 ft $^3$ /s, 6.58 in/yr, 296,300 acre-ft/yr; median of yearly mean discharges, 340 ft $^3$ /s, 5.5 in/yr, 246,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 20,300 ft<sup>3</sup>/s June 22, 1954, gage height, 18.55 ft; no flow Feb. 7, 1977. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since 1896, 19.1 ft about June 10, 1918, from floodmarks, from information by local resident, discharge, 21,500 ft<sup>3</sup>/s. Flood of June 18, 1932, reached a stage of 16.0 ft, discharge, 15,000 ft<sup>3</sup>/s. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 2,200 ft3/s and maximum (\*): | | | Discharge | Gage height | | | Discharge | Gage height | |--------|------|----------------------|-------------|------------|------------|------------------|-------------| | Date | Time | (ft <sup>3</sup> /s) | (ft) | Date | Time | (ft³/s) | (ft) | | May 25 | 0330 | *2,330 | *5.91 | No other p | eak greate | r than base disc | harge. | Minimum discharge, 7.0 ft3/s Oct. 11-15. | | | DISCHAR | GE, CUBIC | FEET PE | R SECOND, | WATER YEA<br>EAN VALUES | R OCTOBER | R 1988 TO | SEPTEMBER | 1989 | | | |-----------------------------------|------------------------------------------|----------------------------------------|----------------------------------------|------------------------------------------|----------------------------------------|-------------------------------------------------|-----------------------------------------|--------------------------------------------------|------------------------------------------------|------------------------------------------------|----------------------------------------|------------------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 21 | 13 | 23 | 20 | 33 | 24 | 117 | 202 | 229 | 142 | 33 | 22 | | 2 | 17 | 12 | 21 | 24 | 32 | 28 | 95 | 178 | 186 | 110 | 29 | 21 | | 3 | 19 | 12 | 20 | 29 | 30 | 32 | 85 | 155 | 200 | 87 | 28 | 20 | | 4 | 17 | 12 | 20 | 28 | 29 | 35 | 77 | 142 | 179 | 75 | 27 | 32 | | 5 | 16 | 13 | 19 | 37 | 28 | 36 | 70 | 133 | 143 | 69 | 25 | 36 | | 6 | 14 | 16 | 18 | 290 | 26 | 35 | 66 | 119 | 122 | 51 | 23 | 49 | | 7 | 12 | 16 | 19 | 150 | 25 | 50 | 65 | 108 | 108 | 49 | 22 | 54 | | 8 | 9.9 | 15 | 18 | 60 | 24 | 90 | 74 | 98 | 197 | 48 | 21 | 528 | | 9 | 9.3 | 16 | 17 | 75 | 23 | 150 | 72 | 91 | 135 | 44 | 20 | 634 | | 10 | 9.0 | 15 | 15 | 68 | 22 | 280 | 67 | 88 | 112 | 41 | 19 | 434 | | 11 | 7.9 | 16 | 16 | 58 | 22 | 400 | 66 | 79 | 96 | 150 | 18 | 286 | | 12 | 9.0 | 23 | 17 | 50 | 21 | 600 | 62 | 74 | 101 | 474 | 18 | 190 | | 13 | 8.6 | 19 | 17 | 44 | 21 | 540 | 60 | 69 | 100 | 445 | 21 | 141 | | 14 | 7.8 | 19 | 17 | 34 | 21 | 450 | 61 | 65 | 84 | 280 | 40 | 112 | | 15 | 8.1 | 40 | 19 | 31 | 20 | 400 | 57 | 62 | 74 | 177 | 86 | 90 | | 16 | 9.0 | 48 | 22 | 30 | 20 | 350 | 54 | 59 | 67 | 121 | 63 | 76 | | 17 | 10 | 50 | 22 | 30 | 20 | 310 | 53 | 56 | 61 | 130 | 45 | 65 | | 18 | 10 | 40 | 24 | 30 | 20 | 280 | 51 | 58 | 59 | 134 | 35 | 58 | | 19 | 11 | 36 | 26 | 30 | 20 | 250 | 50 | 86 | 55 | 276 | 43 | 51 | | 20 | 13 | <b>28</b> | 28 | 30 | 22 | 220 | 49 | 132 | 49 | 254 | 34 | 47 | | 21 | 14 | 35 | 24 | 17 | 23 | 190 | 48 | 98 | 44 | 175 | 28 | 44 | | 22 | 13 | 29 | 19 | 25 | 24 | 180 | 82 | 79 | 53 | 118 | 25 | 42 | | 23 | 11 | 31 | 20 | 22 | 25 | 103 | 200 | 73 | 53 | 90 | 23 | 39 | | 24 | 10 | 28 | 20 | 19 | 25 | 125 | 417 | 1060 | 49 | 70 | 21 | 38 | | 25 | 11 | 25 | 20 | 20 | 25 | 194 | 443 | 1920 | 78 | 58 | 19 | 36 | | 26<br>27<br>28<br>29<br>30<br>31 | 11<br>13<br>16<br>17<br>15 | 24<br>24<br>27<br>24<br>25 | 20<br>19<br>19<br>19<br>18<br>18 | 22<br>21<br>20<br>24<br>28<br>35 | 24<br>25<br>25<br> | 296<br>417<br>416<br>326<br>218<br>152 | 275<br>199<br>199<br>182<br>190 | 1150<br>646<br>416<br>310<br>392<br>312 | 211<br>413<br>347<br>242<br>155 | 48<br>44<br>39<br>39<br>51<br>47 | 25<br>31<br>29<br>27<br>25<br>24 | 35<br>35<br>33<br>34 | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 384.6<br>12.4<br>21<br>7.8<br>763<br>.01 | 731<br>24.4<br>50<br>12<br>1450<br>.03 | 614<br>19.8<br>28<br>15<br>1220<br>.02 | 1401<br>45.2<br>290<br>17<br>2780<br>.05 | 675<br>24.1<br>33<br>20<br>1340<br>.03 | 7177<br>232<br>600<br>24<br>14240<br>.27<br>.32 | 3586<br>120<br>443<br>48<br>7110<br>.14 | 8510<br>275<br>1920<br>56<br>16880<br>.33<br>.38 | 4002<br>133<br>413<br>44<br>7940<br>.16<br>.18 | 3936<br>127<br>474<br>39<br>7810<br>.15<br>.17 | 927<br>29.9<br>86<br>18<br>1840<br>.04 | 3315<br>110<br>634<br>20<br>6580<br>.13<br>.15 | CAL YR 1988 TOTAL 52744.5 MEAN 144 MAX 887 MIN 2.9 AC-FT 104600 CFSM .17 IN. 2.32 WTR YR 1989 TOTAL 35258.6 MEAN 96.6 MAX 1920 MIN 7.8 AC-FT 69940 CFSM .11 IN. 1.55 ### 05481300 DES MOINES RIVER NEAR STRATFORD, IA LOCATION.--Lat 42°15'04", long 93°59'52", in NW1/4 NE1/4 sec.21, T.86 N., R.27 W., Webster County, Hydrologic Unit 07100004, on right bank 6 ft downstream from bridge on State Highway 175, 0.1 mi downstream from Skillet Creek, 4.0 mi southwest of Stratford, 7.3 mi downstream from Boone River and at mile 276.7. DRAINAGE AREA. -- 5.452 mi2. PERIOD OF RECORD.--April 1920 to current year in reports of U.S. Geological Survey. Published as "near Boone" 1920-67. Monthly discharge only for some periods, published in WSP 1308. December 1904 to April 1920 (fragmentary gage heights during high-water periods only) in reports of U.S. Weather Bureau. REVISED RECORDS.--WSP 1438: Drainage area. WSP 1508: 1925-27, 1934. WSP 1708: 1955. GAGE.--Water-stage recorder. Datum of gage is 894.00 ft above NGVD. Prior to May 1, 1920, nonrecording gage 16.6 mi downstream at datum 23.49 ft lower. Oct. 9, 1924, to Jan. 10, 1933, nonrecording gage 17.6 mi downstream at datum 28.53 ft lower. Jan. 11, 1933, to Sept. 30, 1934, nonrecording gage 17.9 mi downstream at datum 22.25 ft lower. Oct. 1, 1934 to Feb. 6, 1935, nonrecording gage and Feb. 7, 1935 to Sept. 30, 1967, water-stage recorder 17.9 mi downstream at datum 21.84 ft lower. REMARKS.--Estimated daily discharges: Nov. 28 to Mar. 24. Records excellent except those for estimated daily discharges, which are poor. Occasional minor regulation caused by dam at Fort Dodge. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain-gage and satellite data collection platform at station. AVERAGE DISCHARGE.--69 years, 1,964 ft<sup>3</sup>/s, 4.89 in/yr, 1,423,000 acre-ft/yr; median of yearly mean discharges, 1,630 ft<sup>3</sup>/s, 4.1 in/yr, 1,180,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 57,400 ft<sup>3</sup>/s June 22, 1954, gage height, 25.35 ft, from graph based on hourly gage readings, site and datum then in use; no flow for a short time on Jan. 9, 25, 1938, caused by manipulation of gates in control dam, site then in use; minimum unregulated daily discharge, 13 ft<sup>3</sup>/s Jan. 23, 24, 1977. EXTREMES OUTSIDE PERIOD OF RECORD. --Flood of May 30, 1903, reached a stage of 25.4 ft, from high-water mark, site and datum then in use, discharge, 43,600 ft<sup>3</sup>/s. Flood of June 22, 1954, reached a stage of 29.7 ft, from floodmark, present site and datum, discharge, 54,200 ft<sup>3</sup>/s. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 7,000 ft<sup>3</sup>/s and maximum (\*): Discharge Cage height Date Time May 25 Time May 25 Time May 25 Time Time Time (ft<sup>3</sup>/s) \*10.46 Minimum discharge, 101 ft3/s Sept. 3. | | | DISCHARGE | , CUBIC | FEET PER | SECOND, | WATER YEAR | OCTOBER | 1988 TO | SEPTEMBER | 1989 | | | |-----------------------------------|-------------------------------------------------|---------------------------------|------------------------------------------|--------------------------------------------------|------------------------------------------|----------------------------------------------|----------------------------------------------------|-----------------------------------------------------|----------------------------------------------------|---------------------------------------------|-------------------------------------------------|---------------------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | 302<br>310<br>276<br>230<br>207 | 109<br>114<br>117<br>123<br>121 | 200<br>210<br>210<br>200<br>195 | 220<br>215<br>210<br>200<br>195 | 180<br>175<br>170<br>150<br>150 | 145<br>140<br>140<br>145<br>150 | 1420<br>1180<br>1020<br>896<br>805 | 1300<br>1300<br>1170<br>1020<br>936 | 968<br>815<br>3220<br>1960<br>1260 | 613<br>494<br>422<br>372<br>329 | 210<br>199<br>187<br>172<br>160 | 114<br>108<br>103<br>135<br>201 | | 6<br>7<br>8<br>9<br>10 | 185<br>169<br>159<br>153<br>143 | 132<br>196<br>147<br>130<br>129 | 190<br>185<br>200<br>220<br>270 | 350<br>900<br>680<br>500<br>390 | 145<br>145<br>145<br>145<br>145 | 150<br>145<br>140<br>200<br>320 | 726<br>684<br>697<br>681<br>641 | 846<br>770<br>714<br>669<br>621 | 937<br>753<br>1680<br>1290<br>904 | 288<br>252<br>225<br>210<br>190 | 157<br>151<br>145<br>137<br>129 | 188<br>200<br>345<br>1370<br>1090 | | 11<br>12<br>13<br>14<br>15 | 137<br>130<br>119<br>117<br>118 | 130<br>146<br>171<br>172<br>184 | 260<br>245<br>235<br>225<br>220 | 340<br>280<br>250<br>230<br>220 | 145<br>140<br>140<br>140<br>150 | 700<br>1600<br>1400<br>1350<br>1300 | 610<br>586<br>513<br>529<br>523 | 573<br>524<br>486<br>456<br>431 | 709<br>601<br>563<br>516<br>460 | 863<br>1610<br>1630<br>1110<br>815 | 123<br>121<br>118<br>122<br>132 | 789<br>573<br>446<br>371<br>324 | | 16<br>17<br>18<br>19<br>20 | 118<br>128<br>134<br>135<br>135 | 290<br>315<br>292<br>261<br>261 | 200<br>210<br>210<br>210<br>210<br>210 | 215<br>210<br>200<br>195<br>185 | 145<br>140<br>140<br>145<br>145 | 1200<br>1100<br>1000<br>880<br>950 | 505<br>479<br>459<br>437<br>422 | 413<br>397<br>386<br>445<br>470 | 412<br>373<br>327<br>301<br>272 | 614<br>490<br>481<br>655<br>791 | 188<br>190<br>160<br>157<br>155 | 283<br>247<br>219<br>196<br>176 | | 21<br>22<br>23<br>24<br>25 | 127<br>125<br>120<br>118<br>116 | 234<br>209<br>265<br>273<br>264 | 215<br>225<br>215<br>240<br>250 | 180<br>180<br>175<br>170<br>170 | 145<br>150<br>145<br>145<br>140 | 900<br>850<br>920<br>1020<br>1150 | 394<br>481<br>1030<br>916<br>1000 | 461<br>400<br>402<br>1800<br>5350 | 242<br>247<br>279<br>248<br>373 | 681<br>550<br>462<br>398<br>351 | 140<br>131<br>136<br>121<br>118 | 162<br>148<br>139<br>135<br>122 | | 26<br>27<br>28<br>29<br>30<br>31 | 120<br>116<br>114<br>113<br>124<br>111 | 265<br>270<br>215<br>210<br>200 | 240<br>240<br>260<br>250<br>230<br>220 | 170<br>170<br>165<br>165<br>170<br>175 | 140<br>140<br>145<br> | 1340<br>1610<br>1810<br>1870<br>1650<br>1570 | 1000<br>898<br>985<br>1120<br>1240 | 4430<br>2630<br>1750<br>1350<br>1240<br>1200 | 573<br>854<br>1000<br>950<br>784 | 321<br>280<br>244<br>231<br>253<br>244 | 129<br>145<br>136<br>127<br>125<br>124 | 112<br>114<br>113<br>108<br>105 | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 4709<br>152<br>310<br>111<br>9340<br>.03<br>.03 | 198<br>315<br>109 | 6890<br>222<br>270<br>185<br>3670<br>.04 | 8075<br>260<br>900<br>165<br>16020<br>.05<br>.06 | 4130<br>147<br>180<br>140<br>8190<br>.03 | 898<br>1870<br>140 | 22877<br>763<br>1420<br>394<br>45380<br>.14<br>.16 | 34940<br>1127<br>5350<br>386<br>69300<br>.21<br>.24 | 23871<br>796<br>3220<br>242<br>47350<br>.15<br>.16 | 16469<br>531<br>1630<br>190<br>32670<br>.10 | 4545<br>147<br>210<br>118<br>9020<br>.03<br>.03 | 8736<br>291<br>1370<br>103<br>17330<br>.05<br>.06 | CAL YR 1988 TOTAL 309527 MEAN 846 MAX 4810 MIN 83 AC-FT 613900 CFSM .16 IN. 2.11 WTR YR 1989 TOTAL 169032 MEAN 463 MAX 5350 MIN 103 AC-FT 335300 CFSM .08 IN. 1.15 ### 05481630 SAYLORVILLE LAKE NEAR SAYLORVILLE, IA LOCATION.--Lat 41°42'13", long 93°41'21", in SE 1/4, SW 1/4 sec.30, T.80 N., R.24 W., Polk County, Hydrologic Unit 07100004, in control tower of Saylorville Dam, 3.2 mi northwest of Saylorville, 4.2 mi upstream from Beaver Creek, and at mile 213.7. DRAINAGE AREA. -- 5,823 mi2. PERIOD OF RECORD. -- April 1977 to current year. GAGE. -- Water-stage recorder. Datum of gage is at NGVD (levels by U.S. Army Corps of Engineers). REMARKS.--Reservoir is formed by earthfill dam completed in 1976. Storage began in April 1977. Release controlled at intake structure to forechamber of 22 ft diameter concrete conduit through dam. Ungated chute spillway 430 ft in length at right end of dam at elevation 884 ft, contents, 570,000 acre-ft. Conservation pool at elevation 833 ft, contents, 74,000 acre-ft, surface area, 5,400 acres. Flood pool elevation at 890 ft, contents, 676,000 acre-ft, surface area, 16,700 acres. Reservoir is used for flood control, low-flow augmentation, conservation and recreation. Storage tables for water years 1985-1986 published as day second-feet instead of acre-feet storage. COOPERATION. -- Records provided by U.S. Army Corps of Engineers. EXTREMES FOR PERIOD OF RECORD. --Maximum daily contents, 655,000 acre-ft June 22, 1984; maximum elevation, 889.25 ft June 22, 1984; minimum daily contents, 45,000 acre-ft May 15, 1985; minimum elevation, 832.61 ft Jan. 19, 1979. EXTREMES FOR CURRENT YEAR.--Maximum daily contents, 109,000 acre-ft May 26; maximum elevation, 839.10 May 26, 27; minimum daily contents, 69,100 acre-ft Feb. 28; minimum elevation, 832.2 ft March 8, 9. Capacity table (elevation, in feet, and contents, in acre-feet) | 805 | 360 | 833 | 74.000 | 884 | 570,000 | |-----|--------|-----|---------|-----|-----------| | 810 | 2,300 | 840 | 116,000 | 890 | 676,000 | | 815 | 7,700 | 850 | 190,000 | 900 | 938,000 | | 820 | 19,000 | 860 | 278,000 | 910 | 1,320,000 | | 830 | 58,600 | 880 | 511,000 | 915 | 1.530.000 | ## RESERVOIR STORAGE (ACRE-FEET), WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 OBSERVATION AT 24:00 VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |------|-------|---------------|---------------|-------|-------|-------|--------|--------|--------|--------|--------|----------------| | 1 | 79700 | 74300 | 74200 | 71700 | 74400 | 70700 | 91900 | 106000 | 104000 | 106000 | 105000 | 102000 | | 2 | 79400 | 74000 | 74000 | 71500 | 73900 | 70500 | 90900 | 106000 | 104000 | 106000 | 105000 | 101000 | | 3 | 79700 | 73900 | 74200 | 71400 | 73700 | 70500 | 90800 | 106000 | 105000 | 106000 | 106000 | 101000 | | 4 | 79500 | 74000 | 74000 | 71300 | 73800 | 70400 | 90400 | 105000 | 108000 | 106000 | 106000 | 101000 | | 5 | 79300 | 74300 | 74200 | 71500 | 73700 | 70100 | 90200 | 105000 | 107000 | 105000 | 106000 | 101000 | | 6 | 79300 | 73400 | 74200 | 71500 | 73800 | 69800 | 90500 | 104000 | 105000 | 106000 | 105000 | 101000 | | 7 | 79200 | 73200 | 74500 | 71500 | 73800 | 69500 | 91000 | 104000 | 105000 | 105000 | 105000 | 10200 <b>0</b> | | 8 | 79100 | 73000 | 74200 | 71900 | 73900 | 69400 | 91800 | 105000 | 105000 | 105000 | 105000 | 103000 | | 9 | 79100 | 73200 | 74000 | 72700 | 73800 | 69600 | 92600 | 105000 | 107000 | 105000 | 105000 | 103000 | | 10 | 79100 | 73100 | 73700 | 73300 | 73800 | 70700 | 93000 | 105000 | 107000 | 105000 | 104000 | 104000 | | 11 | 78800 | 72300 | 73400 | 73600 | 73700 | 72400 | 93700 | 105000 | 106000 | 106000 | 104000 | 105000 | | 12 | 78700 | 72600 | 73200 | 73700 | 73600 | 75500 | 93800 | 105000 | 105000 | 106000 | 104000 | 105000 | | 13 | 78300 | 72600 | 73100 | 73800 | 73600 | 79800 | 93600 | 104000 | 105000 | 108000 | 104000 | 105000 | | 14 | 78200 | 72300 | 72900 | 73900 | 73400 | 84500 | 93400 | 104000 | 104000 | 107000 | 104000 | 105000 | | 15 | 78300 | 73200 | 72700 | 73900 | 73300 | 87700 | 92800 | 104000 | 104000 | 106000 | 103000 | 105000 | | 16 | 77800 | 73100 | 72600 | 73900 | 73100 | 90000 | 92900 | 104000 | 104000 | 106000 | 103000 | 104000 | | 17 | 77800 | 73100 | 72600 | 73800 | 72900 | 90500 | 92800 | 103000 | 105000 | 106000 | 103000 | 104000 | | 18 | 77500 | 73300 | 72600 | 73800 | 72700 | 89800 | 93400 | 104000 | 105000 | 107000 | 103000 | 104000 | | 19 | 77200 | 73700 | 72600 | 73900 | 72600 | 90500 | 93800 | 105000 | 105000 | 107000 | 103000 | 104000 | | 20 | 77200 | 73600 | 71800 | 73700 | 72400 | 91900 | 94300 | 104000 | 104000 | 106000 | 103000 | 104000 | | 21 | 77000 | 73500 | 71600 | 73600 | 72300 | 92300 | 94700 | 105000 | 105000 | 106000 | 103000 | 104000 | | 22 | 76800 | 7350 <b>0</b> | 71600 | 73600 | 72000 | 92000 | 95000 | 105000 | 104000 | 105000 | 102000 | 104000 | | 23 | 76800 | 73600 | 71700 | 73500 | 71700 | 92100 | 95900 | 105000 | 105000 | 105000 | 103000 | 103000 | | 24 | 76400 | 73800 | 71900 | 73500 | 71500 | 93000 | 97700 | 108000 | 105000 | 105000 | 103000 | 103000 | | 25 | 76200 | 73800 | 71800 | 73600 | 71100 | 93000 | 99200 | 107000 | 106000 | 105000 | 102000 | 103000 | | 26 | 75500 | 74300 | 71900 | 73500 | 70000 | 93000 | 101000 | 109000 | 106000 | 105000 | 103000 | 10200 <b>0</b> | | 27 | 75700 | 74700 | 71800 | 73400 | 69400 | 93400 | 103000 | 107000 | 107000 | 105000 | 102000 | 102000 | | 28 | 75300 | 74100 | 71800 | 73700 | 69100 | 93800 | 104000 | 105000 | 108000 | 105000 | 102000 | 10200 <b>0</b> | | 29 | 75200 | 74300 | 71700 | 73700 | | 93600 | 105000 | 104000 | 107000 | 105000 | 102000 | 102000 | | 30 | 74600 | 74400 | 71800 | 73900 | | 93500 | 105000 | 104000 | 107000 | 105000 | 102000 | 10100 <b>0</b> | | 31 | 74500 | | 71700 | 74500 | | 92400 | | 104000 | | 105000 | 102000 | | | MEAN | 77700 | 73500 | 72800 | 73100 | 72700 | 83100 | 94900 | 105000 | 105000 | 106000 | 104000 | 103000 | | MAX | 79700 | 74700 | 7450 <b>0</b> | 74500 | 74400 | 93800 | 105000 | 109000 | 108000 | 108000 | 106000 | 105000 | | MIN | 74500 | 72300 | 71600 | 71300 | 69100 | 69400 | 90200 | 103000 | 104000 | 105000 | 102000 | 101000 | CAL YR 1988 MEAN 86600 MAX 96300 MIN 71600 WTR YR 1989 MEAN 89300 MAX 109000 MIN 69100 ### 05481650 DES MOINES RIVER NEAR SAYLORVILLE, IA LOCATION.--Lat 41°40'50", long 93°40'05", near center of sec.5, T.79 N., R.24 W., Polk County, Hydrologic Unit 07100004, on left bank 5 ft upstream of Fisher Bridge on county highway R6F, 2.0 mi west of Saylorville, 2.1 mi downstream from Rock Creek, 2.3 mi downstream from Saylorville Dam, 2.3 mi upstream from Beaver Creek, and at mile 211.4. DRAINAGE AREA, -- 5.841 mi2. ### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- October 1961 to current year. GAGE.--Water-stage recorder. Datum of gage is 787.42 ft above NGVD (levels by U. S. Army Corps of Engineers). Prior to Aug. 6, 1970, nonrecording gage at same site and datum. REMARKS.--No estimated daily discharges. Records good. Flow regulated by Saylorville Lake (Station 05481630) 2.3 mi upstream since Apr. 12, 1977. U.S. Army Corps of Engineers satellite data collection platform at station. AVERAGE DISCHARGE.--28 years, 2,792 $\,$ ft<sup>3</sup>/s, 6.49 in/yr, 2,021,000 acre-ft/yr; median of yearly mean discharges, 2,280 $\,$ ft<sup>3</sup>/s, 5.3 in/yr, 1,650,000 $\,$ acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 47,400 ft<sup>3</sup>/s Apr. 10, 1965, gage height, 24.02 ft; minimum daily discharge, 13 ft<sup>3</sup>/s Jan. 25, 1977. EXTREMES OUTSIDE PERIOD OF RECORD. -- Maximum stage since at least 1893, 24.5 ft June 24, 1954, from floodmarks, discharge, 60,000 ft<sup>3</sup>/s. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 4,700 ft<sup>3</sup>/s May 27, gage height, 8.66 ft; minimum daily discharge, 198 ft<sup>3</sup>/s July 11 and Aug. 1. | | | DISCHARGE | , CUBIC | FEET PER | | , WATER YEAR<br>MEAN VALUES | OCTOBER | 1988 TO | SEPTEMBER | 1989 | | | |--------|-------|-----------|---------|----------|-------|-----------------------------|---------|---------|-----------|-------------|-------|-------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 239 | 219 | 219 | 219 | 204 | 201 | 1770 | 905 | 1400 | 996 | 198 | 207 | | 2 | 239 | 221 | 221 | 219 | 229 | 201 | 1780 | 1390 | 1070 | 834 | 212 | 206 | | 3 | 235 | 222 | 222 | 211 | 401 | 206 | 1430 | 1580 | 1080 | 613 | 218 | 209 | | 4 | 236 | 222 | 222 | 211 | 370 | 205 | 1230 | 1580 | 1470 | 554 | 216 | 209<br>209 | | 5 | | | | | | | | | 2330 | 363 | 223 | 206 | | 3 | 326 | 213 | 222 | 215 | 367 | 256 | 974 | 1280 | 2330 | 303 | 223 | 200 | | 6<br>7 | 217 | 212 | 222 | 215 | 351 | 222 | 758 | 1090 | 2300 | 286 | 215 | 206 | | 7 | 219 | 217 | 222 | 211 | 334 | 210 | 570 | 856 | 1320 | 29 <b>6</b> | 223 | 211 | | 8 | 214 | 216 | 222 | 290 | 326 | 210 | 397 | 691 | 1000 | 264 | 226 | 223 | | ğ | 215 | 238 | 222 | 216 | 336 | 219 | 396 | 687 | 980 | 234 | 228 | 447 | | 10 | 215 | 254 | 224 | 207 | 339 | 225 | 400 | 687 | 1250 | 223 | 216 | 447<br>552 | | 10 | 213 | 234 | 224 | 207 | 339 | 225 | 400 | 607 | 1230 | 223 | 210 | 332 | | 11 | 217 | 228 | 232 | 203 | 333 | 217 | 405 | 692 | 1400 | 198 | 206 | 547 | | 12 | 219 | 230 | 226 | 206 | 300 | 215 | 566 | 690 | 1190 | 503 | 207 | 542 | | 13 | 218 | 230 | 226 | 206 | 283 | 218 | 679 | 691 | 953 | 966 | 202 | 543 | | 14 | 216 | 230 | 223 | 208 | 253 | 380 | 675 | 694 | 732 | 1560 | 203 | 542 | | 14 | | | | | | | | | | | 203 | 543<br>542<br>540 | | 15 | 213 | 235 | 256 | 210 | 238 | 805 | 676 | 619 | 476 | 1630 | 203 | 340 | | 16 | 215 | 226 | 225 | 210 | 234 | 1180 | 681 | 566 | 413 | 1080 | 207 | 449<br>373 | | 17 | 214 | 228 | 222 | 210 | 225 | 1180 | 510 | 566 | 404 | 693 | 212 | 373 | | 18 | 213 | 230 | 222 | 210 | 219 | 1040 | 249 | 469 | 402 | 743 | 212 | 286 | | 19 | 215 | 230 | 221 | | 215 | 657 | 249 | 406 | 403 | 829 | 213 | 206 | | | | | | 208 | | | | | | 826 | 214 | 286<br>206<br>207 | | 20 | 215 | 225 | 219 | 206 | 207 | 456 | 251 | 403 | 406 | 020 | 214 | 207 | | 21 | 214 | 225 | 219 | 207 | 204 | 839 | 251 | 404 | 358 | 822 | 212 | 206 | | 22 | 212 | 224 | 220 | 206 | 221 | 1160 | 241 | 407 | 279 | 820 | 211 | 204 | | 23 | 208 | 223 | 215 | 206 | 214 | 963 | 241 | 407 | 249 | 667 | 212 | 201 | | 24 | 206 | 223 | 218 | 206 | 201 | 903<br>814 | 241 | 1300 | 249 | 520 | 210 | 200 | | | | | | | | | | | | 520 | 210 | 201 | | 25 | 210 | 223 | 215 | 206 | 201 | 1040 | 245 | 2950 | 248 | 520 | 210 | 201 | | 26 | 221 | 226 | 217 | 206 | 198 | 1240 | 249 | 4340 | 408 | 403 | 213 | 199 | | 27 | 221 | 216 | 217 | 206 | 207 | 1240 | 383 | 4670 | 627 | 205 | 206 | 200 | | 28 | 222 | 217 | 215 | 206 | 205 | 1570 | 653 | 3760 | 1100 | 287 | 206 | 201 | | 29 | 222 | 219 | 218 | 206 | 203 | 1890 | 773 | 2560 | 1320 | 237 | 219 | 201 | | | | | | | | | | | 1100 | 200 | 211 | 200 | | 30 | 222 | 219 | 221 | 206 | | 1980 | 776 | 1690 | 1100 | | | 200 | | 31 | 221 | | 219 | 206 | | 1840 | | 1420 | | 200 | 210 | | | TOTAL | 6889 | 6741 | 6884 | 6558 | 7415 | 23079 | 18699 | 40450 | 26917 | 18572 | 6574 | 8924 | | MEAN | 222 | 225 | 222 | 212 | 265 | 744 | 623 | 1305 | 897 | 599 | 212 | 297 | | MAX | 326 | 254 | 256 | 290 | 401 | 1980 | 1780 | 4670 | 2330 | 1630 | 228 | 297<br>552 | | | | | | | | | 241 | 403 | 248 | 198 | 198 | 199 | | MIN | 206 | 212 | 215 | 203 | 198 | 201 | | | | | | 17700 | | AC-FT | 13660 | 13370 1 | 3650 | 13010 | 14710 | 45780 | 37090 | 80230 | 53390 | 36840 | 13040 | 1//00 | CAL YR 1988 TOTAL 330875 MEAN 904 MAX 4580 MIN 172 AC-FT 656300 WTR YR 1989 TOTAL 177702 MEAN 487 MAX 4670 MIN 198 AC-FT 352500 ## 05481650 DES MOINES RIVER NEAR SAYLORVILLE, IA--Continued WATER-QUALITY RECORDS PERIOD OF RECORD: Water years 1962 to current year. PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: December 1967 to September 1971, October 1971 to September 1980 (partial record station), October 1980 to current year. WATER TEMPERATURES: October 1961 to September 1971, October 1971 to September 1980 (partial record station), October 1980 to current year. SUSPENDED-SEDIMENT DISCHARGE: October 1961 to current year. REMARKS.--Records of specific conductance are obtained from suspended-sediment samples at time of analysis. During periods of partial ice cover, sediment samples are collected in open water channel. EXTREMES FOR PERIOD OF DAILY RECORD .-- SPECIFIC CONDUCTANCE: Maximum daily, 1,400 microsiemens Feb. 18, 1977; minimum daily, 90 microsiemens Feb. 19, 1971. WATER TEMPERATURES: Maximum daily, 36.0°C June 29, 1971; minimum daily, 0.0°C on many days during winter periods. SEDIMENT CONCENTRATIONS: Maximum daily mean, 5,400 mg/L May 14, 1970; minimum daily mean, 1 mg/L Jan. 8, 1965, Sept. 1, 1988. SEDIMENT LOADS: Maximum daily, 148,000 tons June 12, 1966; minimum daily, 0.56 ton Sept. 1, 1988. EXTREMES FOR CURRENT YEAR: SPECIFIC CONDUCTANCE: Maximum daily, 935 microsiemens Mar. 7; minimum daily, 506 microsiemens Aug. 23. WATER TEMPERATURES: Maximum daily, 29.0°C Jul. 28-30; minimum daily, 0.0°C Feb. 2, 4, 6, 8. SEDIMENT CONCENTRATIONS: Maximum daily mean, 429 mg/L May 24; minimum daily mean, 2 mg/L Jan. 10, 11, Feb. 6. SEDIMENT LOADS: Maximum daily, 1,020 tons May 24; minimum daily, 1.1 tons Jan. 10, 11. | | SPECIFIC | CONDUCTAN | ICE MICROS | SIEMENS/C | M AT 25 D<br>INSTANTA | EG C,<br>NEOUS | WATER YEAR<br>VALUES | OCTOBER | 1988 TO | SEPTEMBER | 1989 | | |-----|----------|--------------|------------|-------------|-----------------------|----------------|----------------------|---------|---------|-----------|------|-------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | | | | | | 788 | 630 | | 587 | | 520 | 539 | | 2 | | | 690 | 735 | 750 | | | 624 | 585 | 555 | 540 | | | 3 | | | | | | | 627 | | | | 528 | 530 | | 4 | 645 | | | 690 | 750 | 850 | 633 | | 590 | | 518 | 544 | | 5 | 650 | 690 | 720 | | | | 623 | 617 | 605 | 550 | 528 | 546 | | 6 | 680 | 690 | | 690 | 755 | | 630 | | | 552 | 520 | 544 | | 7 | 670 | 670 | 700 | | | 935 | 633 | | | 580 | 523 | 526 | | 8 | 675 | | | | 755 | | 614 | 624 | 606 | 560 | 525 | 545 | | . 9 | | | 700 | 690 | | 790 | | 639 | 602 | | 522 | | | 10 | 690 | | | | | 849 | 610 | | | 535 | 523 | 540 | | 11 | 685 | 690 | 700 | 700 | | 847 | | 630 | 610 | 537 | 525 | | | 12 | 685 | | | | | 827 | 614 | | 605 | 544 | 525 | 552 | | 13 | 695 | 660 | 723 | | | 825 | 615 | | 603 | 538 | 525 | 548 | | 14 | 695 | | 653 | | | 832 | | 623 | 604 | 537 | 535 | 550 | | 15 | 685 | | 690 | | 750 | 844 | 604 | | 600 | | 533 | 553 | | 16 | 675 | | 700 | 730 | | 780 | 578 | | 601 | 531 | 544 | | | 17 | 685 | | | | | 904 | 616 | | | 525 | 532 | | | 18 | 690 | 6 <b>5</b> 5 | | 740 | | 808 | 587 | | | 535 | 520 | | | 19 | 695 | | | | 763 | | | | 611 | 503 | 520 | 540 | | 20 | 700 | 660 | 715 | | | 908 | 591 | | | 532 | | | | 21 | | | | 730 | | 680 | 615 | | 600 | 530 | 524 | 552 | | 22 | 700 | | | | 793 | 662 | | | | | 530 | 560 | | 23 | 705 | 670 | 720 | <b>72</b> 0 | 797 | 642 | 591 | | | 509 | 506 | 553 | | 24 | 705 | | | | | 650 | | 550 | | 520 | 509 | 560 | | 25 | 705 | | | | | | <b>592</b> | 621 | | 539 | 523 | 56 <b>5</b> | | 26 | 725 | 680 | 720 | 740 | 840 | 667 | | 624 | 540 | | 528 | 566 | | 27 | 700 | | 730 | 700 | | 667 | | 618 | 548 | | | 573 | | 28 | | | | | | 673 | 613 | 620 | 562 | 537 | 529 | 566 | | 29 | 695 | | | 750 | | 673 | | | 518 | 546 | 528 | 568 | | 30 | | 690 | 740 | | | 670 | | 588 | 560 | 538 | 538 | 565 | | 31 | | | | | | 631 | | 615 | | | 546 | | # 05481650 DES MOINES RIVER NEAR SAYLORVILLE, IA--Continued WATER-QUALITY RECORDS | | | WATER | TEMPERATURE, | DEGREES | | WATER YE<br>TANEOUS V | | 1988 1 | O SEPTEMBER | 1989 | | | |----------------------------------|--------------------------------------|--------------------------|------------------------------|----------------------------------|-----------------|----------------------------------------|----------------------------------|------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------| | DAY | OCT | NOA | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | 19.0<br>19.0 | 13.0 | 8.0<br><br>8.0 | 3.0 | .0 | 2.0<br><br>3.0 | 2.0<br><br>2.0<br>2.0<br>2.0 | 10.0 | 17.0<br>19.0<br><br>20.0<br>22.0 | 24.0<br><br>26.0 | 28.0<br>28.0<br>26.0<br>26.0<br>26.0 | 26.0<br>26.0<br>25.0<br>25.0 | | 6<br>7<br>8<br>9<br>10 | 19.0<br>20.0<br>20.0<br>20.0 | 13.0<br>6.0<br> | 6.0<br><br>5.0 | 4.0<br><br>4.0 | .0<br>.0<br> | 3.0<br><br>3.0<br>7.0 | 2.0<br>3.0<br>5.0<br><br>7.0 | 11.0<br>11.0 | 22.0<br>22.0 | 26.0<br>27.0<br>26.0<br><br>26.0 | 26.0<br>21.0<br>26.0<br>26.0<br>26.0 | 24.0<br>24.0<br>24.0<br><br>23.0 | | 11<br>12<br>13<br>14<br>15 | 20.0<br>20.0<br>20.0<br>20.0<br>20.0 | 13.0<br>13.0<br><br>10.0 | 4.0<br><br>3.0<br>2.0<br>3.0 | 4.0<br><br>3.0 | 2.0 | 3.0<br>3.0<br>4.0<br>4.0 | 7.0<br>7.0<br>7.0 | 11.0<br><br>10.0 | 23.0<br>23.0<br>24.0<br>24.0<br>24.0 | 26.0<br>27.0<br>27.0<br>27.0 | 26.0<br>26.0<br>26.0<br>26.0<br>26.0 | 22.0<br>22.0<br>22.0<br>22.0<br>22.0 | | 16<br>17<br>18<br>19<br>20 | 20.0<br>19.0<br>15.0<br>15.0<br>14.0 | 9.0<br>8.0 | 3.0<br><br>2.0 | 4.0 | 2.0 | 4.0<br>4.0<br><br>5.0 | 14.0<br>10.0<br>14.0<br><br>10.0 | | 25.0<br><br>26.0 | 27.0<br>28.0<br>28.0<br>28.0<br>28.0 | 25.0<br>26.0<br>26.0<br>26.0 | 20.0 | | 21<br>22<br>23<br>24<br>25 | 13.0<br>12.0<br>10.0<br>10.0 | 8.0 | 2.0 | 5.0 | 2.0<br>2.0<br> | 5.0<br>5.0<br>5.0<br>5.0 | 10.0<br><br>15.0<br><br>20.0 | 19.0<br>12.0 | 26.0<br><br><br> | 28.0<br>28.0<br>28.0<br>28.0 | 26.0<br>26.0<br>26.0<br>26.0<br>26.0 | 20.0<br>20.0<br>20.0<br>20.0<br>21.0 | | 26<br>27<br>28<br>29<br>30<br>31 | 10.0<br>10.0<br><br>9.0<br> | 8.0<br><br>8.0 | 2.0<br><br>3.0<br><br>3.0 | 4.0<br>3.0<br><br>4.0<br><br>3.0 | 2.0<br><br><br> | 6.0<br>6.0<br>4.0<br>4.0<br>3.0<br>3.0 | 10.0 | 11.0<br>14.0<br>14.0<br><br>16.0<br>16.0 | 21.0<br>24.0<br>24.0<br>24.0<br>24.0 | 29.0<br>29.0<br>29.0 | 26.0<br>26.0<br>26.0<br>26.0<br>26.0 | 21.0<br>21.0<br>21.0<br>21.0<br>21.0 | | SEDIMENT, | SUSPENDED | CONCENTRATION | (MG/L). | WATER | YEAR | OCTOBER | 1988 | TO | SEPTEMBER | 1989 | |-----------|-----------|---------------|---------|-------|------|---------|------|----|-----------|------| |-----------|-----------|---------------|---------|-------|------|---------|------|----|-----------|------| | DAY | MEAN<br>CONCEN-<br>TRATION<br>(MG/L) | LOAD<br>(TONS/<br>DAY) | |----------------------------------|--------------------------------------|---------------------------------|--------------------------------------|---------------------------------|--------------------------------------|---------------------------------|--------------------------------------|---------------------------------|--------------------------------------|---------------------------------|--------------------------------------|----------------------------------| | | OCTO | BER | NOVEM | BER | DECEM | BER | JANUA | RY | FEBRU. | ARY | MARC | H | | 1<br>2<br>3<br>4<br>5 | 6<br>5<br>6<br>5<br>14 | 3.9<br>3.2<br>3.8<br>3.2 | 9<br>10<br>9<br>9 | 5.3<br>6.0<br>5.4<br>5.4<br>4.6 | 7<br>7<br>7<br>8<br>9 | 4.1<br>4.2<br>4.2<br>4.8<br>5.4 | 3<br>3<br>4<br>4 | 1.8<br>1.8<br>2.3<br>2.3<br>2.3 | 3<br>4<br>6<br>4<br>3 | 1.7<br>2.5<br>6.5<br>4.0<br>3.0 | 10<br>10<br>50<br>28<br>7 | 5.4<br>5.4<br>28<br>15<br>4.8 | | 6<br>7<br>8<br>9<br>10 | 7<br>6<br>5<br>6<br>7 | 4.1<br>3.5<br>2.9<br>3.5<br>4.1 | 7<br>10<br>15<br>19<br>17 | 4.0<br>5.9<br>8.7<br>12 | 7<br>5<br>6<br>7<br>7 | 4.2<br>3.0<br>3.6<br>4.2<br>4.2 | 3<br>4<br>15<br>3<br>2 | 1.7<br>2.3<br>12<br>1.7<br>1.1 | 2<br>4<br>3<br>3<br>3 | 1.9<br>3.6<br>2.6<br>2.7<br>2.7 | 5<br>7<br>8<br>12<br>15 | 3.0<br>4.0<br>4.5<br>7.1<br>9.1 | | 11<br>12<br>13<br>14<br>15 | 12<br>14<br>14<br>13<br>14 | 7.0<br>8.3<br>8.2<br>7.6<br>8.1 | 7<br>7<br>6<br>6<br>9 | 4.3<br>4.3<br>3.7<br>3.7<br>5.7 | 6<br>6<br>9<br>11<br>10 | 3.8<br>3.7<br>5.5<br>6.6<br>6.9 | 2<br>3<br>3<br>3<br>3 | 1.1<br>1.7<br>1.7<br>1.7 | 3<br>4<br>5<br>7<br>7 | 2.7<br>3.2<br>3.8<br>4.8<br>4.5 | 24<br>20<br>13<br>16<br>25 | 14<br>12<br>7.7<br>16<br>54 | | 16<br>17<br>18<br>19<br>20 | 18<br>28<br>25<br>18<br>8 | 10<br>16<br>14<br>10<br>4.6 | 10<br>10<br>4<br>11<br>13 | 6.1<br>6.2<br>2.5<br>6.8<br>7.9 | 5<br>3<br>3<br>3 | 3.0<br>1.8<br>1.8<br>1.8 | 3<br>3<br>3<br>4<br>4 | 1.7<br>1.7<br>1.7<br>2.2<br>2.2 | 9<br>10<br>18<br>19<br>45 | 5.7<br>6.1<br>11<br>11<br>25 | 34<br>10<br>20<br>84<br>79 | 108<br>32<br>56<br>149<br>97 | | 21<br>22<br>23<br>24<br>25 | 6<br>3<br>6<br>8<br>8 | 3.5<br>1.7<br>3.4<br>4.4<br>4.5 | 13<br>13<br>10<br>7<br>7 | 7.9<br>7.9<br>6.0<br>4.2<br>4.2 | 4<br>5<br>6<br>5<br>4 | 2.4<br>3.0<br>3.5<br>2.9<br>2.3 | 4<br>4<br>3<br>4 | 2.2<br>2.2<br>1.7<br>2.2<br>2.2 | 9<br>12<br>20<br>15<br>7 | 5.0<br>7.2<br>12<br>8.1<br>3.8 | 12<br>10<br>7<br>7<br>7 | 27<br>31<br>18<br>15<br>20 | | 26<br>27<br>28<br>29<br>30<br>31 | 8<br>8<br>9<br>7<br>9 | 4.8<br>4.8<br>5.4<br>4.2<br>5.4 | 7<br>7<br>7<br>7 | 4.3<br>4.1<br>4.1<br>4.1 | 3<br>3<br>3<br>3<br>3 | 1.8<br>1.8<br>1.7<br>1.8<br>1.8 | 4<br>9<br>5<br>4<br>3<br>3 | 2.2<br>5.0<br>2.8<br>2.2<br>1.7 | 9<br>10<br>10<br> | 4.8<br>5.6<br>5.5 | 8<br>8<br>11<br>13<br>18<br>18 | 27<br>27<br>47<br>66<br>96<br>89 | | TOTAL | ւ | 184.9 | | 171.4 | | 103.4 | | 72.8 | | 161.0 | | 1095.0 | WATER-QUALITY RECORDS 05481650 DES MOINES RIVER NEAR SAYLORVILLE, IA--Continued SEDIMENT, SUSPENDED CONCENTRATION (MG/L), WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DAY | MEAN<br>CONCEN-<br>TRATION<br>(MG/L) | LOAD<br>(TONS/<br>DAY) | |----------------------------------|--------------------------------------|------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|----------------------------------------|--------------------------------------|---------------------------------| | | APR | IL | MAY | | JUN | E | JUL | Y | AUGU | ST | SEPTEM | BER | | 1<br>2<br>3<br>4<br>5 | 21<br>22<br>21<br>20<br>27 | 100<br>106<br>81<br>66<br>71 | 36<br>30<br>26<br>26<br>27 | 88<br>113<br>111<br>111<br>93 | 29<br>28<br>28<br>27<br>23 | 110<br>81<br>82<br>107<br>145 | 41<br>39<br>25<br>18<br>17 | 110<br>88<br>41<br>27<br>17 | 18<br>15<br>15<br>24<br>14 | 9.6<br>8.6<br>8.8<br>14<br>8.4 | 8<br>8<br>13<br>10<br>12 | 4.5<br>4.4<br>7.3<br>5.6<br>6.7 | | 6<br>7<br>8<br>9<br>10 | 21<br>21<br>16<br>12<br>12 | 43<br>32<br>17<br>13<br>13 | 26<br>26<br>33<br>30<br>30 | 77<br>60<br>62<br>56<br>56 | 21<br>20<br>21<br>21<br>21 | 130<br>71<br>57<br>56<br>71 | 11<br>8<br>13<br>16<br>16 | 8.5<br>6.4<br>9.3<br>10<br>9.6 | 7<br>8<br>10<br>7<br>11 | 4.1<br>4.8<br>6.1<br>4.3<br>6.4 | 15<br>13<br>13<br>12<br>12 | 8.3<br>7.4<br>7.8<br>14<br>18 | | 11<br>12<br>13<br>14<br>15 | 10<br>14<br>15<br>15<br>15 | 11<br>21<br>27<br>27<br>27 | 31<br>30<br>36<br>40<br>15 | 58<br>56<br>67<br>75<br>25 | 21<br>24<br>21<br>30<br>41 | 79<br>77<br>54<br>59<br>53 | 16<br>17<br>12<br>17<br>20 | 8.6<br>23<br>31<br>72<br>88 | 12<br>12<br>11<br>9<br>7 | 6.7<br>6.7<br>6.0<br>4.9<br>3.8 | 11<br>11<br>10<br>13<br>7 | 16<br>16<br>15<br>19<br>10 | | 16<br>17<br>18<br>19<br>20 | 16<br>17<br>19<br>20<br>35 | 29<br>23<br>13<br>13<br>24 | 5<br>6<br>4<br>5<br>5 | 7.6<br>9.2<br>5.1<br>5.5<br>5.4 | 38<br>36<br>35<br>37<br>36 | 42<br>39<br>38<br>40<br>39 | 37<br>24<br>17<br>15<br>14 | 108<br>45<br>34<br>34<br>31 | 11<br>7<br>11<br>11<br>10 | 6.1<br>4.0<br>6.3<br>6.3<br>5.8 | . 8<br>8<br>9<br>9 | 9.7<br>8.1<br>6.9<br>5.0<br>5.0 | | 21<br>22<br>23<br>24<br>25 | 46<br>30<br>23<br>17<br>14 | 31<br>20<br>15<br>11<br>9.3 | 5<br>5<br>5<br>429<br>6 | 5.5<br>5.5<br>5.5<br>1020<br>48 | 34<br>33<br>30<br>30<br>30 | 33<br>25<br>20<br>20<br>20 | 14<br>13<br>14<br>13<br>13 | 31<br>29<br>25<br>18<br>18 | 11<br>13<br>10<br>9<br>11 | 6.3<br>7.4<br>5.7<br>5.1<br>6.2 | 9<br>11<br>9<br>8<br>10 | 5.0<br>6.1<br>4.9<br>4.3<br>5.4 | | 26<br>27<br>28<br>29<br>30<br>31 | 14<br>19<br>25<br>26<br>28 | 9.4<br>20<br>44<br>54<br>59 | 5<br>4<br>11<br>26<br>32<br>31 | 59<br>50<br>112<br>180<br>146<br>119 | 43<br>46<br>44<br>42<br> | 47<br>78<br>131<br>157<br>125 | 13<br>13<br>13<br>13<br>15<br>16 | 14<br>7.2<br>10<br>8.3<br>8.1<br>8.6 | 9<br>9<br>8<br>9<br>8<br>11 | 5.2<br>5.0<br>4.4<br>5.3<br>4.6<br>6.2 | 8<br>12<br>10<br>8<br>8 | 4.3<br>6.5<br>5.4<br>4.3<br>4.3 | | TOTA | L | 1029.7 | | 2891.3 | | 2086 | | 978.6 | | 193.1 | | 245.2 | | YEAR | | 9212.4 | | | | | | | | | | | PARTICLE-SIZE DISTRIBUTION OF SUSPENDED SEDIMENT, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | TIME | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | SEDI-<br>MENT,<br>SUS-<br>PENDED<br>(MG/L)<br>(80154) | SEDI-<br>MENT,<br>DIS-<br>CHARGE,<br>SUS-<br>PENDED<br>(T/DAY)<br>(80155) | SED.<br>SUSP.<br>SIEVE<br>DIAM.<br>Z FINER<br>THAN<br>.062 MM<br>(70331) | |------------------|------|-------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------| | NOV<br>07<br>JAN | 1130 | 6.0 | 216 | 14 | 8.2 | 99 | | 27 | 1235 | 3.0 | 205 | 8 | 4.4 | 72 | | APR<br>20 | 1215 | 10.0 | 244 | 20 | 13 | 94 | | JUL<br>07 | 1245 | 27.0 | 246 | 10 | 6.6 | 88 | PARTICLE-SIZE DISTRIBUTION OF SURFACE BED MATERIAL, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | TIME | NUMBER OF SAM- PLING POINTS (COUNT) (00063) | BED<br>MAT.<br>SIEVE<br>DIAM.<br>Z FINER<br>THAN<br>.062 MM<br>(80164) | BED<br>MAT.<br>SIEVE<br>DIAM.<br>Z FINER<br>THAN<br>.125 MM<br>(80165) | BED<br>MAT.<br>SIEVE<br>DIAM.<br>Z FINER<br>THAN<br>.250 MM<br>(80166) | BED<br>MAT.<br>SIEVE<br>DIAM.<br>Z FINER<br>THAN<br>.500 MM<br>(80167) | BED<br>MAT.<br>SIEVE<br>DIAM.<br>Z FINER<br>THAN<br>1.00 MM<br>(80168) | BED<br>MAI.<br>SIEVE<br>DIAM.<br>Z FINER<br>THAN<br>2.00 MM<br>(80169) | BED<br>MAI.<br>SIEVE<br>DIAM.<br>Z FINER<br>THAN<br>4.00 MM<br>(80170) | BED<br>MAT.<br>SIEVE<br>DIAM.<br>Z FINER<br>THAN<br>8.00 MM<br>(80171) | BED<br>MAT.<br>SIEVE<br>DIAM.<br>Z FINER<br>THAN<br>16.0 MM<br>(80172) | |-----------|------|---------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------| | NOV<br>07 | 1130 | 3 | 0 | 2 | 12 | 42 | 61 | 78 | 92 | 98 | 100 | ### 05481950 BEAVER CREEK NEAR GRIMES, IA LOCATION.--Lat 41°41'18", long 93°44'08", in SW1/4 SW1/4 sec.35, T.80 N., R.25 W., Polk County, Hydrologic Unit 07100004, on right bank 6 ft upstream from bridge on Northwest 70th Avenue, 0.5 mi downstream from Little Beaver Creek, 2.5 mi east of Grimes and 6 mi upstream from mouth. DRAINAGE AREA. -- 358 mi2. PERIOD OF RECORD. -- April 1960 to current year. REVISED RECORDS. -- WDR IA-77-1: 1974 (P) GAGE.--Water-stage recorder and concrete and steel sheeting broad-crested control. Datum of gage is 806.98 ft above NGVD. Prior to Aug. 31, 1966, nonrecording gage at same site and datum. REMARKS.--Estimated daily discharges: Dec. 2 to Mar. 16, and Mar. 18-20. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers satellite data collection platform at station. AVERAGE DISCHARGE.--29 years, 205 ft<sup>3</sup>/s, 7.78 in/yr, 148,500 acre-ft/yr; median of yearly mean discharges, 200 ft<sup>3</sup>/s, 7.6 in/yr, 145,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 7,980 ft<sup>3</sup>/s June 30, 1986, gage height, 14.73 ft; no flow for several days in 1970 and 1971 and many days in 1977. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 1,500 ft3/s and maximum (\*): | | | Discharge | Gage height | | | Discharge | Gage height | |--------|------|-----------|-------------|-------------|------------|--------------------|-------------| | Date | Time | (ft³/s) | (ft) | Date . | Time | (ft³/s) | (ft) | | Feb. 1 | 1800 | *1,540 | (a) *11.35 | No other pe | ak greater | than base discharg | e. | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 (a) Ice jam Minimum discharge, 0.02 ft<sup>3</sup>/s Nov. 6. | | | DIOGIA | LIOD, CODI | O 1221 12 | M DECORD, | EAN VALUE | S | un 1500 1. | 001144 | 1000 | | | |-----------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|-----------------------------------------|------------------------------------------|--------------------------------------------|------------------------------------------|----------------------------------------------------|---------------------------------------------|--------------------------------------------|------------------------------------------|-------------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | .18<br>.07<br>.04<br>.06<br>.11 | .04<br>.06<br>.14<br>.20<br>.18 | 2.6<br>2.3<br>2.2<br>1.9 | .35<br>.60<br>.52<br>.47<br>.45 | 78<br>50<br>40<br>36<br>52 | 1.3<br>3.5<br>2.5<br>1.9<br>2.4 | 7.0<br>6.8<br>7.4<br>9.0<br>7.5 | 21<br>17<br>14<br>13<br>11 | 44<br>36<br>96<br>73<br>97 | 58<br>44<br>35<br>28<br>21 | 3.0<br>1.5<br>1.6<br>1.7 | 2.0<br>1.3<br>.88<br>2.4<br>2.4 | | 6<br>7<br>8<br>9<br>10 | .09<br>.13<br>.09<br>.07<br>.05 | .20<br>.16<br>.16<br>.19<br>.15 | 2.1<br>2.5<br>2.7<br>1.4<br>1.6 | .58<br>.70<br>.90<br>1.2<br>1.0 | 10<br>2.0<br>10<br>70<br>37 | 2.0<br>1.9<br>7.0<br>15<br>45 | 7.4<br>7.2<br>9.1<br>7.4<br>6.5 | 8.7<br>7.6<br>7.2<br>8.5<br>5.6 | 90<br>61<br>97<br>99<br>79 | 16<br>12<br>9.7<br>7.4<br>5.8 | 1.6<br>.56<br>.32<br>.20 | 2.3<br>3.7<br>6.0<br>72<br>48 | | 11<br>12<br>13<br>14<br>15 | .04<br>.06<br>.04<br>.03<br>.04 | .16<br>.41<br>.28<br>.22 | 1.5<br>1.0<br>.50<br>.60<br>2.5 | .76<br>.60<br>.70<br>.88<br>1.0 | 20<br>10<br>5.0<br>2.0<br>1.1 | 100<br>86<br>74<br>72<br>50 | 6.8<br>5.9<br>4.4<br>4.8<br>4.1 | 4.7<br>5.1<br>3.6<br>3.4<br>3.2 | 65<br>50<br>40<br>33<br>29 | 16<br>21<br>6.3<br>4.6<br>4.6 | .14<br>.12<br>.07<br>.05 | 40<br>34<br>25<br>19<br>15 | | 16<br>17<br>18<br>19<br>20 | .03<br>.04<br>.04<br>.04 | 1.8<br>1.2<br>1.3<br>1.5<br>2.3 | . 80<br>. 40<br>. 58<br>. 52<br>. 60 | 1.1<br>1.1<br>1.2<br>1.0<br>.50 | 1.4<br>1.8<br>2.5<br>2.3<br>2.0 | 45<br>24<br>27<br>33<br>32 | 4.1<br>4.2<br>4.0<br>4.0<br>3.7 | 3.3<br>2.4<br>4.0<br>4.6<br>3.3 | 24<br>21<br>20<br>17<br>14 | 3.8<br>3.1<br>204<br>204<br>84 | .12<br>.14<br>.14<br>.32<br>.22 | 11<br>8.5<br>7.4<br>6.0<br>4.8 | | 21<br>22<br>23<br>24<br>25 | .11<br>.04<br>.04<br>.03<br>.03 | 1.9<br>2.3<br>2.7<br>2.9<br>2.2 | .64<br>.73<br>.60<br>.42<br>.76 | .40<br>.35<br>.27<br>.23<br>.20 | 2.2<br>2.4<br>2.2<br>1.9<br>1.7 | 25<br>25<br>18<br>16<br>19 | 3.5<br>3.4<br>3.7<br>3.8<br>4.0 | 13<br>35<br>20<br>521<br>548 | 11<br>9.7<br>10<br>9.4<br>49 | 46<br>31<br>22<br>17<br>13 | .20<br>.21<br>.95<br>.80<br>.66 | 4.0<br>3.4<br>2.6<br>2.0<br>1.9 | | 26<br>27<br>28<br>29<br>30<br>31 | .04<br>.04<br>.03<br>.03<br>.04 | 3.4<br>3.6<br>2.6<br>1.7<br>3.2 | 1.3<br>1.9<br>3.0<br>1.4<br>.60 | .21<br>.35<br>.50<br>.78 | 1.8<br>2.0<br>2.3 | 16<br>13<br>10<br>9.2<br>8.0<br>7.6 | 3.9<br>4.8<br>14<br>6.9<br>7.8 | 302<br>179<br>117<br>90<br>75<br>57 | 91<br>68<br>80<br>103<br>80 | 10<br>7.3<br>6.0<br>5.3<br>5.4<br>4.0 | 1.1<br>2.2<br>1.9<br>4.0<br>3.9<br>2.7 | 2.2<br>1.6<br>1.2<br>1.1<br>.95 | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 1.81<br>.058<br>.18<br>.03<br>3.6<br>.00 | 38.25<br>1.27<br>3.6<br>.04<br>76<br>.00 | 41.78<br>1.35<br>3.0<br>.23<br>83<br>.00 | 20.21<br>.65<br>1.2<br>.20<br>40<br>.00 | 449.6<br>16.1<br>78<br>1.1<br>892<br>.04 | 792.3<br>25.6<br>100<br>1.3<br>1570<br>.07 | 177.1<br>5.90<br>14<br>3.4<br>351<br>.02 | 2108.2<br>68.0<br>548<br>2.4<br>4180<br>.19<br>.22 | 1596.1<br>53.2<br>103<br>9.4<br>3170<br>.15 | 955.3<br>30.8<br>204<br>3.1<br>1890<br>.09 | 32.15<br>1.04<br>4.0<br>.05<br>64<br>.00 | 332.63<br>11.1<br>72<br>.88<br>660<br>.03 | CAL YR 1988 TOTAL 15577.18 MEAN 42.6 MAX 430 MIN .01 AC-FT 30900 CFSM .12 IN. 1.62 WTR YR 1989 TOTAL 6545.43 MEAN 17.9 MAX 548 MIN .03 AC-FT 12980 CFSM .05 IN. .68 149 ## 05482135 NORTH RACCOON RIVER NEAR NEWELL, IA LOCATION.--Lat 42°36'16", long 95°02'42", in NE1/4 NW1/4 sec.24, T.90 N., R.36 W., Buena Vista County, Hydrologic Unit 07100005, on left bank 40 ft downstream from bridge on State Highway 7, 0.8 mi upstream from Outlet Creek, 2.2 mi west of Newell, and at mile 398.6 upstream from mouth of Des Moines River. DRAINAGE AREA. -- 233 mi2. PERIOD OF RECORD .-- October 1982 to current year. GAGE. -- Water-stage recorder. Datum of gage is 1235.50 ft above NGVD. REMARKS.--Estimated daily discharges: Nov. 20-22, Nov. 28 to Dec. 2, Dec. 10-13, and Dec. 16 to Mar. 24. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Geological Survey gage-height telemeter at station. AVERAGE DISCHARGE.--7 years, 175 $\mathrm{ft^3/s}$ , 10.2 in/yr, 126,800 acre-ft/yr; median of yearly mean discharge 150 $\mathrm{ft^3s}$ , 8.7 in/yr, 109,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,850 ft<sup>3</sup>/s June 17, 1984, gage height, 16.73 ft, from flood-mark; minimum discharge 1.0 ft<sup>3</sup>/s Aug. 24, 1989. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 750 ft3/s and maximum (\*): | Date<br>Mar 10 | Time<br>0630 | Olscharge<br>(ft <sup>3</sup> /s)<br>ice jam | Gage height<br>(ft)<br>*13.90 | Date<br>May 24 | Time<br>1015 | (ft <sup>3</sup> /s)<br>*504 | (ft)<br>11.50 | |----------------|--------------|----------------------------------------------|-------------------------------|----------------|--------------|------------------------------|---------------| | Minimum | daily disc | charge, 1.0 ft3/s | Aug. 24. | | | | | | | | DISCHARGE | E, CUBIC | FEET PER | SECOND, | WATER YEAR<br>MEAN VALUES | OCTOBER | 1988 TO | SEPTEMBER | 1989 | | | |-----------------------------------|-------------------------------------------------|-----------------------------------------|-------------------------------------------------|-----------------------------------------------|------------------------------------------|-------------------------------------------------|------------------------------------------------|------------------------------------------|-------------------------------------------------|------------------------------------------|------------------------------------------|-------------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | 108<br>84<br>69<br>53<br>47 | 18<br>17<br>18<br>19<br>20 | 47<br>60<br>72<br>54<br>69 | 39<br>32<br>31<br>30<br>34 | 26<br>20<br>16<br>13<br>14 | 12<br>12<br>13<br>14<br>15 | 47<br>46<br>46<br>41<br>37 | 74<br>69<br>63<br>63<br>54 | 60<br>55<br>49<br>43<br>40 | 37<br>28<br>23<br>18<br>15 | 4.0<br>3.5<br>3.3<br>3.1<br>3.2 | 1.2<br>1.3<br>7.0<br>24<br>22 | | 6<br>7<br>8<br>9<br>10 | 43<br>39<br>37<br>35<br>32 | 16<br>18<br>17<br>16<br>16 | 67<br>59<br>44<br>73<br>60 | 70<br>55<br>37<br>30<br>29 | 14<br>14<br>14<br>13<br>13 | 15<br>19<br>23<br>29<br>270 | 39<br>41<br>55<br>58<br>53 | 45<br>43<br>42<br>36<br>32 | 37<br>33<br>30<br>27<br>24 | 13<br>11<br>10<br>9.2<br>7.7 | 3.1<br>2.9<br>2.5<br>2.4<br>2.1 | 15<br>22<br>50<br>51<br>35 | | 11<br>12<br>13<br>14<br>15 | 29<br>27<br>27<br>28<br>27 | 13<br>22<br>24<br>22<br>24 | 52<br>60<br>76<br>82<br>55 | 28<br>27<br>26<br>26<br>26 | 13<br>14<br>14<br>14<br>13 | 230<br>120<br>80<br>60<br>58 | 56<br>51<br>50<br>51<br>47 | 31<br>30<br>31<br>30<br>26 | 23<br>27<br>23<br>21<br>20 | 7.6<br>8.6<br>7.6<br>6.7<br>7.1 | 2.0<br>1.9<br>1.9<br>2.3<br>2.9 | 32<br>29<br>27<br>22<br>25 | | 16<br>17<br>18<br>19<br>20 | 25<br>24<br>24<br>22<br>23 | 82<br>59<br>60<br>64<br>55 | 60<br>68<br>72<br>80<br>98 | 25<br>25<br>25<br>25<br>26 | 12<br>11<br>11<br>11<br>10 | 56<br>48<br>45<br>42<br>40 | 51<br>47<br>46<br>48<br>47 | 25<br>24<br>25<br>29<br>23 | 18<br>17<br>19<br>15<br>13 | 6.8<br>5.9<br>13<br>8.8<br>5.9 | 2.0<br>2.1<br>1.4<br>1.3<br>1.5 | 22<br>23<br>21<br>21<br>15 | | 21<br>22<br>23<br>24<br>25 | 24<br>21<br>22<br>20<br>19 | 58<br>60<br>62<br>69<br>70 | 100<br>90<br>98<br>90<br>68 | 24<br>23<br>23<br>21<br>19 | 11<br>10<br>9.0<br>11<br>12 | 41<br>42<br>45<br>56<br>67 | 44<br>40<br>40<br>37<br>35 | 20<br>21<br>28<br>404<br>266 | 13<br>30<br>32<br>25<br>41 | 4.4<br>4.0<br>4.0<br>3.8<br>3.5 | 1.2<br>1.3<br>1.1<br>1.0 | 9.7<br>8.6<br>5.1<br>5.9<br>5.6 | | 26<br>27<br>28<br>29<br>30<br>31 | 19<br>20<br>18<br>17<br>16<br>18 | 63<br>64<br>62<br>52<br>54 | 66<br>60<br>52<br>46<br>44<br><b>42</b> | 18<br>17<br>19<br>18<br>19<br>27 | 15<br>15<br>14<br> | 65<br>67<br>64<br>57<br>55<br>49 | 32<br>32<br>66<br>91<br>84 | 164<br>124<br>108<br>98<br>80<br>66 | 94<br>125<br>89<br>65<br>47 | 3.3<br>3.1<br>2.9<br>7.1<br>12<br>5.3 | 1.7<br>3.7<br>2.2<br>1.6<br>1.4 | 5.3<br>5.5<br>5.3<br>4.6<br>4.8 | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 1017<br>32.8<br>108<br>16<br>2020<br>.14<br>.16 | 1214<br>40.5<br>82<br>13<br>2410<br>.17 | 2064<br>66.6<br>100<br>42<br>4090<br>.29<br>.33 | 874<br>28.2<br>70<br>17<br>1730<br>.12<br>.14 | 377.0<br>13.5<br>26<br>9.0<br>748<br>.06 | 1809<br>58.4<br>270<br>12<br>3590<br>.25<br>.29 | 1458<br>48.6<br>91<br>32<br>2890<br>.21<br>.23 | 2174<br>70.1<br>404<br>20<br>4310<br>.30 | 1155<br>38.5<br>125<br>13<br>2290<br>.16<br>.18 | 303.3<br>9.78<br>37<br>2.9<br>602<br>.04 | 67.2<br>2.17<br>4.0<br>1.0<br>133<br>.01 | 525.9<br>17.5<br>51<br>1.2<br>1040<br>.08 | CAL YR 1988 TOTAL 20854.9 MEAN 57.0 MAX 484 MIN 2.2 AC-FT 41370 CFSM .24 IN. 3.32 WTR YR 1989 TOTAL 13038.4 MEAN 35.7 MAX 404 MIN 1.0 AC-FT 25860 CFSM .15 IN. 2.08 ### 05482170 BIG CEDAR CREEK NEAR VARINA, IA LOCATION.--Lat 42°41'16", long 94°47'52", in NE1/4 NE1/4 sec.24, T.91 N., R.34 W., Pocahontas County, Hydrologic Unit 07100006, on left bank 2 ft downstream from bridge on county highway N33, 2.0 mi downstream from Drainage ditch 21, 3.5 mi upstream from Drainage ditch 74, and 5.5 mi northeast of Varina. DRAINAGE AREA, -- 80.0 mi<sup>2</sup>. PERIOD OF RECORD. -- October 1959 to current year. GAGE. -- Water-stage recorder. Datum of gage is 1,225.12 ft above NGVD. REMARKS.--Estimated daily discharges: Nov. 28 to Mar. 24 and Apr. 8-10. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. AVERAGE DISCHARGE.--30 years, 41.6 $\rm ft^3/s$ , 7.06 in/yr, 30,140 acre-ft/yr; median of yearly mean discharges, 34 $\rm ft^3/s$ , 5.8 in/yr, 24,600 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,080 ft<sup>3</sup>/s Aug. 31, 1962, gage height, 13.68 ft; maximum gage height, 16.29 ft Mar. 24, 1979, backwater from ice; no flow at times most years. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 400 ft3/s and maximum (\*): | | | Discharge | Gage height | | | Discharge | Gage height | |---------|------|------------|-------------|--------|------|------------|-------------| | Date | Time | $(ft^3/s)$ | (ft) | Date | Time | $(ft^3/s)$ | (ft) | | Mar. 10 | 2245 | ice jam | *6.83 | May 24 | 0845 | *168 | 4.40 | Minimum discharge, 0.11 ft3/s Sept. 23. | | | DISCHAR | GE, CUBIC | FEET PER | SECOND, | , WATER YEAR<br>MEAN VALUES | OCTOBER | 1988 TO | SEPTEMBER | 1989 | | | |-----------------------------------------------------|------------------------------------------|-------------------------------------------------|----------------------------------------|------------------------------------------|-------------------------------------------|---------------------------------------------|------------------------------------------|---------------------------------------------------|------------------------------------------|-------------------------------------------|-----------------------------------------|------------------------------------------| | DAY | OCT | NOA | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | 39<br>28<br>23<br>18<br>16 | 6.2<br>6.1<br>6.5<br>6.8<br>6.3 | 19<br>23<br>21<br>18<br>18 | 12<br>9.8<br>14<br>12<br>13 | 5.4<br>5.8<br>3.3<br>1.9<br>2.1 | 1.8<br>1.3<br>.64<br>.50 | 11<br>10<br>9.9<br>9.2<br>8.4 | 17<br>15<br>14<br>15<br>13 | 15<br>14<br>14<br>13<br>13 | 5.4<br>4.8<br>4.2<br>3.8<br>3.6 | .87<br>.79<br>.69<br>.70<br>.77 | .34<br>.38<br>.48<br>3.3<br>4.9 | | 6<br>7<br>8<br>9<br>10 | 14<br>13<br>12<br>11<br>10 | 6.5<br>5.4<br>5.0<br>5.0<br>5.0 | 15<br>13<br>19<br>22<br>15 | 17<br>15<br>8.8<br>11<br>9.2 | 3.0<br>4.8<br>5.2<br>3.4<br>2.4 | .45<br>1.0<br>3.1<br>10<br>22 | 8.9<br>9.7<br>11<br>10<br>11 | 10<br>9.8<br>10<br>9.2<br>8.3 | 12<br>14<br>12<br>11<br>9.9 | 3.1<br>2.7<br>2.3<br>1.9<br>1.7 | 1.5<br>.90<br>.55<br>.42<br>.42 | 1.1<br>1.5<br>5.9<br>5.0<br>1.7 | | 11<br>12<br>13<br>14<br>15 | 9.3<br>8.7<br>8.9<br>13 | 4.6<br>7.0<br>7.9<br>6.6<br>8.0 | 16<br>16<br>18<br>19<br>11 | 9.6<br>9.0<br>8.0<br>8.6<br>9.0 | 3.2<br>4.3<br>4.7<br>5.0<br>4.5 | 23<br>18<br>13<br>14<br>16 | 12<br>12<br>11<br>12<br>11 | 8.1<br>8.3<br>8.3<br>7.5<br>7.2 | 9.3<br>9.8<br>7.8<br>7.3<br>9.7 | 2.0<br>2.5<br>2.1<br>2.4<br>6.4 | .34<br>.32<br>.75<br>2.0<br>2.6 | .95<br>.76<br>.66<br>.55<br>.49 | | 16<br>17<br>18<br>19<br>20 | 9.7<br>8.9<br>8.2<br>8.4 | 8.7<br>21<br>21<br>27<br>30 | 19<br>20<br>21<br>21<br>34 | 8.0<br>7.0<br>7.6<br>8.0<br>8.0 | 3.8<br>2.3<br>1.9<br>1.5 | 18<br>15<br>19<br>16<br>16 | 12<br>11<br>11<br>11<br>11 | 7.0<br>6.8<br>7.6<br>7.7<br>6.3 | 7.9<br>6.7<br>7.3<br>5.5<br>4.5 | 5.7<br>2.9<br>3.7<br>2.3<br>1.5 | 1.0<br>1.1<br>1.0<br>.76<br>.67 | .42<br>.38<br>.32<br>.31<br>.23 | | 21<br>22<br>23<br>24<br>25 | 8.6<br>7.8<br>7.9<br>7.1<br>6.8 | 27<br>24<br>23<br>25<br>25 | 39<br>29<br>36<br>28<br>22 | 5.8<br>6.4<br>6.4<br>5.2<br>4.6 | 1.2<br>1.2<br>.80<br>.45<br>1.0 | 15<br>101<br>24<br>22<br>25 | 11<br>11<br>11<br>10<br>9.6 | 5.7<br>6.3<br>27<br>146<br>78 | 4.4<br>6.6<br>7.9<br>5.9<br>7.3 | 1.2<br>1.1<br>1.2<br>1.1<br>1.0 | .50<br>.42<br>.37<br>.33<br>.33 | .18<br>.18<br>.14<br>.14 | | 26<br>27<br>28<br>29<br>30<br>31 | 6.5<br>7.2<br>6.0<br>5.6<br>5.7<br>6.4 | 23<br>21<br>20<br>22<br>20 | 23<br>18<br>19<br>15<br>16<br>13 | 4.0<br>4.7<br>5.6<br>5.2<br>5.4<br>7.4 | 2.3<br>2.4<br>2.2 | 22<br>24<br>21<br>17<br>14<br>12 | 8.9<br>8.9<br>18<br>22<br>18 | 44<br>31<br>27<br>25<br>20<br>17 | 7.7<br>8.7<br>8.8<br>6.4<br>5.6 | .86<br>.78<br>.70<br>1.7<br>3.2 | .68<br>1.4<br>1.1<br>1.3<br>.70 | .23<br>.17<br>.16<br>.16<br>2.4 | | TOTAL<br>MEAN<br>MAX<br>MIN<br>AC-FT<br>CFSM<br>IN. | 355.7<br>11.5<br>39<br>5.6<br>706<br>.14 | 430.6<br>14.4<br>30<br>4.6<br>854<br>.18<br>.20 | 636<br>20.5<br>39<br>11<br>1260<br>.26 | 265.3<br>8.56<br>17<br>4.0<br>526<br>.11 | 81.15<br>2.90<br>5.8<br>.45<br>161<br>.04 | 506.17<br>16.3<br>101<br>.38<br>1000<br>.20 | 341.5<br>11.4<br>22<br>8.4<br>677<br>.14 | 623.1<br>20.1<br>146<br>5.7<br>1240<br>.25<br>.29 | 273.0<br>9.10<br>15<br>4.4<br>541<br>.11 | 79.04<br>2.55<br>6.4<br>.70<br>157<br>.03 | 25.67<br>.83<br>2.6<br>.32<br>51<br>.01 | 33.69<br>1.12<br>5.9<br>.14<br>67<br>.01 | CAL YR 1988 TOTAL 6799.24 MEAN 18.6 MAX 180 MIN .06 AC-FT 13490 CFSM .23 IN. 3.16 WTR YR 1989 TOTAL 3650.92 MEAN 10.0 MAX 146 MIN .14 AC-FT 7240 CFSM .13 IN. 1.70 LOCATION.--Lat 42°21'16", long 94°59'26", in NW1/4 NW1/4 sec.13, T.87 N., R.36 W., Sac County, Hydrologic Unit 07100006, on right bank 5 ft downstream from bridge on county highway, 2.1 mi upstream from Indian Creek, 0.3 mi upstream from Drainage ditch 73, 4.6 mi south of Sac City, and at mile 367.6 upstream from mouth of Des Moines River. DRAINAGE AREA. -- 700 mi2. PERIOD OF RECORD. -- June 1958 to current year. GAGE.--Water-stage recorder. Datum of gage is 1,146.03 ft above NGVD. Prior to Oct. 1, 1987 at site 1.7 miles downstream at datum 1.43 ft lower. REMARKS.--Estimated daily discharges: Nov. 29 to Dec. 3, Dec. 6, Dec. 9 to Mar. 15, and Apr. 28 to May 1. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. National Weather limited automatic remote collector at station. AVERAGE DISCHARGE.--31 years, 355 $ft^3/s$ , 6.76 in/yr, 257,200 acre-ft/yr; median of yearly mean discharges, 270 $ft^3/s$ , 5.1 in/yr, 196,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 13,100 ft<sup>3</sup>/s Mar. 23, 1979, gage height, 18.02 ft; maximum gage height, 18.12 ft Sept. 1, 1962; no flow Jan. 30 to Feb. 4, 1977. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 21, 1954, reached a stage of 15.61 ft, from floodmark, discharge, 7,000 ft<sup>3</sup>/s. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 2,000 ft3/s and maximum (\*): Discharge Gage height Date Time (ft $^3$ /s) (ft) Date Time (ft $^3$ /s) (ft) Date Time (ft $^3$ /s) (ft) Mar. 11 0845 \*1,700 (a)\*12.67 (a) ice jam Minimum discharge, 7.5 ft3/s Sept. 1. | | | DISCHARGE | , CUBIC | FEET PER | | WATER YEAR<br>EAN VALUES | OCTOBER | 1988 TO | SEPTEMBER | 1989 | | | |------------|------------|-----------|--------------|-------------|------|--------------------------|---------|---------|--------------|------|-------|-------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 332 | 49 | 78 | 120 | 68 | 48 | 84 | 151 | 145 | 90 | 25 | 8.2 | | 2 | 245 | 50 | 100 | 110 | 60 | 44 | 93 | 148 | 124 | 76 | 20 | 8.4 | | 3 | 186 | 49 | 94 | 100 | 56 | 45 | 104 | 141 | 114 | 66 | 17 | 8.3 | | 4 | 154 | 54 | 110 | 9 <b>2</b> | 58 | 44 | 102 | 136 | 103 | 57 | 16 | 26 | | 5 | 134 | 57 | 148 | 115 | 56 | 43 | 101 | 151 | 94 | 51 | 15 | 38 | | 3 | 104 | 3, | 140 | 113 | 30 | 45 | 101 | 131 | 34 | 31 | -5 | | | 6 | 125 | 51 | 150 | 260 | 53 | 47 | 100 | 130 | <b>8</b> 6 | 43 | 13 | 39 | | 7 | 115 | 49 | 105 | <b>2</b> 20 | 50 | 90 | 92 | 114 | 81 | 42 | 11 | 34 | | 8 | 106 | 49 | 93 | 270 | 49 | 160 | 96 | 103 | 107 | • 40 | 11 | 65 | | 9 | 101 | 46 | 100 | 120 | 48 | 240 | 99 | 102 | 85 | 38 | 10 | 111 | | 10 | 94 | 45 | 88 | 100 | 47 | 800 | 94 | 91 | 71 | 36 | 9.5 | 84 | | 11 | 85 | 43 | 120 | 96 | 46 | 1200 | 94 | 86 | 65 | 34 | 8.6 | 58 | | 12 | 78 | 57 | 150 | 94 | 45 | 760 | 90 | 82 | 66 | 35 | 8.3 | 48 | | 13 | 74 | 66 | 230 | 90 | 44 | 510 | 84 | 84 | 65 | 32 | 8.2 | 43 | | 14 | 70 | 69 | 220 | 88 | 45 | 400 | 89 | 82 | 61 | 30 | 16 | 41 | | 15 | 73 | 67 | 210 | 84 | 44 | 250 | 86 | 75 | 56 | 29 | 15 | 37 | | 13 | ,, | 07 | 210 | 04 | | 230 | 00 | ,, | 30 | 23 | 13 | ٥, | | 16 | 71 | 81 | 160 | 80 | 44 | 182 | 81 | 75 | 54 | 29 | 12 | 35 | | 17 | 71 | 66 | 130 | 82 | 43 | 208 | 77 | 71 | 51 | 28 | 12 | 34 | | 18 | 70 | 122 | 125 | 80 | 44 | 201 | 76 | 74 | 53 | 37 | 9.4 | 32 | | 19 | 66 | 155 | 145 | 80 | 40 | 207 | 73 | 86 | 53 | 39 | 8.9 | 30 | | 20 | 63 | 169 | 190 | 82 | 40 | 193 | 71 | 81 | 46 | 33 | 8.6 | 30 | | 21 | 65 | 126 | 010 | 00 | 42 | 101 | 70 | 70 | 44 | 27 | 8.4 | 27 | | 21 | | | 210 | 80 | | 181 | | | | | | 21 | | 22 | 63 | 211 | 195 | 80 | 41 | 170 | 63 | 64 | 61 | 23 | 8.6 | | | 23 | 58 | 216 | 175 | 79 | 38 | 151 | 58 | 66 | 79 | 22 | 8.2 | 18 | | 24 | 57 | 171 | 180 | 76 | 44 | 138 | 52 | 423 | 79 | 20 | 8.0 | 16 | | <b>2</b> 5 | 55 | 182 | 185 | 74 | 49 | 131 | 49 | 807 | 78 | 20 | 7.9 | 14 | | 26 | 5 <b>3</b> | 183 | 190 | 60 | 56 | 124 | 72 | 466 | 94 | 19 | 8.3 | 14 | | 27 | 51 | 171 | 200 | 66 | 50 | 121 | 82 | 308 | 156 | 18 | 11 | 14 | | 28 | 51 | 86 | 195 | 64 | 50 | 115 | 142 | 238 | 180 | 16 | 14 | 13 | | 29 | 52 | 98 | 190 | 68 | | 108 | 182 | 221 | 137 | 23 | 15 | 12 | | 30 | 47 | 86 | 130 | 72 | | 88 | 160 | 191 | 107 | 29 | 12 | 11 | | 31 | 47 | | 125 | 78 | | 80 | | 167 | | 34 | 9.7 | | | TOTAL | 2912 | 2924 | 4721 | 3160 | 1350 | 7079 | 2716 | 5084 | <b>2</b> 595 | 1116 | 365.6 | 969.9 | | MEAN | 93.9 | 97.5 | 152 | 102 | 48.2 | 228 | 90.5 | 164 | 86.5 | 36.0 | 11.8 | 32.3 | | MAX | 332 | 216 | 230 | 270 | 68 | 1200 | 182 | 807 | 180 | 90 | 25 | 111 | | MIN | 332<br>47 | 43 | 78 | 270<br>60 | 38 | 43 | 49 | 64 | 44 | 16 | 7.9 | 8.2 | | AC-FT | | | | 6270 | 2680 | 14040 | 5390 | 10080 | 5150 | 2210 | 725 | 1920 | | | 5780 | | 9360 | | | | | .23 | .12 | .05 | .02 | .05 | | CFSM | . 13 | . 14 | .21 | . 14 | .07 | . 32 | . 13 | | | .05 | .02 | .05 | | IN. | . 15 | . 15 | . <b>2</b> 5 | . 16 | .07 | .37 | . 14 | . 27 | . 14 | .00 | .02 | .03 | CAL YR 1988 TOTAL 56631 MEAN 155 MAX 821 MIN 11 AC-FT 112300 CFSM .22 IN. 2.95 WTR YR 1989 TOTAL 34992.5 MEAN 95.9 MAX 1200 MIN 7.9 AC-FT 69410 CFSM .13 IN. 1.83 ### 05482315 BLACK HAWK LAKE AT LAKE VIEW, IA LOCATION.--Lat 42°18'15", long 95°02'30", in NW1/4 SE1/4 sec.33, T.87 N., R.36 W., Sac County, Hydrologic Unit 07100006, on south shore across from swimming beach at Lake View and 2 mi upstream from lake outlet. DRAINAGE AREA. -- 23.3 mi2. PERIOD OF RECORD.--April 1970 to September 1975, April 1978 to current year. GAGE.--Water-stage recorder. Datum of gage is 1,218.50 ft above NGVD and 2.00 ft below crest of spillway of dam at outlet. Prior to June 25, 1970, nonrecording gage at lake outlet. REMARKS.--Lake is formed by concrete dam with ungated overflow spillway at elevation 1,220.50 ft above NGVD. Lake is used for conservation and recreation. Area of lake is approximately 957 acres. EXTREMES FOR PERIOD OF RECORD. --Maximum gage height, 4.08 ft Mar. 20, 1979; minimum, 0.02 ft Sept. 26, 1981. EXTREMES FOR CURRENT YEAR. -- Maximum gage height, 2.50 ft affected by seiche May 28; minimum, 1.46 ft Sept. 29, 30. | | | | GAGE HE | GHT, FEET | , WATER Y | YEAR OCTO | BER 1988 1 | O SEPTEM | BER 1989 | | | | |----------------------------------|----------------------------------------------|--------------------------------------|----------------------------------------------|----------------------------------------------|--------------------------------------|----------------------------------------------|--------------------------------------|----------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------| | DAY | OCT | VON | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 2.21 | 2.06 | 2.29 | 2.27 | 2.32 | 2.23 | 2.27 | 2.13 | 2.35 | 2.27 | 1.88 | 1.55 | | 2 | 2.23 | 2.07 | 2.29 | 2.26 | 2.33 | 2.24 | 2.28 | 2.13 | 2.33 | 2.25 | 1.87 | 1.54 | | 3 | 2.24 | 2.06 | 2.29 | 2.26 | 2.32 | 2.27 | 2.24 | 2.13 | 2.31 | 2.23 | 1.85 | 1.57 | | 4 | 2.24 | 2.07 | 2.29 | 2.25 | 2.32 | 2.28 | 2.21 | 2.11 | 2.30 | 2.22 | 1.83 | 1.64 | | 5 | 2.24 | 2.04 | 2.29 | 2.28 | 2.31 | 2.27 | 2.22 | 2.08 | 2.28 | 2.21 | 1.82 | 1.66 | | 6<br>7<br>8<br>9<br>10 | 2.24<br>2.24<br>2.24<br>2.23<br>2.21 | 2.04<br>2.06<br>2.06<br>2.05<br>2.04 | 2.29<br>2.29<br>2.29<br>2.28<br>2.28 | 2.34<br>2.36<br>2.35<br>2.34<br>2.33 | 2.31<br>2.30<br>2.29<br>2.29<br>2.28 | 2.27<br>2.26<br>2.26<br>2.27<br>2.32 | 2.23<br>2.24<br>2.22<br>2.21<br>2.21 | 2.07<br>2.07<br>2.06<br>2.05<br>2.05 | 2.25<br>2.25<br>2.26<br>2.25<br>2.25 | 2.18<br>2.17<br>2.17<br>2.11<br>2.09 | 1.80<br>1.76<br>1.75<br>1.74<br>1.72 | 1.66<br>1.68<br>1.69<br>1.69 | | 11 | 2.21 | 2.07 | 2.27 | 2.32 | 2.27 | 2.40 | 2.20 | 2.04 | 2.24 | 2.07 | 1.70 | 1.72 | | 12 | 2.21 | 2.10 | 2.27 | 2.31 | 2.27 | 2.43 | 2.20 | 2.02 | 2.23 | 2.05 | 1.68 | 1.72 | | 13 | 2.21 | 2.11 | 2.27 | 2.30 | 2.27 | 2.42 | 2.19 | 2.01 | 2.20 | 2.02 | 1.67 | 1.69 | | 14 | 2.20 | 2.13 | 2.27 | 2.30 | 2.26 | 2.42 | 2.17 | 2.00 | 2.18 | 2.00 | 1.72 | 1.66 | | 15 | 2.19 | 2.12 | 2.26 | 2.29 | 2.26 | 2.41 | 2.18 | 1.98 | 2.17 | 1.99 | 1.73 | 1.62 | | 16 | 2.19 | 2.16 | 2.26 | 2.28 | 2.25 | 2.39 | 2.17 | 1.98 | 2.17 | 1.97 | 1.72 | 1.60 | | 17 | 2.19 | 2.20 | 2.25 | 2.28 | 2.25 | 2.38 | 2.15 | 1.98 | 2.16 | 1.96 | 1.71 | 1.57 | | 18 | 2.18 | 2.22 | 2.25 | 2.28 | 2.25 | 2.37 | 2.15 | 1.97 | 2.16 | 1.97 | 1.70 | 1.53 | | 19 | 2.18 | 2.20 | 2.25 | 2.27 | 2.25 | 2.36 | 2.14 | 1.98 | 2.17 | 1.95 | 1.67 | 1.52 | | 20 | 2.18 | 2.22 | 2.31 | 2.27 | 2.25 | 2.35 | 2.13 | 1.97 | 2.16 | 1.93 | 1.66 | 1.50 | | 21 | 2.17 | 2.23 | 2.31 | 2.27 | 2.26 | 2.33 | 2.13 | 1.96 | 2.13 | 1.92 | 1.66 | 1.52 | | 22 | 2.18 | 2.24 | 2.30 | 2.26 | 2.25 | 2.33 | 2.18 | 1.95 | 2.18 | 1.91 | 1.64 | 1.52 | | 23 | 2.12 | 2.25 | 2.30 | 2.26 | 2.25 | 2.32 | 2.16 | 1.95 | 2.23 | 1.90 | 1.63 | 1.51 | | 24 | 2.12 | 2.26 | 2.29 | 2.27 | 2.24 | 2.31 | 2.11 | 2.17 | 2.24 | 1.89 | 1.62 | 1.51 | | 25 | 2.11 | 2.26 | 2.29 | 2.27 | 2.24 | 2.31 | 2.10 | 2.33 | 2.29 | 1.88 | 1.60 | 1.49 | | 26<br>27<br>28<br>29<br>30<br>31 | 2.12<br>2.07<br>2.07<br>2.08<br>2.08<br>2.05 | 2.27<br>2.21<br>2.26<br>2.28<br>2.29 | 2.29<br>2.30<br>2.29<br>2.28<br>2.27<br>2.27 | 2.27<br>2.27<br>2.28<br>2.30<br>2.31<br>2.31 | 2.24<br>2.24<br>2.24<br> | 2.31<br>2.31<br>2.30<br>2.31<br>2.29<br>2.28 | 2.11<br>2.10<br>2.16<br>2.13<br>2.13 | 2.39<br>2.42<br>2.42<br>2.41<br>2.39<br>2.37 | 2.30<br>2.30<br>2.30<br>2.30<br>2.28 | 1.86<br>1.84<br>1.83<br>1.89<br>1.91 | 1.61<br>1.62<br>1.61<br>1.60<br>1.60 | 1.48<br>1.52<br>1.50<br>1.47<br>1.48 | | MEAN | 2.18 | 2.15 | 2.28 | 2.29 | 2.27 | 2.32 | 2.18 | 2.12 | 2.24 | 2.02 | 1.70 | 1.58 | | MAX | 2.24 | 2.29 | 2.31 | 2.36 | 2.33 | 2.43 | 2.28 | 2.42 | 2.35 | 2.27 | 1.88 | 1.72 | | MIN | 2.05 | 2.04 | 2.25 | 2.25 | 2.24 | 2.23 | 2.10 | 1.95 | 2.13 | 1.83 | 1.58 | 1.47 | CAL YR 1988 MEAN 2.22 MAX 2.81 MIN 1.90 WTR YR 1989 MEAN 2.11 MAX 2.43 MIN 1.47 153 ### 05482500 NORTH RACCOON RIVER NEAR JEFFERSON, IA LOCATION.--Lat 41°59'17", long 94°22'36", in SW1/4 NW1/4 sec. 20, T.83 N., R.30 W., Greene County, Hydrologic Unit 07100006, on right bank 5 ft downstream from bridge on State Highway 4, 0.1 mi downstream from Drainage ditch 33 and 40, 1.9 mi south of Jefferson, 4.2 mi upstream from Hardin Creek, and at mile 292.5 upstream from mouth of Des Moines River. DRAINAGE AREA. -- 1,619 mi2. PERIOD OF RECORD. -- March 1940 to current year. Prior to April 1940, monthly discharge only, published in WSP 1308. Prior to October 1955, published as Raccoon River near Jefferson. REVISED RECORDS. -- WSP 1438: Drainage area. WSP 1508: 1940 (M), 1950-51. GAGE.--Water-stage recorder. Datum of gage is 967.09 ft above NGVD. Prior to Apr. 22, 1946, nonrecording gage at site 4 mi upstream at different datum. Apr. 22 to June 25, 1946, nonrecording gage, June 26, 1946 to Sept. 30, 1955, water-stage recorder, Oct. 1, 1955 to Apr. 30, 1958, nonrecording gage, at present site and datum. REMARKS.--Estimated daily discharges: Dec. 10 to Mar. 23, Apr. 30 to May 4, June 13,14, July 30 to Aug 2, Aug. 11-15, 25, 26, and Aug. 29-31. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. National Weather Service Limited Automatic Remote Collector and U.S. Army Corps of Engineers rain-gage and satellite data collection platform at station. AVERAGE DISCHARGE. --49 years, 734 $\rm ft^3/s$ , 6.16 in/yr, 531,800 acre-ft/yr; median of yearly mean discharges, 600 $\rm ft^3/s$ , 5.0 in/yr, 435,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 29,100 ft<sup>3</sup>/s June 23, 1947, gage height, 22.3 ft; minimum daily discharge, 0.6 ft<sup>3</sup>/s Oct. 5, 1956. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 4,000 ft3/s and maximum (\*): | | | Discharge | Gage height | | | Discharge | Gage height | |--------|------|------------|-------------|------|------|----------------------|-------------| | Date | Time | $(ft^3/s)$ | (ft) | Date | Time | (ft <sup>3</sup> /s) | (ft) | | May 24 | 1130 | *1.740 | *8.97 | | | • | | Minimum discharge, 10 ft3/s Sept. 3. | | | DISCHA | RGE, CUB | IC FEET PE | | WATER YEAR<br>EAN VALUES | OCTOBER | 1988 TO | SEPTEMBER | 1989 | | | |-----------------------------------------------------|-------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|-----------------------------------------|----------------------------------------------------|--------------------------------------------------|----------------------------------------------------|---------------------------------------------------|------------------------------------------------|------------------------------------------|------------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 524 | 132 | 270 | 330 | 170 | 118 | 291 | 349 | 392 | 453 | 87 | 16 | | 2 | 556 | 129 | 281 | 310 | 140 | 110 | 280 | 322 | 371 | 379 | 84 | 12 | | 3 | 470 | 128 | 295 | 290 | 120 | 115 | 270 | 306 | 441 | 323 | 77 | 11 | | 4 | 388 | 128 | 285 | 265 | 125 | 112 | 259 | 288 | 534 | 278 | 62 | 58 | | 5 | 332 | 132 | 264 | 270 | 130 | 110 | 253 | <b>27</b> 9 | 549 | 239 | 69 | 60 | | 6 | 297 | 134 | 242 | 280 | 135 | 105 | 247 | 259 | 423 | 208 | 100 | 73 | | 7 | 272 | 137 | 259 | 300 | 120 | 100 | 240 | 250 | 355 | 187 | 94 | 94 | | 8 | 255 | 127 | 253 | 240 | 115 | 120 | 237 | 229 | 501 | 166 | 62 | 151 | | 9 | 242 | 114 | 177 | 260 | 120 | 350 | 239 | 209 | 900 | 149 | 52 | 234 | | 10 | 229 | 109 | 190 | 250 | 125 | 580 | 242 | 193 | 686 | 130 | 44 | 212 | | 11 | 214 | 107 | 210 | 240 | 120 | 1400 | 248 | 177 | 486 | 132 | 33 | 210 | | 12 | 202 | 119 | 300 | 230 | 110 | 1200 | 244 | 166 | 369 | 112 | 29 | 203 | | 13 | 191 | 127 | 275 | 210 | 105 | 1000 | 239 | 152 | 328 | 99 | 25 | 172 | | 14 | 181 | 130 | 230 | 200 | 100 | 800 | 242 | 151 | 310 | 89 | 25 | 140 | | 15 | 175 | 166 | 200 | 250 | 100 | 540 | 232 | 156 | 290 | 86 | 36 | 121 | | 16 | 168 | 169 | 210 | 240 | 98 | 470 | 221 | 183 | 279 | 81 | 68 | 108 | | 17 | 162 | 200 | 270 | 230 | 100 | 400 | 216 | 187 | 255 | 77 | 55 | 100 | | 18 | 163 | 226 | 320 | 220 | 98 | 360 | 208 | 209 | 247 | 99 | 54 | 89 | | 19 | 159 | 231 | 340 | 210 | 96 | 370 | 207 | 242 | 233 | 92 | 66 | 81 | | 20 | 157 | 261 | 360 | 200 | 105 | 330 | 196 | 327 | 209 | 89 | 61 | 77 | | 21 | 156 | 293 | 350 | 200 | 98 | 350 | 183 | 306 | 192 | 88 | 45 | 71 | | 22 | 154 | 298 | 365 | 190 | 100 | 300 | 136 | 276 | 202 | 88 | 34 | 69 | | 23 | 155 | 282 | 380 | 180 | 96 | 290 | 132 | 405 | 213 | 80 | 52 | 65 | | 24 | 151 | 320 | 360 | 170 | 110 | 303 | 140 | 1460 | 245 | 69 | 44 | 64 | | 25 | 149 | 324 | 350 | 165 | 130 | 326 | 168 | 1610 | 337 | 63 | 25 | 61 | | 26<br>27<br>28<br>29<br>30 | 146<br>144<br>139<br>137<br>137 | 307<br>315<br>307<br>270<br>263 | 355<br>370<br>340<br>340<br>350<br>340 | 160<br>165<br>145<br>145<br>150<br>160 | 125<br>120<br>120<br> | 348<br>379<br>368<br>351<br>333<br>309 | 165<br>167<br>217<br>249<br>324 | 1530<br>1130<br>789<br>631<br>528<br>455 | 454<br>661<br>885<br>709<br>564 | 61<br>58<br>54<br>85<br>95 | 29<br>41<br>38<br>30<br>25<br>22 | 54<br>47<br>43<br>41<br>38 | | TOTAL<br>MEAN<br>MAX<br>MIN<br>AC-FT<br>CFSM<br>IN. | 6941<br>224<br>556<br>136<br>13770<br>.14 | 5985<br>199<br>324<br>107<br>11870<br>.12<br>.14 | 9131<br>295<br>380<br>177<br>18110<br>.18<br>.21 | 6855<br>221<br>330<br>145<br>13600<br>.14<br>.16 | 3231<br>115<br>170<br>96<br>6410<br>.07 | 12347<br>398<br>1400<br>100<br>24490<br>.25<br>.28 | 6692<br>223<br>324<br>132<br>13270<br>.14<br>.15 | 13754<br>444<br>1610<br>151<br>27280<br>.27<br>.32 | 12620<br>421<br>900<br>192<br>25030<br>.26<br>.29 | 4300<br>139<br>453<br>54<br>8530<br>.09<br>.10 | 1568<br>50.6<br>100<br>22<br>3110<br>.03 | 2775<br>92.5<br>234<br>11<br>5500<br>.06 | | CAL YR<br>WTR YR | | TOTAL 12060<br>TOTAL 8619 | | | | 37 AC-FT<br>11 AC-FT | | CFSM .20<br>CFSM .15 | IN. 2.77<br>IN. 1.98 | | | | ## 05483000 EAST FORK HARDIN CREEK NEAR CHURDAN, IA LOCATION.--Lat 42°06'27", long 94°22'12", in SE1/4 SW1/4 sec. 5, T.84 N., R.30 W., Greene County, Hydrologic Unit 07100006, on left bank 35 ft upstream from bridge on county highway E26, 1.6 mi upstream from small left-bank tributary, 4.4 mi upstream from mouth, and 6.5 mi southeast of Churdan. DRAINAGE AREA. -- 24.0 mi2. PERIOD OF RECORD. -- July 1952 to current year. REVISED RECORDS. -- WSP 1438: Drainage area. WSP 1708: 1954-55, 1957 (M). GAGE. -- Water-stage recorder. Datum of gage is 1,050.90 ft above NGVD. REMARKS.--Estimated daily discharges: Dec. 31 to Jan. 1, Jan. 4-13, Jan. 20 to Feb. 9, Feb. 16 to Mar. 1, Mar. 13-15, and June 30 to July 6. Records good except those for estimated daily discharges, which are poor. Small diversion for irrigation upstream from station. AVERAGE DISCHARGE.--36 years, $10.6 \text{ ft}^3/\text{s}$ , 6.00 in/yr, 7,680 acre-ft/yr; median of yearly mean discharges, $8.3 \text{ ft}^3/\text{s}$ , 4.7 in/yr, 6,010 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 870 ft<sup>3</sup>/s June 30, 1986 gage height, 10.78 ft, from flood mark; no flow at times most years. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 150 ft3/s and maximum (\*): | | | Discharge | Gage height | | | Discharge | Gage height | |--------|------|------------|-------------|---------|------|----------------------|-------------| | Date | Time | $(ft^3/s)$ | (ft) | Date | Time | (ft <sup>3</sup> /s) | (ft) | | Dec. 9 | 0415 | *37 | 2.64 | Jan. 27 | 0915 | ice jam | *3.29 | No flow many days. | | | DISCHARGE | , CUBIC | FEET PER | SECOND, | WATER YEAR<br>EAN VALUES | OCTOBER | 1988 TO | SEPTEMBER | 1989 | | | |-----------------------------------|------------------------------------------|-----------------------------------------|----------------------------------------|----------------------------------------|-----------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|-------------------------------------------|-------------------------------------------|----------------------------------|----------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | .22<br>.33<br>.16<br>.03 | .00<br>.00<br>.00<br>.00 | .00<br>.00<br>.00<br>.00 | .19<br>.25<br>.29<br>.30<br>.26 | .50<br>.35<br>.22<br>.25 | .70<br>.64<br>.70<br>.66<br>.76 | .23<br>.24<br>.24<br>.19<br>.10 | .10<br>.14<br>.16<br>.19<br>.21 | .70<br>.70<br>8.9<br>10<br>5.5 | 7.9<br>6.5<br>5.3<br>4.5<br>3.9 | .00<br>.00<br>.00<br>.00 | .00<br>.00<br>.00<br>.00 | | 6<br>7<br>8<br>9<br>10 | .00<br>.01<br>.00<br>.00 | .00<br>.00<br>.00<br>.00 | .00<br>.08<br>.00<br>.00 | .23<br>.19<br>.16<br>.12<br>.14 | .46<br>.50<br>.54<br>.58 | .72<br>1.0<br>1.0<br>1.1 | .03<br>.06<br>.12<br>.06 | .07<br>.0<br>.01<br>.03<br>.02 | 4.1<br>4.1<br>6.7<br>5.4<br>4.0 | 3.4<br>3.0<br>2.7<br>2.4<br>2.1 | .00<br>.00<br>.00<br>.00 | .00<br>.00<br>.00<br>.00 | | 11<br>12<br>13<br>14<br>15 | .00<br>.00<br>.00<br>.00 | .00<br>.00<br>.00<br>.00 | .18<br>.20<br>.30<br>.50 | .16<br>.20<br>.38<br>.32<br>.20 | .68<br>.62<br>.66<br>.62<br>.60 | 10<br>5.0<br>3.8<br>3.0<br>4.1 | .01<br>.04<br>.03<br>.00 | .00<br>.00<br>.00<br>.02<br>.00 | 3.5<br>3.5<br>2.9<br>2.4<br>2.1 | 4.2<br>2.8<br>2.7<br>2.2<br>1.8 | .00<br>.00<br>.00<br>.00 | .00<br>.00<br>.00<br>.00 | | 16<br>17<br>18<br>19<br>20 | .00<br>.00<br>.00<br>.00 | .03<br>.09<br>.02<br>.00 | .24<br>.26<br>.35<br>.41 | .18<br>.20<br>.25<br>.35<br>.20 | .62<br>.58<br>.60<br>.52<br>.48 | 1.6<br>2.8<br>1.2<br>.76<br>.43 | .02<br>.01<br>.00<br>.00 | .00<br>.00<br>.04<br>.21<br>.08 | 2.0<br>2.0<br>2.1<br>2.2<br>1.9 | 1.6<br>1.3<br>1.9<br>1.4<br>1.6 | .00<br>.00<br>.00<br>.00 | .00<br>.00<br>.00<br>.00 | | 21<br>22<br>23<br>24<br>25 | .00<br>.00<br>.00<br>.00 | .00<br>.00<br>.00<br>.00 | .28<br>.40<br>.29<br>.20 | .24<br>.30<br>.26<br>.24<br>.22 | .52<br>.45<br>1.0<br>1.0 | .50<br>.79<br>.76<br>.83<br>.90 | .00<br>.00<br>.00<br>.0 | .00<br>.00<br>.24<br>41<br>16 | 1.8<br>1.9<br>3.2<br>3.3<br>4.9 | 1.4<br>.76<br>.35<br>.22 | .00<br>.00<br>.00<br>.00 | .00<br>.00<br>.00<br>.00 | | 26<br>27<br>28<br>29<br>30 | .00<br>.00<br>.00<br>.00<br>.00 | .00<br>.04<br>.01<br>.00<br>.00 | .21<br>.17<br>.11<br>.24<br>.26 | .20<br>.50<br>.33<br>.42<br>.70 | 1.0<br>1.0<br>1.0 | .79<br>.76<br>.71<br>.48<br>.31 | .00<br>.0<br>.22<br>.08<br>.09 | 5.6<br>2.8<br>2.1<br>1.8<br>1.4 | 21<br>65<br>34<br>17<br>11 | .03<br>.00<br>.00<br>.00<br>.00 | .00<br>.00<br>.00<br>.00<br>.00 | .00<br>.00<br>.00<br>.00 | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 0.76<br>.025<br>.33<br>.00<br>1.5<br>.00 | 0.30<br>.010<br>.09<br>.00<br>.6<br>.00 | 5.64<br>.18<br>.50<br>.00<br>11<br>.01 | 9.18<br>.30<br>1.2<br>.12<br>18<br>.01 | 17.26<br>.62<br>1.0<br>.22<br>34<br>.03 | 62.06<br>2.00<br>15<br>.26<br>123<br>.08 | 1.81<br>.060<br>.24<br>.00<br>3.6<br>.00 | 73.17<br>2.36<br>41<br>.00<br>145<br>.10 | 237.80<br>7.93<br>65<br>.70<br>472<br>.33 | 66.11<br>2.13<br>7.9<br>.00<br>131<br>.09 | 0.00<br>.00<br>.00<br>.00<br>.00 | 0.00<br>.00<br>.00<br>.00<br>.00 | CAL YR 1988 TOTAL 760.74 MEAN 2.08 MAX 9.0 MIN .00 AC-FT 1510 CFSM .09 IN. 1.18 WTR YR 1989 TOTAL 474.09 MEAN 1.30 MAX 65 MIN .00 AC-FT 940 CFSM .05 IN. .73 ### 05483450 MIDDLE RACCOON RIVER NEAR BAYARD, IA LOCATION.--Lat 41°46'43", long 94°29'33", in SW1/4 SW1/4 sec. 32, T.81 N., R.31 W., Guthrie County, Hydrologic Unit 07100007, on left bank 15 ft, downstream from bridge on State Highway 25, 0.2 mi downstream from Battle Run Creek, 1.8 mi upstream from Springbrook Creek, 5.8 mi southeast of Bayard, 10.4 mi upstream from dam at Lake Panorama, and at mile 279.2 upstream from mouth of Des Moines River. DRAINAGE AREA .-- 375 mi<sup>2</sup>. PERIOD OF RECORD. -- March 1979 to current year. Occasional low-flow measurements, water years 1976,77. Contracted-opening measurement of July 3, 1973 flood. GAGE.--Water-stage recorder. Datum of gage is 1,040.00 ft above NGVD. Prior to June 23, 1979, nonrecording gage on downstream side of State Highway 25 bridge. REMARKS.--Estimated daily discharges: Nov. 20 to Mar. 11, and Mar. 18-25. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. Gage-height telemeter at station. AVERAGE DISCHARGE.--10 years, 221 ft<sup>3</sup>/s,8.00 in/yr 160,100 acre-ft/yr. Median of yearly mean discharges,486 ft<sup>3</sup>/s, 6.7 in/yr, 134,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 12,300 ft<sup>3</sup>/s June 30, 1986, gage height, 24.70 ft; minimum daily discharge, 5.5 ft<sup>3</sup>/s, June 13, 14, 1981. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of July 3, 1973 reached a stage of 21.63 ft, from contracted-opening measurement, discharge, 14,600 ft<sup>3</sup>/s. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 1,200 ft3/s and maximum (\*): | Date | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height<br>(ft) | Date | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height<br>(ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Mar. 10 | 1045 | 1,450 | (a) *18.35 | May 29 | 1745 | 1,440 | 14.68 | | May 24 | 2030 | 2,620 | 17.35 | Sept. 8 | 1615 | *3,090 | 18.11 | (a) Ice jam. Minimum discharge, 25 ft3/s May 17, 18. | | | DISCHARG | E, CUBI | C FEET PER | | WATER YEAR | R OCTOBER | 1988 TO | SEPTEMBER | 1989 | | | |-------------|------|----------|---------|------------|------------|------------|-----------|---------|-------------|------|------|--------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 172 | 37 | 54 | 62 | 100 | 54 | 56 | 69 | 143 | 178 | 40 | 41 | | | 117 | 37 | 53 | 62 | 60 | 45 | 57 | 64 | 116 | 157 | 37 | 36 | | 2<br>3<br>4 | 95 | 37 | 50 | 62 | 33 | 47 | 55 | 60 | 265 | 145 | 36 | 33 | | ă. | 81 | 38 | 49 | 64 | 34 | 45 | 56 | 56 | 270 | 126 | 35 | 158 | | 5 | 72 | 41 | 49 | 74 | 35 | 44 | 53 | 55 | 140 | 117 | 48 | 216 | | - | | 7. | 75 | / - | 05 | 77 | 30 | | 140 | / | 40 | 210 | | 6 | 65 | 39 | 51 | 100 | 36 | 38 | 51 | 52 | 118 | 106 | 60 | 94 | | 7 | 63 | 35 | 49 | 150 | 37 | 80 | 50 | 45 | 115 | 97 | 37 | <b>15</b> 5 | | 8 | 60 | 36 | 71 | 110 | <b>3</b> 6 | 130 | 52 | 42 | 649 | 90 | 32 | 1910 | | 9 | 59 | 36 | 68 | 86 | 35 | 400 | 51 | 39 | 267 | 84 | 29 | 1140 | | 10 | 58 | 36 | 66 | 66 | 36 | 940 | 45 | 36 | 163 | 75 | 28 | 570 | | | | | | | | | | | | | | | | 11 | 53 | 36 | 68 | 54 | 37 | 450 | 43 | 34 | 134 | 165 | 26 | 358 | | 12 | 50 | 45 | 70 | 50 | 38 | 192 | 43 | 30 | 473 | 113 | 26 | 251 | | 13 | 48 | 55 | 73 | 44 | 35 | 126 | 42 | 30 | 276 | 89 | 32 | 202 | | 14 | 48 | 45 | 70 | 42 | 36 | 105 | 39 | 30 | 179 | 73 | 46 | 168 | | 15 | 46 | 80 | 67 | 38 | 40 | 91 · | 38 | 27 | 150 | 76 | 70 | 142 | | 16 | 45 | 79 | 66 | 37 | 40 | 83 | 37 | 26 | 132 | 67 | 52 | 122 | | 17 | 44 | 72 | 68 | 37 | 39 | 71 | 39 | 26 | 120 | 76 | 35 | 108 | | 18 | 42 | 71 | 72 | 35 | 37 | 64 | 39 | 28 | 116 | 120 | 31 | 98 | | 19 | 42 | 68 | 76 | 34 | 37 | 60 | 38 | 53 | 104 | 79 | 39 | 90 | | 20 | 42 | 60 | 80 | 33 | 37 | 60 | 35 | 69 | 90 | 60 | 38 | 84 | | 20 | 42 | 00 | 80 | 33 | 37 | 60 | 33 | 09 | 90 | 00 | 30 | 04 | | 21 | 43 | 61 | 82 | 32 | 38 | 52 | 32 | 46 | 84 | 59 | 33 | 79 | | 22 | 43 | 60 | 74 | 34 | 38 | 54 | 32 | 44 | 113 | 56 | 28 | 74 | | 23 | 42 | 60 | 66 | 37 | 36 | 54 | 32 | 32 | <b>2</b> 66 | 57 | 33 | 66 | | 24 | 41 | 58 | 58 | 34 | 36 | 52 | 30 | 1340 | 152 | 60 | 29 | 65 | | 25 | 40 | 58 | 54 | 32 | 37 | 52 | 30 | 1040 | 427 | 52 | 28 | 65 | | | | | | | | | | | | | | | | 26 | 40 | 58 | 56 | 30 | 40 | 56 | 37 | 389 | 700 | 45 | 94 | 62 | | 27 | 41 | 59 | 60 | 35 | 48 | 55 | 73 | 227 | 635 | 43 | 567 | 60 | | 28 | 39 | 58 | 62 | 40 | 64 | 55 | 319 | 169 | 334 | 44 | 109 | 59 | | 29 | 39 | 58 | 62 | 70 | | 54 | 134 | 713 | 248 | 75 | 70 | 58 | | 30 | 39 | 57 | 62 | 120 | | 54 | 81 | 488 | 208 | 78 | 55 | 55 | | 31 | 40 | | 61 | 150 | | 58 | | 195 | | 46 | 46 | | | TOTAL | 1749 | 1570 | 1967 | 1854 | 1155 | 3721 | 1719 | 5554 | 7187 | 2708 | 1869 | <b>6</b> 619 | | MEAN | 56.4 | 52.3 | 63.5 | 59.8 | 41.2 | 120 | 57.3 | 179 | 240 | 87.4 | 60.3 | 221 | | MAX | 172 | 80 | 82 | 150 | 100 | 940 | 319 | 1340 | 700 | 178 | 567 | 1910 | | MIN | 39 | 35 | 49 | 30 | 33 | 38 | 319 | 26 | 84 | 43 | 26 | 33 | | AC-FT | 3470 | 3110 | 3900 | 3680 | 2290 | 7380 | 3410 | 11020 | 14260 | 5370 | 3710 | 13130 | | CFSM | .15 | .14 | .17 | .16 | .11 | .32 | .15 | .48 | .64 | .23 | .16 | .59 | | IN. | | .16 | | .18 | .11 | .32 | .17 | .55 | .71 | .23 | .19 | .66 | | TM. | . 17 | . 10 | .20 | . 10 | . 11 | .37 | .1/ | | ./1 | . 47 | . 13 | . 55 | CAL YR 1988 TOTAL 35770 MEAN 97.7 MAX 1430 MIN 24 AC-FT 70950 CFSM .26 IN. 3.55 WTR YR 1989 TOTAL 37672 MEAN 103 MAX 1910 MIN 26 AC-FT 74720 CFSM .28 IN. 3.74 DES MOII 05483470 LAKE LOCATION.--Lat 41°41'44", long 94°22'53", in SW1/4 NE1 07100007, in gate control building of dam on Middl mi west of Panora, 4.4 mi upstream from Bay Branch DRAINAGE AREA . -- 433 mi<sup>2</sup>. PERIOD OF RECORD, -- May 1979 to current year. GAGE. -- Water-stage recorder. Datum of gage is 1,000.0 REMARKS.--Lake is formed by earthfill dam with 100 ft emergency spillway. Low-flow outlet is 30-inch August, 1970 and began filling April 27, 1971. To top of dam, elevation 1,068 ft. Storage unknown 19,700 acre-ft, surface area, 1,270 acres with unknown with bascule gate open, elevation 1,036 ft is also used for recreation. Gaze-beight telemate. is also used for recreation. Gage-height telemeter EXTREMES FOR PERIOD OF RECORD. -- Maximum gage height, EXTREMES FOR CURRENT YEAR .-- Maximum gage height, 46 | Ana | Elev | V | |-------|------|-------| | 1270 | 1045 | 19700 | | 1600 | 1050 | | | 10110 | 1055 | | plogic Unit vay 44, 1.0 ines River. Rathbursale George Runoff ratio 222:1 440 mi ft earthen ompleted in acres, at al storage, ad storage strial) but у 22, 1986. | GAGE HEIGHT, FEET, WATER Y | | | | | | | | | | | | | |----------------------------|-------|-------|-------|-------|-------|-------|----------------|----------------|---------------|-------|-------|-------| | ME. | | | | | | | | | | | | | | DAY | OCT | NOV | DEC | JAN | FEB | | | | | | JG | SEP | | 1 | 45.98 | 45.16 | 45.20 | 45.17 | 45.78 | | | | | | 26 | | | 2 | 45.84 | 45.15 | 45.20 | 45.16 | 45.62 | | | | | | 22 | | | 3 | 45.70 | 45.16 | 45.23 | 45.15 | 45.50 | | | | | | 21 | | | 2<br>3<br>4 | 45.61 | 45.19 | 45.22 | 45.15 | 45.48 | | | | | | 21 | | | 5 | 45.53 | 45.23 | 45.21 | 45.20 | 45.46 | | | | | | 22 | | | - | 43.30 | 45.20 | 73.21 | 43.20 | 45.40 | | | | | | | | | 6 | 45.48 | 45.17 | 45.22 | 45.31 | 45.44 | | | | | | 22 | | | 7 | 45.45 | 45.15 | 45.22 | 45.49 | 45.40 | | | | | | 22. د | | | 8 | 45.43 | 45.14 | 45.27 | | 45.36 | | | | | | 45.21 | | | 9 | 45.42 | 45.15 | 45.16 | 45.57 | 45.33 | | | | | | 45.19 | | | 10 | 45.43 | 45.15 | 45.14 | 45.52 | 45.31 | | | | | | 45.18 | | | | 15.10 | 45 10 | 45 10 | 45.51 | 45.30 | | | | | 44.97 | 45.16 | | | 11 | 45.40 | 45.13 | 45.12 | | | | | | <b>4</b> 3.23 | 44.82 | 45.15 | | | 12 | 45.34 | 45.20 | 45.11 | 45.48 | 45.29 | | | | 45.20 | 44.82 | 45.13 | | | 13 | 45.31 | 45.21 | 45.12 | 45.46 | 45.30 | 15.15 | 45.00 | 15 20 | 45.20 | 44.86 | 45.12 | | | 14 | 45.31 | 45.21 | 45.12 | 45.46 | 45.29 | 45.46 | 45.29 | 45.30<br>45.30 | 45.20 | 44.90 | 45.10 | | | 15 | 45.31 | 45.41 | | 45.47 | 45.29 | 45.39 | 45.30 | 45.30 | 43.22 | 44.90 | 43.10 | | | 16 | 45.32 | 45.58 | 45.14 | 45.46 | 45.25 | 45.34 | 45.32 | 45.28 | 45.14 | 44.96 | 45.16 | | | 17 | 45.32 | 45.53 | 45.11 | 45.40 | 45.24 | 45.30 | 45.33 | 45.26 | 44.90 | 44.99 | 45.16 | | | 18 | 45.29 | 45.46 | 45.10 | 45.40 | 45.24 | 45.23 | 45.31 | 45.28 | 44.83 | 45.28 | 45.15 | | | 19 | 45.28 | 45.43 | 45.11 | 45.39 | 45.24 | 45.19 | 45.31 | 45.36 | 44.96 | 45.28 | 45.21 | | | 20 | 45.27 | 45.40 | 45.15 | 45.42 | 45.25 | 45.21 | 45.32 | 45.41 | 45.05 | 45,23 | 45.24 | | | | | | | | | | 45.30 | 45.40 | 45.19 | 45.15 | 45.23 | | | 21 | 45.28 | 45.33 | 45.17 | 45.42 | 45.24 | 45.20 | | 45.38 | 45.32 | 45.12 | 45.23 | | | 22 | 45.26 | 45.30 | 45.18 | 45.39 | 45.23 | 45.25 | 45.31 | | 45.37 | 45.10 | 45.24 | | | 23 | 45.30 | 45.30 | 45.20 | 45.40 | 45.21 | 45.31 | 45.32 | 45.36 | 45.35 | 45.10 | 45.26 | | | 24 | 45.24 | 45.28 | 45.23 | 45.40 | 45.19 | 45.36 | 45.34 | 45.74 | | | 45.28 | | | 25 | 45.23 | 45.29 | 45.29 | 45.41 | 45.19 | 45.38 | 45.35 | 46.24 | 45.18 | 45.09 | 45.20 | | | 26 | 45.19 | 45.29 | 45.17 | 45.72 | 45.21 | 45.41 | 45.31 | 45.39 | 45.07 | 45.05 | 45.34 | | | 27 | 45.20 | 45.30 | 45.20 | 45.43 | 45.25 | 45.45 | 45.43 | 45.30 | 44.94 | 45.04 | 45.58 | | | 28 | 45.17 | 45.43 | 45.36 | 45.38 | 45.31 | 45.46 | 45.53 | 45.24 | 45.07 | 45.04 | 45.41 | 45.41 | | 29 | 45.17 | 45.19 | 45.24 | 45.47 | | 45.48 | 45.79 | 45.39 | 45.33 | 45.11 | 45.52 | 45.39 | | 30 | 45.16 | 45.20 | 45.20 | 45.56 | | 45.47 | 45.75 | 45.71 | 45.58 | 45.17 | 45.45 | 45.35 | | 31 | 45.16 | 13.20 | 45.18 | 45.79 | | 45.45 | | 45.43 | | 45.24 | | | | 14 TO 4 17 | 45.07 | | | | 15.00 | 15.05 | 45.30 | 45.43 | 45.27 | | | | | MEAN | 45.37 | 45.27 | | | 45.33 | 45.35 | 45.39<br>45.79 | 45.43 | 45.64 | | | | | MAX | 45.98 | 45.58 | | | 45.78 | 45.61 | | | | | | | | MIN | 45.16 | 45.13 | | | 45.19 | 45.19 | 45.29 | 45.24 | 44.83 | | | | | | | | | | | | | | | | | | ### 05483600 MIDDLE RACCOON RIVER AT PANORA, IA LOCATION.--Lat 41°41'14", long 94°22'15", in NE1/4 NW1/4 sec.5, T.79 N., R.30 W., Guthrie County, Hydrologic Unit 07100007, on left bank 15 ft downstream from bridge on county highway, 0.2 mi southwest of Panora, 1.5 mi upstream from Andy's Branch, 1.6 mi downstream from Lake Panorama, 18.2 mi upstream from mouth, and at mile 267.2 upstream from mouth of Des Moines River. DRAINAGE AREA. -- 440 mi2. PERIOD OF RECORD. -- June 1958 to current year. REVISED RECORDS. -- WDR IOWA 1974: 1973 (P). GAGE. -- Water-stage recorder and concrete control. Datum of gage is 991.20 ft above NGVD. REMARKS.--No estimated daily discharges. Records good. City of Panora diverts approximately 100 acre-ft/yr upstream of station. Flow regulated by dam on Lake Panorama since August 1970. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. AVERAGE DISCHARGE.--31 years, 220 $ft^3/s$ , 6.79 in/yr 159,400 acre-ft/yr; median of yearly mean discharges, 170 $ft^3/s$ , 5.2 in/yr, 123,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 15,300 ft<sup>3</sup>/s June 30, 1986, gage height, 15.50 ft; no flow June 9, 10, 1977, result of gate operation at Lake Panorama; minimum daily discharge, excluding regulation at Lake Panorama, 3.0 ft<sup>3</sup>/s July 9, 14, 22-23, 1977. EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood of June 10, 1953, reached a stage of 14.3 ft, from floodmark, discharge, about 14,000 ft<sup>3</sup>/s. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 2,500 ft3/s and maximum (\*); | | | Discharge | Gage height | | | Discharge | Gage height | |---------|------|----------------------|-------------|----------|-----------------------|----------------------|-------------| | Date | Time | (ft <sup>3</sup> /s) | (ft) | Date | Time | (ft <sup>3</sup> /s) | (ft) | | Sept. 8 | 1400 | *3,300 | *8.40 | No other | pe <b>ak gre</b> ate: | r than base disc | harge. | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 Minimum daily discharge, 30 ft3/s July 28. | | | | , | | M | EAN VALUE | S | | - | | | | |--------|------|------|------|------------|------|-----------|------|-------------|-------|------|------|------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 199 | 43 | 61 | 50 | 162 | 64 | 59 | 119 | 99 | 132 | 53 | 3 <b>6</b> | | 2 | 171 | 44 | 61 | 50 | 121 | 64 | 60 | 99 | 73 | 212 | 51 | 35 | | 3 | 135 | 45 | 67 | 50 | 90 | 62 | 60 | 86 | 235 | 124 | 49 | 34 | | 3<br>4 | 112 | 48 | 65 | 41 | 76 | 62 | 62 | 76 | 246 | 109 | 50 | 124 | | 5 | 94 | 58 | 63 | 31 | 67 | 57 | 57 | 62 | 213 | 87 | 49 | 190 | | 6 | 78 | 55 | 63 | 36 | 75 | 52 | 56 | 58 | 172 | 104 | 46 | 65 | | 7 | 74 | 47 | 65 | 56 | 71 | 51 | 54 | 52 | 113 | 88 | 47 | 144 | | 8 | 70 | 46 | 59 | 77 | 62 | 61 | 67 | 51 | 610 | 88 | 45 | 1730 | | 9 | 68 | 46 | 54 | 72 | 57 | 133 | 61 | 52 | 361 | 100 | 43 | 1400 | | 10 | 66 | 50 | 51 | 68 | 54 | 1250 | 55 | 48 | 65 | 112 | 41 | 443 | | 11 | 61 | 48 | 50 | 66 | 51 | 761 | 52 | 45 | 126 | 221 | 39 | 346 | | 12 | 56 | 54 | 49 | 6 <b>2</b> | 49 | 193 | 51 | 44 | 398 | 236 | 37 | 408 | | 13 | 53 | 57 | 49 | 58 | 50 | 141 | 49 | 44 | 403 | 37 | 37 | 262 | | 14 | 52 | 58 | 52 | 56 | 49 | 133 | 49 | 42 | 141 | 40 | 35 | 36 | | 15 | 52 | 86 | 53 | 53 | 49 | 115 | 43 | 41 | 137 | 41 | 37 | 44 | | 16 | 52 | 159 | 52 | 52 | 48 | 102 | 39 | 42 | 104 | 42 | 42 | 64 | | 17 | 53 | 131 | 50 | 52 | 46 | 93 | 41 | 38 | 219 | 34 | 42 | 80 | | 18 | 49 | 115 | 49 | 50 | 46 | 77 | 41 | 39 | 225 | 103 | 40 | 89 | | 19 | 48 | 109 | 49 | 50 | 46 | 69 | 42 | 45 | 32 | 122 | 46 | 93 | | 20 | 49 | 101 | 52 | 50 | 47 | 70 | 41 | 54 | 31 | 95 | 50 | 93 | | 21 | 52 | 89 | 53 | 50 | 47 | 52 | 41 | 49 | 37 | 90 | 47 | 91 | | 22 | 48 | 84 | 58 | 50 | 47 | 36 | 40 | 43 | 64 | 64 | 45 | 94 | | 23 | 53 | 82 | 60 | 50 | 45 | 39 | 39 | 41 | 154 | 58 | 47 | 80 | | 24 | 46 | 81 | 65 | 52 | 44 | 45 | 40 | 538 | 230 | 50 | 39 | 71 | | 25 | 47 | 82 | 60 | 53 | 43 | 48 | 42 | 1630 | 415 | 85 | 31 | 70 | | 26 | 45 | 81 | 57 | 54 | 44 | 49 | 45 | 640 | 750 | 42 | 53 | 66 | | 27 | 48 | 85 | 58 | 52 | 49 | 54 | 67 | <b>23</b> 9 | 774 | 31 | 570 | 65 | | 28 | 44 | 72 | 55 | 56 | 58 | 59 | 128 | 235 | 273 | 30 | 136 | 77 | | 29 | 43 | 64 | 54 | 77 | | 60 | 171 | 240 | 95 | 36 | 55 | 93 | | 30 | 43 | 62 | 53 | 89 | | 66 | 140 | 742 | 95 | 43 | 73 | 85 | | 31 | 44 | | 51 | 151 | | 61 | | 293 | | 52 | 35 | | | TOTAL | 2105 | 2182 | 1738 | 1814 | 1693 | 4179 | 1792 | 5827 | 6890 | 2708 | 2010 | 6508 | | MEAN | 67.9 | 72.7 | 56.1 | 58.5 | 60.5 | 135 | 59.7 | 188 | 230 | 87.4 | 64.8 | 217 | | MAX | 199 | 159 | 67 | 151 | 162 | 1250 | 171 | 1630 | 774 | 236 | 570 | 1730 | | MIN | 43 | 43 | 49 | 31 | 43 | 36 | 39 | 38 | 31 | 30 | 31 | 34 | | AC-FT | 4180 | 4330 | 3450 | 3600 | 3360 | 8290 | 3550 | 11560 | 13670 | 5370 | 3990 | 12910 | | CFSM | . 15 | .17 | .13 | . 13 | . 14 | .31 | .14 | . 43 | . 52 | . 20 | . 15 | . 49 | | IN. | .18 | .18 | . 15 | . 15 | .14 | . 35 | .15 | .49 | . 58 | .23 | . 17 | . 55 | CAL YR 1988 TOTAL 37363 MEAN 102 MAX 1150 MIN 27 AC-FT 74110 CFSM .23 IN. 3.16 WTR YR 1989 TOTAL 39446 MEAN 108 MAX 1730 MIN 30 AC-FT 78240 CFSM .25 IN. 3.33 ### 05484000 SOUTH RACCOON RIVER AT REDFIELD. IA LOCATION.--Lat 41°35'22", long 94°09'33", in NE1/4 NE1/4 sec. 2, T.78 N., R.28 W., Dallas County, Hydrologic Unit 07100007, on right bank 20 ft upstream from bridge on county highway at Redfield, 3.2 mi downstream from bridge on U.S. Highway 6, 3.4 mi downstream from Middle Raccoon River, 14.0 mi upstream from mouth, and at mile 245.6 upstream from mouth of Des Moines River. DRAINAGE AREA .-- 994 mi 2 PERIOD OF RECORD. -- March 1940 to current year. REVISED RECORDS. -- WSP 1438: Drainage area. WSP 1508: 1940. GAGE.--Water-stage recorder. Datum of gage is 876.43 ft above NGVD. Prior to June 12, 1946, nonrecording gage, June 12, 1946 to Sept. 30, 1966, water-stage recorder at site 20 ft upstream at same datum. Sept. 30, 1966, to Sept. 30, 1986 water-stage recorder at site 1.5 mi upstream at datum 20.0 ft higher. REMARKS.--Estimated daily discharges: Nov. 19 to Mar. 12, Mar. 18, 19, and 21. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain-gage and data collection platform at station. AVERAGE DISCHARGE. -49 years, 463 ft $^3$ /s, 6.32 in/yr, 335,400 acre-ft/yr; median of yearly mean discharges, 400 ft $^3$ /s, 5.5 in/yr, 290,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 35,000 ft<sup>3</sup>/s July 2, 1958, gage height, 29.04 ft, from flood-mark; minimum daily discharge, 17 ft<sup>3</sup>/s Aug. 4, 1977 at site 1.5 mi upstream from present site. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 5,000 ft3/s and maximum (\*): Discharge Gage height Date Time $(ft^3/s)$ (ft) Date Time $(ft^3/s)$ (ft) Sept. 8 2115 \*9,380 \*13.33 No other peak greater than base discharge. Minimum discharge, 70.0 ft3/s June 21. | | | DISCHARGE | , CUBIC | FEET PER | | WATER YEAR<br>EAN VALUES | OCTOBER | 1988 TO | SEPTEMBER | 1989 | | | |-----------------------------------------------------|------------------------------------------------|---------------------------------|-----------------------------------------|------------------------------------------------|-----------------------------------------|-------------------------------------------------|------------------------------------------------|--------------------------------------------------|--------------------------------------------------|------------------------------------------------|------------------------------------------------|---------------------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | 302<br>268<br>229<br>203<br>177 | 92<br>89<br>89<br>95<br>107 | 115<br>115<br>110<br>110<br>108 | 115<br>115<br>112<br>110<br>105 | 200<br>140<br>80<br>150<br>130 | 105<br>100<br>105<br>105<br>100 | 125<br>122<br>119<br>118<br>118 | 214<br>186<br>163<br>147<br>125 | 252<br>144<br>261<br>309<br>287 | 185<br>290<br>210<br>201<br>145 | 108<br>101<br>95<br>99<br>93 | 100<br>82<br>81<br>129<br>379 | | 6<br>7<br>8<br>9<br>10 | 157<br>148<br>142<br>131<br>131 | 111<br>102<br>91<br>89<br>89 | 102<br>100<br>95<br>90<br>110 | 110<br>140<br>135<br>130<br>130 | 115<br>100<br>90<br>84<br>82 | 100<br>98<br>130<br>350<br>700 | 111<br>109<br>117<br>119<br>107 | 110<br>104<br>99<br>99<br>96 | 238<br>201<br>338<br>649<br>173 | 174<br>139<br>154<br>177<br>133 | 90<br>88<br>89<br>81<br>73 | 211<br>230<br>3450<br>3880<br>1430 | | 11<br>12<br>13<br>14<br>15 | 120<br>107<br>99<br>94<br>95 | 89<br>101<br>123<br>125<br>138 | 200<br>190<br>180<br>160<br>150 | 130<br>120<br>120<br>115<br>115 | 82<br>84<br>84<br>86<br>88 | 560<br>440<br>329<br>279<br>245 | 99<br>95<br>94<br>90<br>89 | 89<br>87<br>86<br>86<br>84 | 132<br>252<br>665<br>222<br>205 | 183<br>419<br>149<br>105<br>121 | 76<br>77<br>75<br>75<br>81 | 655<br>654<br>604<br>286<br>215 | | 16<br>17<br>18<br>19<br>20 | 100<br>97<br>96<br>94 | 473<br>272<br>214<br>170<br>150 | 150<br>155<br>160<br>165<br>160 | 110<br>105<br>105<br>100<br>100 | 90<br>91<br>94<br>96<br>96 | 214<br>194<br>145<br>160<br>156 | 82<br>83<br>80<br>80<br>85 | 80<br>77<br>91<br>112<br>122 | 130<br>201<br>295<br>143<br>74 | 113<br>100<br>171<br>293<br>202 | 92<br>83<br>75<br>89<br>118 | 206<br>214<br>223<br>218<br>203 | | 21<br>22<br>23<br>24<br>25 | 98<br>100<br>95<br>94<br>94 | 140<br>138<br>135<br>135<br>130 | 160<br>155<br>150<br>135<br>120 | 98<br>98<br>105<br>98<br>96 | 98<br>98<br>94<br>92<br>96 | 150<br>117<br>111<br>113<br>115 | 94<br>98<br>101<br>105<br>109 | 114<br>97<br>94<br>132<br>1740 | 70<br>99<br>171<br>325<br>528 | 151<br>125<br>125<br>105<br>138 | 99<br>96<br>103<br>117<br>100 | 195<br>189<br>187<br>167<br>158 | | 26<br>27<br>28<br>29<br>30<br>31 | 91<br>89<br>92<br>89<br>87<br>88 | 130<br>130<br>115<br>108<br>112 | 110<br>115<br>105<br>120<br>115<br>115 | 92<br>90<br>160<br>350<br>420<br>300 | 98<br>105<br>110<br> | 117<br>126<br>134<br>134<br>130<br>130 | 113<br>230<br>325<br>356<br>243 | 954<br>319<br>356<br>523<br>1020<br>454 | 1020<br>1140<br>575<br>282<br>150 | 106<br>90<br>79<br>90<br>133<br>125 | 114<br>613<br>510<br>191<br>170<br>168 | 156<br>151<br>152<br>177<br>180 | | TOTAL<br>MEAN<br>MAX<br>MIN<br>AC-FT<br>CFSM<br>IN. | 3898<br>126<br>302<br>87<br>7730<br>.13<br>.15 | 136<br>473<br>89 | 4125<br>133<br>200<br>90<br>8180<br>.13 | 4229<br>136<br>420<br>90<br>8390<br>.14<br>.16 | 2853<br>102<br>200<br>80<br>5660<br>.10 | 5992<br>193<br>700<br>98<br>11890<br>.20<br>.23 | 3816<br>127<br>356<br>80<br>7570<br>.13<br>.14 | 8060<br>260<br>1740<br>77<br>15990<br>.26<br>.30 | 9531<br>318<br>1140<br>70<br>18900<br>.32<br>.36 | 4931<br>159<br>419<br>79<br>9780<br>.16<br>.19 | 4039<br>130<br>613<br>73<br>8010<br>.13<br>.15 | 15162<br>505<br>3880<br>81<br>30070<br>.51<br>.57 | CAL YR 1988 TOTAL 81409 MEAN 222 MAX 2000 MIN 68 AC-FT 161500 CFSM .23 IN. 3.07 WTR YR 1989 TOTAL 70718 MEAN 194 MAX 3880 MIN 70 AC-FT 140300 CFSM .20 IN. 2.66 ### 05484500 RACCOON RIVER AT VAN METER, IA LOCATION.--Lat 41°32'02", long 93°56'59", in SW1/4 SW1/4 sec.22, T.78 N., R.27 W., Dallas County, Hydrologic Unit 07100007, on right bank 10 ft downstream from bridge on county highway R16, 0.3 mi northeast of Van Meter, 0.7 mi upstream from small left bank tributary, 1.1 mi downstream from confluence of North and South Raccoon Rivers, 29.0 mi upstream from mouth, and at mile 230.5 upstream from mouth of Des Moines River. DRAINAGE AREA. -- 3,441 mi2. ### WATER-DISCHARGE RECORDS PERIOD OF RECORD. --April 1915 to current year. Prior to October 1934, monthly discharge only, published in WSP 1308. REVISED RECORDS.--WSP 1308: 1927 (M), WSP 1438: Drainage area, WSP 1508: 1915 (M), 1925 (M), 1926, 1933 (M), 1939 (M), 1947 (M), 1949 (M). GAGE.--Water-stage recorder. Datum of gage is 841.16 ft above NGVD. See WSP 1308 for history of changes prior to Aug. 8, 1934. REMARKS.--Estimated daily discharges: Dec. 9 to Mar. 15, and Sept. 9-11. Records good except those for estimated daily discharges, which are poor. U.S. Army Corps of Engineers rain-gage and data collection platform and U.S. Weather Service Limited Automatic Remote Collector telemeter at station. AVERAGE DISCHARGE.--74 years, 1,410 $ft^3/s$ , 5.56 in/yr, 1,022,000 acre-ft/yr; median of yearly mean discharges, 1,120 $ft^3/s$ , 4.4 in/yr, 811,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 41,200 ft<sup>3</sup>/s June 13, 1947, gage height, 21.37 ft, from flood-mark; maximum gage height, 22.69 ft July 1, 1986; minimum daily discharge, 10 ft<sup>3</sup>/s Jan. 22-31, 1940. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 8,500 ft3/s and maximum (\*): | Date<br>Mar. 10 | Time | (f | charge<br>t <sup>3</sup> /s)<br>e Jam | _ | e height<br>(ft)<br>1.00 | | ate<br>Sept. 9 | Time<br>unkn | | ischarge<br>(ft <sup>3</sup> /s)<br>*7,640 | ( | height<br>(ft)<br>(9.98 | |-----------------|-----------------------|--------------------|---------------------------------------|----------|--------------------------|-------------------------|----------------|--------------|----------|--------------------------------------------|-----|-------------------------| | | om flood<br>um discha | mark<br>rge, 105 f | t <sup>3</sup> /s Se <sub>l</sub> | pt. 3. | | | | | | | | | | | | DISCHARG | E, CUBIC | FEET PER | SECOND, WEA | WATER YEAR<br>AN VALUES | OCTOBER | 1988 TO | SEPTEMB! | ER 1989 | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 504 | 242 | 447 | 320 | 480 | 245 | 498 | 532 | 1170 | 1100 | 301 | 146 | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-------|-------|-------|-------|-------|-------|-------------|-------------|-------|---------------|-------|-------|-------| | 1 | 504 | 242 | 447 | 320 | 480 | 245 | 498 | 532 | 1170 | 1100 | 301 | 146 | | 2 | 672 | 245 | 434 | 320 | 360 | 280 | 469 | 512 | 876 | 964 | 257 | 122 | | 3 | 758 | 242 | 502 | 315 | 450 | 320 | 452 | 488 | 842 | 932 | 246 | 116 | | | | | | | | | | | 982 | | | | | 4 | 752 | 256 | 480 | 310 | 520 | 290 | 433 | 491 | | 731 | 235 | 168 | | 5 | 644 | 255 | 492 | 300 | 560 | 270 | 416 | 471 | 1250 | 631 | 189 | 371 | | 6 | 549 | 257 | 480 | 290 | 520 | 300 | 400 | 430 | 1340 | 539 | 169 | 455 | | 7 | 486 | 252 | 443 | 320 | 470 | 280 | 396 | 413 | 1090 | 506 | 136 | 336 | | 8 | 445 | 246 | 404 | 350 | 440 | 260 | 400 | 409 | 949 | 452 | 140 | 1660 | | 9 | 420 | 247 | 270 | 480 | 400 | 800 | 401 | 398 | 1500 | 422 | 133 | 4980 | | 10 | 398 | 250 | 220 | 600 | 370 | 1650 | 390 | 374 | 1510 | 404 | 124 | 2560 | | 10 | 330 | 230 | 220 | 600 | 370 | 1630 | 390 | 3/4 | 1310 | 404 | 124 | 2300 | | 11 | 375 | 244 | 245 | 520 | 320 | 1950 | 376 | 353 | 1390 | 397 | 112 | 1680 | | 12 | 349 | 259 | 320 | 460 | 295 | 1800 | 38 <b>5</b> | 339 | 1130 | 666 | 124 | 1090 | | 13 | 337 | 288 | 360 | 420 | 280 | 2100 | 382 | 331 | 1480 | 505 | 136 | 976 | | 14 | 326 | 286 | 320 | 380 | 245 | 1800 | 380 | 322 | 1010 | 348 | 116 | 686 | | 15 | 319 | 305 | 255 | 355 | 250 | 1500 | 370 | 314 | 801 | 340 | 120 | 461 | | 16 | 305 | 678 | 275 | 350 | 240 | 1180 | 355 | 311 | 714 | 321 | 128 | 404 | | 17 | 293 | 700 | 280 | 345 | 240 | 768 | 342 | 306 | 625 | 291 | 131 | 382 | | 18 | 280 | 550 | 290 | 340 | 235 | 592 | 337 | 326 | 739 | 454 | 121 | 374 | | | | | | | | | | | | | | | | 19 | 277 | 508 | 285 | 340 | 235 | <b>5</b> 97 | 324 | 349 | 685 | 695 | 124 | 359 | | 20 | 281 | 494 | 290 | 335 | 240 | 632 | 309 | 345 | 460 | 512 | 177 | 339 | | 21 | 293 | 466 | 290 | 335 | 230 | 576 | 299 | 363 | 407 | 391 | 167 | 317 | | 22 | 287 | 479 | 300 | 330 | 240 | 587 | 265 | 381 | 376 | 354 | 133 | 295 | | 23 | 279 | 528 | 300 | 320 | 240 | 522 | 276 | 377 | 438 | 346 | 159 | 277 | | 24 | 274 | 527 | 325 | 305 | 235 | 502 | 280 | 445 | 633 | 346 | 170 | 251 | | 25 | 263 | 521 | 315 | 295 | 250 | 495 | 281 | 1960 | 977 | 312 | 148 | 241 | | 23 | 203 | 321 | 313 | 293 | 230 | 493 | 201 | 1900 | 9// | 312 | 140 | 241 | | 26 | 261 | 578 | 310 | 280 | 260 | 498 | 278 | 3530 | 1610 | 310 | 154 | 232 | | 27 | 255 | 556 | 310 | 280 | 270 | 520 | 345 | 2560 | 1960 | 256 | 414 | 221 | | 28 | 252 | 481 | 305 | 270 | 260 | 562 | 588 | 2070 | 1990 | 218 | 942 | 215 | | 29 | 247 | 496 | 335 | 360 | 200 | 578 | 691 | 1830 | 1800 | 218 | 376 | 225 | | | | | | | | | | | | | | | | 30 | 238 | 496 | 345 | 450 | | 572 | 555 | 2180 | 1410 | 264 | 207 | 242 | | 31 | 240 | | 320 | 600 | | 542 | | 1610 | | 314 | 206 | | | TOTAL | 11659 | 11932 | 10547 | 11275 | 9135 | 23568 | 11673 | 25120 | 32144 | 14539 | 6295 | 20181 | | MEAN | 376 | 398 | 340 | 364 | 326 | 760 | 389 | 810 | 1071 | 469 | 203 | 673 | | MAX | 758 | 700 | 502 | 600 | 560 | 2100 | 691 | 3530 | 1990 | 1100 | 942 | 4980 | | MIN | 238 | 242 | 220 | 270 | 230 | 245 | 265 | 306 | 376 | 218 | 112 | 116 | | AC-FT | | 23670 | | | | | | 49830 | <b>6</b> 3760 | 28840 | 12490 | 40030 | | | 23130 | | 20920 | 22360 | 18120 | 46750 | 23150 | | | | | | | CFSM | .11 | . 12 | . 10 | .11 | .09 | . 22 | . 11 | . 24 | .31 | . 14 | .06 | .20 | | IN. | . 13 | . 13 | .11 | . 12 | .10 | . 25 | . 13 | .27 | . 35 | . 16 | .07 | . 22 | CAL YR 1988 TOTAL 244215 MEAN 667 MAX 3040 MIN 114 AC-FT 484400 CFSM .19 IN. 2.64 WTR YR 1989 TOTAL 188068 MEAN 515 MAX 4980 MIN 112 AC-FT 373000 CFSM .15 IN. 2.03 ## 05484500 RACCOON RIVER AT VAN METER, IA--Continued ### WATER-QUALITY RECORDS PERIOD OF RECORD: Chemical analyses: Partial record station September 1968 to September 1973, February 1974 to September 1979 and October 1986 to current year. Water temperatures: Partial record station September 1968 to September 1973 and February 1974 to September 1979. Biological analyses: February 1974 to September 1979. WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | WALLA QUALITY DATA, WALLA TEAR OCTOBER 1906 TO SEFTEMBER 1909 | | | | | | | | | | | | | |---------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------| | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | PH<br>(STAND-<br>ARD<br>UNITS)<br>(00400) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | TEMPER-<br>ATURE<br>AIR<br>(DEG C)<br>(00020) | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | OXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION)<br>(00301) | BARO-<br>METRIC<br>PRES-<br>SURE<br>(MM<br>OF<br>HG)<br>(00025) | COLI-<br>FORM,<br>FECAL,<br>0.7<br>UM-MF<br>(COLS./<br>100 ML)<br>(31625) | STREP-<br>TOCOCCI<br>FECAL,<br>KF AGAR<br>(COLS.<br>PER<br>100 ML)<br>(31673) | | OCT<br>20<br>DEC | 1245 | 279 | 550 | 8.70 | 10.0 | 7.0 | 6.4 | 11.5 | 105 | 738 | 550 | 140 | | 14 | 1315 | 323 | 775 | 8.30 | 0.0 | 3.0 | 3.3 | 13.9 | 98 | 740 | K16000 | 420 | | MAR<br>21 | 1600 | 516 | 512 | 8.10 | 4.0 | 3.0 | 3.9 | 12.8 | 99 | 749 | 170 | 110 | | MAY<br>03 | 1315 | 486 | 485 | 9.00 | 16.5 | 15.0 | | 11.8 | 124 | 746 | <b>5</b> 30 | 480 | | JUL<br>06 | 1200 | 519 | 435 | 9.10 | 29.0 | 29.0 | 170 | 9.2 | 123 | 744 | 140 | 140 | | AUG<br>25 | 1300 | 149 | 456 | 8.60 | 24.0 | 22.5 | 19 | 10.4 | 128 | 740 | 340 | 80 | | DATE | HARD-<br>NESS<br>NONCARB<br>WH WAT<br>TOT FLD<br>MG/L AS<br>CACO3<br>(00902) | HARD-<br>NESS<br>TOTAL<br>(MG/L<br>AS<br>CACO3)<br>(00900) | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915) | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925) | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | SODIUM<br>PERCENT<br>(00932) | SODIUM<br>AD-<br>SORP-<br>TION<br>RATIO | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | ALKA-<br>LINITY<br>WAT DIS<br>TOT IT<br>FIELD<br>MG/L AS<br>CACO3<br>(39086) | CAR-<br>BONATE<br>WATER<br>DIS IT<br>FIELD<br>MG/L AS<br>CO3<br>(00452) | BICAR-<br>BONATE<br>WATER<br>DIS IT<br>FIELD<br>MG/L AS<br>HCO3<br>(00453) | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)<br>(00945) | | ОСТ<br>20 | 76 | 320 | 74 | 32 | 21 | 12 | 0.5 | 4.8 | 240 | 18 | 256 | 61 | | DEC 14 | 80 | 370 | 92 | 35 | 22 | 11 | 0.5 | 3.6 | 296 | 0 | 361 | 63 | | MAR<br>21 | 57 | 250 | 67 | 21 | 12 | 9 | 0.3 | 5.5 | 196 | 0 | 239 | 43 | | MAY<br>03 | 250 | 250 | 67 | 21 | 12 | 9 | 0.3 | 5.5 | 158 | 15 | 163 | 43 | | JUL<br>06 | 66 | 200 | 38 | 26 | 13 | 12 | 0.4 | 3.1 | 124 | 13 | 124 | 44 | | AUG<br>25 | 40 | 220 | 52 | 22 | 16 | 13 | 0.5 | 5.0 | | | | 41 | | | | | | | | • | | | | | | | | DATE | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)<br>(00950) | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2)<br>(00955) | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L)<br>(70300) | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L)<br>(70301) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>AC-FT)<br>(70303) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>DAY)<br>(70302) | NITRO-<br>GEN,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00605) | NITRO-<br>GEN,<br>NO2+NO3<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00631) | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00613) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,<br>AMMONIA<br>TOTAL<br>(MG/L<br>AS N)<br>(00610) | | OCT 20 | 27 | 0.40 | 13 | 408 | 397 | 0.55 | 307 | 0.66 | 4.20 | <0.010 | 0.070 | 0.040 | | DEC | 34 | | | | | | | | 6.30 | 0.040 | 0.120 | 0.110 | | 14<br>MAR | | 0.40 | 14 | 462 | 469 | 0.63 | 400 | 0.69 | | | | 0.580 | | 21<br>MAY | 18 | 0.30 | 15 | 320 | 316 | 0.44 | 446 | 0.62 | 3.20 | 0.040 | 0.630 | | | 03 | 18 | 0.30 | 15 | 320 | 198 | 0.44 | 420 | 0.62 | 3.20 | 0.041 | 0.630 | 0.580 | | 06 | 32 | 0.40 | 14 | 265 | 272 | 0.36 | 371 | 2.6 | 4.60 | 0.080 | 0.040 | 0.040 | | 25 | 21 | 0.30 | 8.2 | 280 | 278 | 0.38 | 113 | 0.49 | 0.810 | 0.010 | 0.040 | 0.010 | K Results based on colony count outside ideal range. ## 05484500 RACCOON RIVER AT VAN METER, IA--Continued ## WATER-QUALITY RECORDS ## WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO 1989 | DATE | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | PHOP<br>PHOP<br>ORT<br>DIS<br>SOLV<br>(MG/<br>AS E | COUS<br>CHO, 1<br>CED<br>L<br>CL | PHOS<br>PHORO<br>DIS<br>SOLV<br>(MG/<br>AS E | DUS<br>S- F<br>VED<br>VL<br>P) | PHOS<br>PHORO<br>TOTA<br>(MG/<br>AS P | US<br>L<br>L<br>') | SED<br>MEN<br>SUS<br>PEN<br>(MG<br>(801 | T,<br>-<br>DED<br>/L) | PEI<br>(T/I | NT,<br>IS- | SI<br>D<br>Z F<br>T | ED.<br>USP.<br>EVE<br>IAM.<br>INER<br>HAN<br>2 MM<br>331) | SO:<br>(U<br>AS | ENIC<br>IS-<br>LVED<br>G/L<br>AS)<br>000) | (UC | M,<br>S-<br>VED<br>J/L<br>AL) | BARI<br>DIS<br>SOLV<br>(UC<br>AS<br>(010 | S-<br>/ED<br>S/L<br>BA) | LIU | VED<br>/L<br>BE) | CADM<br>DI<br>SOL<br>(UG<br>AS<br>(010 | S-<br>VED<br>(/L<br>CD) | |-----------|--------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------|----------------------------------------------|----------------------------------------------------|---------------------------------------|------------------------------------------------|-----------------------------------------|-------------------------------------|------------------------|-----------------------------------------------|------------------------|-----------------------------------------------------------|--------------------------------------|--------------------------------------------------------|------------------------------|-------------------------------------|------------------------------------------|-----------------------------------------------------------|-----------------------------|-------------------------------------|----------------------------------------|-------------------------| | OCT 20 | 0.70 | 0. | 080 | 0.1 | 110 | 0.1 | 40 | | 14 | 1: | 1 | | 100 | | 3 | | <10 | | 110 | < | 0.5 | | <1 | | DEC 14 | 0.80 | | 150 | 0.1 | | 0.1 | | | 43 | 3 | _ | | 44 | | | | | | | | | | | | MAR<br>21 | 1.2 | | 230 | 0.2 | | 0.1 | | | 76 | 100 | - | | 96 | | 2 | | 20 | | 110 | < | 0.5 | | <1 | | MAY<br>03 | 1.2 | 0. | 230 | 0.2 | | | | | 197 | 259 | | | 98 | | 2 | | 20 | | 110 | < | 0.5 | | <1 | | JUL<br>06 | 2.6 | | 010 | 0.0 | | 0.0 | 70 | | 641 | 898 | | | 100 | | | | | | | | | | | | AUG<br>25 | 0.50 | | 050 | 0.0 | | 0.1 | | | 53 | 2: | | | 99 | | 3 | | 20 | | 110 | < | 0.5 | | <1 | | | CHR | .0- | | | | | | | | | | | MANG | GA- | | | MOLY | (B- | | | SELI | <b>3</b> - | | | DAT | MIU<br>DIS<br>SOL | M,<br>VED<br>/L<br>CR) | COBAL:<br>DIS-<br>SOLVEI<br>(UG/I<br>AS CO | )<br>L<br>D) | OPPER<br>DIS-<br>SOLVE<br>(UG/I<br>AS CU<br>(01040 | i) | IRON<br>DIS<br>SOLVI<br>(UG/I<br>AS FI<br>0104 | ED<br>L<br>E) | LEAD<br>DIS<br>SOLV<br>(UG/<br>AS I | S-<br>/ED<br>/L<br>?B) | LITHI<br>DIS<br>SOLV<br>(UG/<br>AS I<br>(0113 | S-<br>VED<br>/L<br>LI) | NES<br>DI<br>SOL<br>(UG<br>AS I | E,<br>S-<br>VED<br>/L<br>MIN) | MERCU<br>DIS<br>SOLV<br>(UG,<br>AS I | S-<br>/ED<br>'L<br>IG) | DENU<br>DIS<br>SOLV<br>(UG/<br>AS N | IM,<br>S-<br>/ED<br>/L<br>/O) | NICKEI<br>DIS-<br>SOLVI<br>(UG/I<br>AS NI<br>(0106: | ED<br>L | NIUN<br>DIS<br>SOLV<br>(UG,<br>AS S | /I,<br>S-<br>/ED<br>/L<br>SE) | ٠ | | OCT 20 | | <1 | | <3 | 1 | 15 | | 10 | | <5 | | 22 | | 12 | -1 | ).1 | | <10 | | 3 | | 2 | | | DEC 14 | | | | | | | | | | | | | | | -( | | | | | | | | | | MAR 21 | | <1 | | <3 | | 3 | | 14 | | <5 | | 13 | | 19 | <1 | ).1 | | <10 | | 2 | | 2 | | | MAY<br>03 | | <1 | | <3 | | 3 | | 14 | | | | | | | - | | | | | | | | | | JUL 06 | | | | | _ | | | | | | | | | | | | | | | | | | | | AUG<br>25 | | 2 | | <3 | | 8 | | 7 | | <1 | | 14 | | 12 | ( | .2 | | <10 | | 4 | | 1 | | | DAT | SILV<br>DI<br>SOL<br>E (UG<br>AS | S-<br>VED<br>/L<br>AG) | STROI<br>TIU<br>DIS<br>SOLVI<br>(UG/)<br>AS SI | M,<br>-<br>ED<br>L<br>R) | VANA-<br>DIUM,<br>DIS-<br>SOLVE<br>(UG/I<br>AS V) | ED | ZINC<br>DIS<br>SOLV<br>(UG/)<br>AS Z | ED<br>L<br>N) | ATRA<br>ZINI<br>TOTA<br>(UG/ | E,<br>AL<br>/L) | CYAN-<br>AZINI<br>TOTAI<br>(UG/I | E<br>L<br>L | rec | IN<br>LE<br>ER<br>L)<br>tici<br>over | ALA<br>CHLO<br>TOTA<br>RECOV<br>(UGA<br>de con<br>able | A-<br>OR<br>AL<br>/ER<br>/L) | | OR<br>LE<br>ER<br>L)<br>on er | TRI<br>FLUR<br>LIN<br>TOTAI<br>RECOVI<br>(UG/)<br>(presso | A-<br>L<br>ER<br>L)<br>ed a | | L)<br>cal | | | OCT 20 | < | 1.0 | 2 | 60 | < | <6 | | 12 | | | | | | | | | | | | | | | | | DEC<br>14 | | | | | - | | | | | | | | | | | | | | | | | | | | MAR<br>21 | < | 1.0 | 1: | 90 | • | <6 | | 15 | <0. | . 10 | <0. | . 10 | 0 | . 14 | 0 | . 10 | <0. | . 10 | <0.1 | 0 | <0 | . 10 | | | MAY<br>03 | | | | | - | | | | 0. | .39 | 0 | . 58 | 0 | .34 | 0 | . 17 | <0. | . 10 | <0.1 | 0 | <1 | . 0 | | | JUL<br>06 | | | | | - | | | | 0. | . 88 | 0. | . 33 | 0 | .46 | <0 | . 10 | <0. | . 10 | <0.1 | 0 | <0 | . 10 | | | AUG<br>25 | < | 1.0 | 2 | 00 | • | <6 | | 7 | | | | | | | | | | | | | | | | SOCI ME 161 ## 05484800 WALNUT CREEK AT DES MOINES, IA LOCATION.--Lat 41°35'14", long 93°42'11", in SW1/4 SE1/4 sec.2, T.78 N., R.25 W., Polk County, Hydrologic Unit 07100006, on left bank, 25 ft downstream from bridge on 63rd Street in Des Moines, and 2.2 mi upstream from Raccoon River. DRAINAGE AREA, -- 78,4 mi<sup>2</sup>. PERIOD OF RECORD. -- October 1971 to current year. REVISED RECORDS.--WDR Iowa 1973: 1972. WDR IA-75-1: 1973-74. GAGE. -- Water-stage recorder. Datum of gage is 801.04 ft above NGVD (levels by Iowa Natural Resources Council). REMARKS.--Estimated daily discharges: Dec. 8 to Mar. 19, and Mar. 21,22. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. National Weather Service Limited Automatic Remote Collector at station. AVERAGE DISCHARGE. -- 18 years, 59.5 ft3/s, 10.3 in/yr, 43,110 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 12,500 ft<sup>3</sup>/s May 10, 1986, gage height, 18.32 ft, from rating curve extended above 3,500 ft<sup>3</sup>/s on basis of contracted-opening measurement of peak flow; no flow for many days in 1977. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 600 ft3/s and maximum (\*): | | | Discharge | Gage height | | | Discharge | Gage height | |---------|------|----------------------|-------------|---------|------|----------------------|-------------| | Date | Time | (ft <sup>3</sup> /s) | (ft) | Date | Time | (ft <sup>3</sup> /s) | (ft) | | Nov. 15 | 1815 | 899 | 8.69 | Aug. 29 | 0630 | 642 | 7.66 | | May 24 | 0345 | 824 | 8.41 | Sept. 9 | 0130 | 822 | 8.36 | | July 18 | 0345 | *924 | *8 76 | • | | | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 No flow part of each day, Aug. 18, 21-22. | | | DISCH | ARGE, COBI | C FEET FE | R SECOND | MATER TE | S CLIOBE | K 1900 10 | SEFIEMBE | K 1909 | | | |-----------------------------------|-----------------------------------------|-------------------------------------------|-------------------------------------------|------------------------------------------|------------------------------------------|-------------------------------------------|------------------------------------------|--------------------------------------------------|--------------------------------------------|--------------------------------------------------|--------------------------------------------|--------------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 2 3 4 5 | 5.1<br>3.5<br>2.8<br>2.1<br>1.7 | 1.4<br>1.6<br>1.8<br>13<br>3.1 | 2.2<br>2.3<br>2.0<br>1.3<br>1.3 | 5.0<br>4.5<br>4.0<br>3.5<br>4.5 | 5.0<br>2.5<br>3.0<br>2.0<br>1.7 | .88<br>.94<br>5.0<br>15<br>7.0 | 3.9<br>3.6<br>3.0<br>2.7<br>2.4 | 38<br>13<br>12<br>18<br>12 | 8.7<br>6.6<br>111<br>39<br>21 | 5.6<br>5.1<br>4.5<br>3.7<br>3.2 | 1.4<br>1.2<br>18<br>6.9<br>2.5 | 3.4<br>2.8<br>7.3<br>29<br>5.9 | | 6<br>7<br>8<br>9<br>10 | 1.4<br>1.3<br>1.2<br>1.3<br>1.2 | 2.6<br>1.8<br>1.4<br>1.6<br>2.3 | 1.4<br>1.4<br>.90<br>.80<br>.70 | 3.5<br>3.0<br>2.5<br>2.0<br>1.5 | 1.5<br>1.4<br>1.3<br>1.3 | 3.0<br>2.5<br>6.0<br>15<br>40 | 2.2<br>7.3<br>8.3<br>3.7<br>3.0 | 9.6<br>7.9<br>6.9<br>6.0<br>5.5 | 15<br>12<br>116<br>52<br>29 | 2.9<br>2.4<br>2.1<br>1.7<br>1.4 | 1.1<br>.86<br>.71<br>.67<br>.59 | 3.6<br>132<br>122<br>210<br>38 | | 11<br>12<br>13<br>14<br>15 | 1.1<br>1.2<br>1.3<br>1.5 | 1.7<br>27<br>5.3<br>2.3<br>129 | .80<br>1.0<br>1.1<br>.90<br>.65 | 1.7<br>2.0<br>2.3<br>2.6<br>2.4 | 1.2<br>1.1<br>1.4<br>1.5<br>1.3 | 20<br>12<br>9.0<br>8.2<br>8.0 | 2.5<br>2.3<br>2.2<br>2.2<br>2.1 | 4.7<br>4.1<br>3.8<br>3.5<br>3.2 | 21<br>19<br>15<br>12<br>11 | 67<br>11<br>5.5<br>3.2<br>18 | .54<br>.32<br>.22<br>.38<br>.53 | 23<br>15<br>13<br>11<br>9.4 | | 16<br>17<br>18<br>19<br>20 | 2.0<br>2.7<br>3.3<br>3.1<br>4.0 | 25<br>6.8<br>4.8<br>3.9<br>2.9 | .80<br>1.0<br>1.5<br>2.0<br>2.6 | 2.8<br>3.3<br>4.0<br>3.0<br>2.6 | 1.2<br>1.1<br>1.0<br>.94<br>.90 | 7.8<br>7.7<br>7.4<br>7.2<br>7.1 | 2.1<br>2.0<br>4.9<br>2.5<br>2.3 | 2.9<br>2.6<br>27<br>12<br>5.3 | 9.3<br>10<br>12<br>7.1<br>6.2 | 4.0<br>2.1<br>177<br>28<br>15 | .30<br>.19<br>.09<br>8.9<br>2.1 | 8.1<br>7.1<br>6.2<br>6.4<br>6.1 | | 21<br>22<br>23<br>24<br>25 | 4.0<br>7.3<br>13<br>2.5<br>1.9 | 2.3<br>1.9<br>2.1<br>2.0<br>2.5 | 1.3<br>1.1<br>2.0<br>20<br>10 | 2.3<br>2.9<br>2.0<br>1.7<br>1.5 | .85<br>.80<br>.78<br>.76<br>.80 | 6.6<br>5.8<br>5.4<br>4.9<br>4.3 | 2.2<br>2.2<br>2.2<br>2.1<br>2.0 | 3.8<br>2.9<br>2.5<br>129<br>33 | 5.2<br>4.8<br>10<br>6.8<br>61 | 9.3<br>7.1<br>7.0<br>6.3<br>3.6 | .42<br>.09<br>64<br>4.2<br>5.6 | 5.5<br>4.9<br>4.1<br>4.0<br>4.2 | | 26<br>27<br>28<br>29<br>30<br>31 | 1.6<br>1.5<br>1.4<br>1.4<br>1.4 | 25<br>4.2<br>3.1<br>3.5<br>3.0 | 8.0<br>9.0<br>7.0<br>4.5<br>5.0<br>6.0 | 1.4<br>1.3<br>10<br>15<br>12 | .84<br>.88<br>.92<br> | 4.3<br>4.5<br>4.6<br>4.6<br>5.5<br>3.8 | 3.3<br>7.1<br>98<br>23<br>14 | 17<br>11<br>22<br>35<br>13<br>10 | 34<br>18<br>12<br>9.2<br>7.0 | 6.3<br>3.9<br>2.1<br>9.5<br>4.1<br>1.9 | 51<br>21<br>67<br>101<br>7.9<br>4.8 | 3.6<br>3.5<br>3.3<br>3.5<br>3.2 | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 80.9<br>2.61<br>13<br>1.1<br>160<br>.03 | 288.9<br>9.63<br>129<br>1.4<br>573<br>.12 | 100.55<br>3.24<br>20<br>.65<br>199<br>.04 | 120.8<br>3.90<br>15<br>1.3<br>240<br>.05 | 39.17<br>1.40<br>5.0<br>.76<br>78<br>.02 | 244.02<br>7.87<br>40<br>.88<br>484<br>.08 | 221.3<br>7.38<br>98<br>2.0<br>439<br>.09 | 477.2<br>15.4<br>129<br>2.5<br>947<br>.20<br>.23 | 700.9<br>23.4<br>116<br>4.8<br>1390<br>.30 | 424.5<br>13.7<br>177<br>1.4<br>842<br>.17<br>.20 | 374.51<br>12.1<br>101<br>.09<br>743<br>.15 | 699.1<br>23.3<br>210<br>2.8<br>1390<br>.30 | CAL YR 1988 TOTAL 4689.50 MEAN 12.8 MAX 131 MIN .08 AC-FT 9300 CFSM .16 IN. 2.23 WTR YR 1989 TOTAL 3771.85 MEAN 10.3 MAX 210 MIN .09 AC-FT 7480 CFSM .13 IN. 1.77 ## 05485500 DES MOINES RIVER BELOW RACCOON RIVER AT DES MOINES, IA LOCATION.--Lat 41°34'30", long 93°35'48", in NE1/4 SE1/4 sec.10, T.78 N., R.24 W., Polk County, Hydrologic Unit 07100008, on right bank 10 ft downstream from bridge on Southeast 14th Street at Des Moines, 0.8 mi downstream from Raccoon River and Scott Street Dam, and at mile 200.7. DRAINAGE AREA. -- 9,879 mi2. PERIOD OF RECORD, -- April 1940 to current year. REVISED RECORDS. -- WSP 1438: Drainage area. WSP 1508: 1943 (P). GAGE.--Water-stage recorder. Datum of gage is 762.52 ft above NGVD. Prior to Oct. 1, 1951, and Oct. 1, 1953, to Sept. 30, 1959, water-stage recorder upstream of Scott Street Dam, 0.8 mi upstream at datum 11.16 ft higher. Oct. 1, 1951, to Sept. 30, 1953, and Oct. 1, 1959 to Sept. 30, 1961, nonrecording gage at present site and datum. REMARKS.--Estimated daily discharges: Jan. 8, 9, Feb. 3 to Mar. 7. Records good except those for estimated daily discharges, which are poor. Des Moines municipal water supply is taken from infiltration galleries on Raccoon River, 3.5 mi upstream from station. Average daily pumpage was about 58 ft<sup>3</sup>/s. At times, water is pumped from Raccoon River into recharge basins, or into Waterworks Reservoir, capacity, 4,800 acre-ft. Effluent from sewage treatment plant enters the river 2.3 mi downstream from station. Net effect diversions not known. Flow regulated by Saylorville Lake (station 05481630) 13.0 mi upstream, since Apr. 12, 1977. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers data collection platform at station. COOPERATION .-- Average monthly pumpage from galleries provided by Des Moines Water Works. AVERAGE DISCHARGE.--49 years, 4,430 ft<sup>3</sup>/s, 6.09 in/yr, 3,210,000 acre-ft/yr; median of yearly mean discharges, 3,580 ft<sup>3</sup>/s, 4.9 in/yr, 2,590,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 77,000 ft<sup>3</sup>/s June 26, 1947, gage height, 20.8 ft in gage well, 21.6 ft from outside floodmark, site and datum then in use; minimum daily discharge, 26 ft<sup>3</sup>/s Jan. 16-29, 1977. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1893, that of June 26, 1947, site and datum then in use. Flood of May 31, 1903, reached a stage of 20.9 ft, from flood profile, at Scott Street site and datum, by office of Des Moines City Engineer. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 7,890 ft<sup>3</sup>/s May 26; gage height, 14.44 ft.; minimum daily discharge, 351 ft<sup>3</sup>/s Aug. 16. | | | DISCHAR | RGE, CUBIC | FEET PER | SECOND | , WATER YEAR<br>MEAN VALUES | OCTOBER | 1988 TO | SEPTEMBER | 1989 | | | |--------------------------------------|----------------------------------------|-------------------------------------|----------------------------------------|----------------------------------------|-------------------------------------|----------------------------------------------|---------------------------------------|----------------------------------------------|----------------------------------------|----------------------------------------|-----------------------------------------|--------------------------------------| | DAY | OCT | NOA | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 610 | 467 | 603 | 506 | 770 | 450 | 2460 | 1500 | 2750 | 2310 | 467 | 410 | | 2 | 683 | 466 | 569 | 542 | 501 | 490 | 2420 | 1900 | 2270 | 2070 | 461 | 363 | | 3 | 840 | 468 | 586 | 484 | 560 | 540 | 2180 | 2190 | 2250 | 1790 | 502 | 366 | | 4 | 905 | 494 | 606 | 505 | 700 | 520 | 1820 | 2210 | 2300 | 1500 | 506 | 429 | | 5 | 936 | 477 | 606 | 496 | 660 | 490 | 1660 | 1920 | 3150 | 1230 | 464 | 383 | | 6 | 845 | 457 | 617 | 506 | 620 | 520 | 1360 | 1530 | 3610 | 868 | 450 | 542 | | 7 | 758 | 462 | 603 | 500 | 600 | 490 | 1240 | 1330 | 2790 | 810 | 435 | 1040 | | 8 | 704 | 451 | 535 | 600 | 580 | 475 | 1030 | 1060 | 2290 | 742 | 417 | 1220 | | 9 | 669 | 461 | 455 | 750 | 565 | 564 | 981 | 1040 | 2200 | 647 | 420 | 4440 | | 10 | 641 | 475 | 407 | 972 | 540 | 2070 | 956 | 1010 | 2610 | 599 | 401 | 3690 | | 11 | 619 | 456 | 402 | 1040 | 500 | 3230 | 932 | 989 | 2870 | 720 | 394 | 2270 | | 12 | 602 | 523 | 378 | 1010 | 480 | 4080 | 961 | 962 | 2570 | 890 | 386 | 1700 | | 13 | 582 | 471 | 460 | 780 | 450 | 2850 | 1100 | 943 | 2130 | 1640 | 385 | 1620 | | 14 | 577 | 477 | 505 | 657 | 420 | 2930 | 1100 | 926 | 2290 | 1920 | 368 | 1530 | | 15 | 570 | 755 | 562 | 575 | 430 | 2720 | 1080 | 859 | 1450 | 2170 | 364 | 1200 | | 16 | 558 | 696 | 527 | 526 | 440 | 2740 | 1070 | 769 | 1180 | 1650 | 351 | 999 | | 17 | 541 | 812 | 537 | 496 | 420 | 2470 | 1020 | 752 | 1070 | 1110 | 357 | 827 | | 18 | 514 | 723 | 544 | 487 | 410 | 2130 | 729 | 817 | 1060 | 1730 | 361 | 757 | | 19 | 507 | 642 | 525 | 474 | 420 | 1670 | 680 | 705 | 1100 | 1700 | 395 | 627 | | 20 | 506 | 617 | 533 | 475 | 430 | 1350 | 652 | 645 | 970 | 1670 | 391 | 592 | | 21 | 507 | 607 | 531 | 472 | 440 | 1490 | 720 | 642 | 809 | 1410 | 410 | 572 | | 22 | 515 | 593 | 521 | 482 | 420 | 1930 | 445 | 663 | 698 | 1270 | 416 | 533 | | 23 | 545 | 609 | 538 | 489 | 410 | 1830 | 482 | 654 | 654 | 1140 | 621 | 512 | | 24 | 912 | 639 | 610 | 490 | 420 | 1580 | 551 | 1870 | 678 | 882 | 430 | 503 | | 25 | 418 | 642 | 554 | 505 | 440 | 1670 | 523 | 3590 | 1230 | 839 | 394 | 473 | | 26<br>27<br>28<br>29<br>30<br>31 | 361<br>496<br>480<br>472<br>474<br>471 | 735<br>676<br>633<br>620<br>616 | 567<br>611<br>612<br>555<br>528<br>533 | 497<br>478<br>558<br>662<br>688<br>860 | 460<br>500<br>470<br> | 1930<br>1940<br>2170<br>2590<br>2740<br>2610 | 516<br>595<br>1380<br>1430<br>1450 | 6920<br>7380<br>6140<br>4670<br>3650<br>3400 | 1450<br>2110<br>2820<br>3060<br>2820 | 764<br>643<br>583<br>542<br>460<br>451 | 561<br>522<br>877<br>1210<br>572<br>439 | 456<br>448<br>436<br>424<br>429 | | TOTAL<br>MEAN<br>MAX<br>MIN<br>AC-FT | 18818<br>607<br>936<br>361<br>37330 | 17220<br>574<br>812<br>451<br>34160 | 16720<br>539<br>617<br>378<br>33160 | 18562<br>599<br>1040<br>472<br>36820 | 14056<br>502<br>770<br>410<br>27880 | 1783<br>4080<br>450 | 33523<br>1117<br>2460<br>445<br>66490 | 63636<br>2053<br>7380<br>642<br>126200 | 59239<br>1975<br>3610<br>654<br>117500 | 36750<br>1185<br>2310<br>451<br>72890 | 14727<br>475<br>1210<br>351<br>29210 | 29791<br>993<br>4440<br>363<br>59090 | CAL YR 1988 TOTAL 621974 MEAN 1699 MAX 6280 MIN 295 AC-FT 1234000 WTR YR 1989 TOTAL 378301 MEAN 1036 MAX 7380 MIN 351 AC-FT 750400 Date Apr. 28 #### DES MOINES RIVER BASIN ## 05485640 FOURMILE CREEK AT DES MOINES, IA LOCATION.--Lat 41°36′50", long 93°32′43", in NE1/4 NE1/4 sec.32, T.79 N., R.23 W., Polk County, Hydrologic Unit 07100008, on right bank 20 ft downstream from bridge on Easton Blvd., 4.4 mi downstream from Muchikinock Creek and 5.0 mi upstream from Des Moines River. DRAINAGE AREA .-- 92.7 mi2. 0545 PERIOD OF RECORD. -- October 1971 to current year. REVISED RECORDS. -- WDR IA-75-1: 1974 (P). GAGE. -- Water-stage recorder. Datum of gage is 795.87 ft above NGVD. REMARKS.--Estimated daily discharges: Nov. 30 to Mar. 10, and Mar. 16-21. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. Remote Collector at station. AVERAGE DISCHARGE.--18 years, 71.3 ft3/s, 10.4 in/yr, 51,660 acre-ft/yr. Discharge (ft<sup>3</sup>/s) 670 EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5,340 ft<sup>3</sup>/s June 9, 1974, gage height, 14.84 ft; no flow for many days in 1977. Date May 24 0545 Discharge (ft<sup>3</sup>/s) \*731 Gage height (ft) \*7.80 EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 500 ft3/s and maximum (\*): Gage height (ft) 7.57 | Minio | Minimum discharge, 0.65 ft <sup>3</sup> /s Oct. 3. | | | | | | | | | | | | |-----------------------------------|----------------------------------------------------|------------------------------------------|--------------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|--------------------------------------------------|--------------------------------------------|--------------------------------------------|-------------------------------------------------|---------------------------------------------------|---------------------------------------------------| | | | DISCHA | RGE, CUBI | C FEET PE | R SECOND, | WATER YE<br>EAN VALUE | AR OCTOBE<br>S | R 1988 TO | SEPTEMBE | R 1989 | | | | DAY | OCT | NON | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | 1.6<br>.99<br>.82<br>.80<br>.86 | 1.7<br>1.1<br>1.2<br>2.7<br>3.3 | 2.4<br>2.0<br>2.3<br>1.8 | 4.1<br>3.6<br>3.4<br>3.2<br>3.9 | 3.0<br>2.5<br>2.0<br>2.3<br>2.1 | 1.0<br>1.1<br>5.0<br>11<br>5.4 | 4.5<br>4.8<br>2.8<br>2.9<br>3.6 | 28<br>21<br>18<br>19<br>17 | 15<br>16<br>176<br>65<br>30 | 4.6<br>4.2<br>3.6<br>4.3<br>4.0 | 7.9<br>7.0<br>10<br>11<br>9.3 | 5.0<br>3.8<br>3.2<br>5.0<br>4.0 | | 6<br>7<br>8<br>9<br>10 | .97<br>1.3<br>1.2<br>1.2 | 2.0<br>1.5<br>1.4<br>1.5 | 1.3<br>1.1<br>1.0<br>.90<br>.80 | 3.4<br>2.9<br>2.6<br>2.4<br>2.2 | 1.9<br>1.8<br>1.7<br>1.7 | 3.0<br>2.0<br>6.0<br>20 | 3.5<br>5.0<br>6.0<br>3.8<br>3.5 | 15<br>14<br>13<br>12<br>12 | 19<br>14<br>26<br>14<br>12 | 3.2<br>3.1<br>3.1<br>3.0<br>3.1 | 10<br>6.5<br>5.8<br>5.6<br>4.7 | 3.2<br>29<br>86<br>225<br>98 | | 11<br>12<br>13<br>14<br>15 | .97<br>1.7<br>1.1<br>1.6<br>1.2 | 1.4<br>6.2<br>5.4<br>1.4<br>21 | .84<br>1.0<br>1.3<br>1.0 | 1.9<br>2.2<br>2.7<br>3.2<br>2.9 | 1.5<br>1.4<br>1.6<br>1.9 | 44<br>26<br>16<br>12<br>10 | 3.8<br>3.1<br>2.7<br>2.1<br>2.7 | 13<br>12<br>10<br>10 | 11<br>11<br>9.3<br>8.6<br>8.4 | 10<br>14<br>7.5<br>6.1<br>7.2 | 3.8<br>3.9<br>4.0<br>3.0<br>3.7 | 51<br>26<br>21<br>18<br>16 | | 16<br>17<br>18<br>19<br>20 | 1.4<br>1.6<br>1.7<br>1.8<br>2.1 | 24<br>4.9<br>3.4<br>2.2<br>1.8 | .86<br>1.0<br>1.5<br>2.3<br>3.1 | 3.4<br>4.0<br>5.0<br>3.8<br>3.2 | 1.5<br>1.4<br>1.3<br>1.2 | 7.0<br>4.4<br>4.0<br>4.5<br>5.0 | 2.7<br>2.2<br>1.9<br>2.2<br>2.3 | 9.9<br>9.3<br>23<br>22<br>17 | 7.0<br>6.7<br>7.1<br>7.0<br>6.1 | 8.1<br>5.9<br>55<br>46<br>23 | 5.3<br>7.2<br>5.0<br>7.2<br>10 | 14<br>13<br>11<br>11<br>10 | | 21<br>22<br>23<br>24<br>25 | 2.3<br>3.5<br>2.3<br>1.3 | 1.7<br>1.9<br>1.7<br>1.9<br>2.1 | 2.6<br>2.2<br>2.8<br>5.0<br>4.3 | 2.8<br>3.4<br>2.3<br>2.0<br>1.8 | 1.0<br>.96<br>.92<br>.88<br>.86 | 5.2<br>5.2<br>6.3<br>4.5<br>4.4 | 1.7<br>2.2<br>2.1<br>2.6<br>3.1 | 13<br>13<br>10<br>293<br>108 | 5.0<br>4.7<br>4.9<br>5.9 | 17<br>15<br>13<br>12<br>12 | 2.3<br>13<br>15<br>5.1<br>4.0 | 9.6<br>9.8<br>9.2<br>8.1<br>8.2 | | 26<br>27<br>28<br>29<br>30<br>31 | .96<br>1.0<br>1.0<br>1.0<br>.81<br>1.0 | 7.4<br>3.7<br>2.3<br>3.3<br>2.7 | 3.9<br>4.5<br>3.9<br>3.2<br>3.7<br>4.5 | 1.7<br>1.5<br>3.5<br>10<br>6.0<br>3.5 | .92<br>1.0<br>1.1<br> | 4.4<br>4.0<br>4.2<br>3.6<br>4.2<br>4.1 | 3.3<br>38<br>244<br>55<br>28 | 46<br>27<br>20<br>25<br>18<br>16 | 8.9<br>8.2<br>6.2<br>4.4<br>4.3 | 12<br>11<br>8.6<br>9.5<br>11<br>8.5 | 19<br>6.2<br>6.1<br>105<br>20<br>6.7 | 7.8<br>7.6<br>7.2<br>7.1<br>7.2 | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 42.08<br>1.36<br>3.5<br>.80<br>83<br>.01 | 118.2<br>3.94<br>24<br>1.1<br>234<br>.04 | 69.30<br>2.24<br>5.0<br>.80<br>137<br>.02<br>.03 | 102.5<br>3.31<br>10<br>1.5<br>203<br>.04 | 42.84<br>1.53<br>3.0<br>.86<br>85<br>.02 | 297.5<br>9.60<br>60<br>1.0<br>590<br>.10 | 446.1<br>14.9<br>244<br>1.7<br>885<br>.16<br>.18 | 895.2<br>28.9<br>293<br>9.3<br>1780<br>.31 | 536.7<br>17.9<br>176<br>4.3<br>1060<br>.19 | 348.6<br>11.2<br>55<br>3.0<br>691<br>.12<br>.14 | 333.3<br>10.8<br>10.5<br>2.3<br>661<br>.12<br>.13 | 735.0<br>24.5<br>225<br>3.2<br>1460<br>.26<br>.29 | CAL YR 1988 TOTAL 4838.61 MEAN 13.2 MAX 64 MIN .05 AC-FT 9600 CFSM .14 IN. 1.94 WTR YR 1989 TOTAL 3967.32 MEAN 10.9 MAX 293 MIN .80 AC-FT 7870 CFSM .12 IN. 1.58 ## 05486000 NORTH RIVER NEAR NORWALK, IA LOCATION.--Lat 41°27'25", long 93°39'10", in NW1/4 SW1/4 sec.20, T.77 N., R.24 W., Warren County, Hydrologic Unit 07100008, on left bank 10 ft downstream from bridge on county highway R57, 1.7 mi southeast of Norwalk, 5.2 mi upstream from Middle Creek, and 6.2 mi downstream from Badger Creek. DRAINAGE AREA. -- 349 mi2. PERIOD OF RECORD. -- February 1940 to current year. REVISED RECORDS, --WSP 1438: Drainage area. WSP 1508: 1946. WDR IA-76-1: 1975 (P). GAGE.--Water-stage recorder. Datum of gage is 788.45 ft above NGVD (levels by U.S. Army Corps of Engineers). Prior to June 12, 1946, nonrecording gage at same site and datum. Jan. 7 to Oct. 11, 1960, nonrecording gage at site 2.1 mi upstream at different datum. REMARKS.--Estimated daily discharges: Oct. 12, 13, Dec. 28 to Jan. 2, Jan. 7-9, Jan. 29 to Feb. 4, Feb. 22 to Mar. 11, and Mar. 20, 21. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers data collection platform at station. AVERAGE DISCHARGE.--49 years, 182 ft $^3$ /s, 7.08 in/yr, 131,900 acre-ft/yr; median of yearly mean discharges, 150 ft $^3$ /s, 5.8 in/yr, 109,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 32,000 ft<sup>3</sup>/s June 13, 1947, gage height, 25.3 ft, from floodmark, from rating curve extended above 9,100 ft<sup>3</sup>/s on basis of velocity-area studies; no flow at times during period 1954-58. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 1,700 ft3/s and maximum (\*): | | | Discharge | Gage height | | | Discharge | Gage height | |----------|------|----------------------|-------------|------|------|----------------------|-------------| | Date | Time | (ft <sup>3</sup> /s) | (ft) | Date | Time | (ft <sup>3</sup> /s) | (ft) | | Sept. 10 | 0500 | *1 500 | *16 47 | | | | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 Minimum daily discharge, 1.4 ft<sup>3</sup>/s Nov. 25. | | | DISCHA | COL, COLL | C LEEL LEK | BECOMD, | ÆAN VALUE | S COLORE | K 1300 10 | ODLIME | K 1903 | | | |-----------------------------------------------------|-------------------------------------------------|------------------------------------------|------------------------------------------|--------------------------------------------|------------------------------------------|---------------------------------------------|-------------------------------------------------|--------------------------------------------|----------------------------------------------------|------------------------------------------|------------------------------------------|----------------------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | 3.5<br>18<br>32<br>15<br>5.8 | 4.4<br>3.5<br>3.2<br>3.0<br>2.8 | 1.6<br>1.7<br>1.7<br>1.7<br>1.9 | 2.9<br>2.8<br>2.6<br>2.5<br>2.7 | 74<br>15<br>5.0<br>10 | 7.9<br>8.6<br>10<br>9.0<br>8.4 | 17<br>15<br>14<br>13<br>12 | 25<br>29<br>35<br>26<br>22 | 68<br>43<br>34<br>36<br>28 | 36<br>27<br>23<br>23<br>22 | 9.0<br>35<br>18<br>11<br>8.2 | 13<br>8.1<br>6.0<br>5.9<br>5.9 | | 6<br>7<br>8<br>9<br>10 | 4.2<br>3.1<br>2.6<br>2.3<br>2.0 | 2.6<br>2.5<br>2.2<br>2.2<br>2.1 | 2.0<br>2.1<br>2.0<br>2.0<br>2.2 | 3.3<br>3.5<br>4.5<br>3.9<br>3.4 | 9.7<br>8.6<br>8.2<br>8.4 | 8.0<br>9.0<br>10<br>15<br>150 | 11<br>11<br>12<br>11<br>10 | 18<br>14<br>11<br>9.6<br>8.7 | 22<br>19<br>15<br>21<br>91 | 16<br>12<br>11<br>9.1<br>8.1 | 6.4<br>5.4<br>5.1<br>4.8<br>4.0 | 10<br>9.7<br>29<br>1010<br>1400 | | 11<br>12<br>13<br>14<br>15 | 2.4<br>2.9<br>2.9<br>3.3<br>4.1 | 1.9<br>2.3<br>2.4<br>2.5<br>3.8 | 2.0<br>2.0<br>2.1<br>2.3<br>2.3 | 3.2<br>3.1<br>3.0<br>2.9<br>2.8 | 7.5<br>7.1<br>7.9<br>7.6<br>7.2 | 600<br>472<br>187<br>107<br>69 | 9.6<br>9.4<br>9.1<br>8.7<br>8.0 | 7.4<br>6.5<br>6.2<br>5.2<br>4.9 | 45<br>30<br>25<br>18<br>24 | 7.7<br>7.6<br>16<br>11<br>7.8 | 3.4<br>3.1<br>2.9<br>2.7<br>2.6 | 575<br>260<br>160<br>115<br>90 | | 16<br>17<br>18<br>19<br>20 | 3.8<br>3.4<br>3.3<br>2.9<br>2.7 | 9,1<br>5,1<br>6,8<br>4,1 | 2.2<br>2.3<br>2.4<br>2.4<br>2.5 | 2.6<br>2.5<br>2.5<br>2.5<br>2.5 | 7.2<br>7.1<br>6.8<br>6.7<br>7.2 | 51<br>41<br>32<br>24<br>22 | 7.4<br>6.7<br>6.9<br>6.8<br>6.9 | 4.4<br>4.1<br>4.5<br>4.8<br>6.0 | 16<br>13<br>10<br>9.0<br>8.2 | 6.7<br>5.9<br>11<br>51<br>22 | 2.6<br>2.4<br>2.3<br>3.3<br>2.9 | 73<br>59<br>49<br>40<br>35 | | 21<br>22<br>23<br>24<br>25 | 2.5<br>2.5<br>2.7<br>2.4<br>2.3 | 2.9<br>2.1<br>1.6<br>1.5<br>1.4 | 2.3<br>2.3<br>2.5<br>3.6<br>3.3 | 2.5<br>2.5<br>2.5<br>2.4<br>2.3 | 7.4<br>6.9<br>7.4<br>7.9<br>8.1 | 20<br>18<br>22<br>20<br>19 | 6.6<br>6.5<br>6.5<br>6.3 | 6.9<br>7.1<br>5.7<br>16<br>19 | 7.6<br>6.5<br>6.4<br>6.5 | 19<br>17<br>11<br>8.3<br>6.7 | 2.5<br>2.4<br>4.0<br>3.2<br>2.8 | 29<br>25<br>21<br>18<br>17 | | 26<br>27<br>28<br>29<br>30<br>31 | 2.3<br>2.3<br>2.4<br>2.9<br>2.7<br>3.0 | 1.8<br>1.6<br>1.7<br>2.3<br>1.9 | 3.5<br>4.0<br>3.7<br>3.6<br>3.5<br>3.2 | 2.4<br>2.4<br>8.0<br>100<br>164<br>204 | 8.7<br>8.0<br>7.6<br> | 19<br>19<br>20<br>19<br>18 | 6.2<br>6.3<br>17<br>34<br>37 | 9.7<br>6.1<br>5.8<br>39<br>266<br>135 | 102<br>278<br>186<br>87<br>51 | 6.3<br>5.4<br>5.1<br>5.5<br>4.9<br>7.0 | 5.2<br>58<br>65<br>46<br>38<br>27 | 16<br>12<br>11<br>12<br>12 | | TOTAL<br>MEAN<br>MAX<br>MIN<br>AC-FT<br>CFSM<br>IN. | 148.2<br>4.78<br>32<br>2.0<br>294<br>.01<br>.02 | 107.3<br>3.58<br>22<br>1.4<br>213<br>.01 | 76.9<br>2.48<br>4.0<br>1.6<br>153<br>.01 | 552.7<br>17.8<br>204<br>2.3<br>1100<br>.05 | 304.2<br>10.9<br>74<br>5.0<br>603<br>.03 | 2052.9<br>66.2<br>600<br>7.9<br>4070<br>.19 | 338.4<br>11.3<br>37<br>6.2<br>671<br>.03<br>.04 | 768.6<br>24.8<br>266<br>4.1<br>1520<br>.07 | 1316.2<br>43.9<br>278<br>6.4<br>2610<br>.13<br>.14 | 430.1<br>13.9<br>51<br>4.9<br>853<br>.04 | 389.2<br>12.6<br>65<br>2.3<br>772<br>.04 | 4126.6<br>138<br>1400<br>5.9<br>8190<br>.39<br>.44 | CAL YR 1988 TOTAL 12708.23 MEAN 34.7 MAX 400 MIN .32 AC-FT 25210 CFSM .10 IN. 1.35 WTR YR 1989 TOTAL 10611.3 MEAN 29.1 MAX 1400 MIN 1.4 AC-FT 21050 CFSM .08 IN. 1.13 ## 05486490 MIDDLE RIVER NEAR INDIANOLA, IA LOCATION.--Lat 41°25'27", long 93°35'09", in SW1/4 SE1/4 sec.35, T.77 N., R.24 W., Warren County, Hydrologic Unit 07100008, on right bank 10 ft downstream from bridge on county highway, 0.4 mi upstream from Cavitt Creek, 1.5 mi upstream from bridge on U.S. Highway 69, and 4.6 mi northwest of Indianola. DRAINAGE AREA. -- 503 mi2. PERIOD OF RECORD. -- March 1940 to current year. REVISED RECORDS.--WSP 1438: Drainage area. WSP 1508: 1940 (M), 1941, 1944, 1946, 1949 (M). GAGE.--Water-stage recorder. Datum of gage is 776.15 ft above NGVD (U.S. Army Corps of Engineers bench mark). Prior to June 11, 1946, June 9, 1947, to Nov. 23, 1948, and Sept. 8, 1951, to Oct. 30, 1952, nonrecording gage and June 11, 1946, to June 8, 1947 (destroyed by flood), Nov. 24, 1948, to Sept. 7, 1951, Oct. 31, 1952, to Sept. 30, 1962, water-stage recorder at site 1.6 mi downstream at datum 2.81 ft lower. REMARKS.--Estimated daily discharges: Dec. 9 to Mar. 11. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers data collection platform at station. AVERAGE DISCHARGE.--49 years, 259 ft3/s, 7.00 in/yr, 187,600 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 34,000 ft<sup>3</sup>/s June 13, 1947, gage height, 26.40 ft, from floodmark, former site and datum; 28.27 ft, from floodmark, present site and datum; minimum daily discharge, 0.11 ft<sup>3</sup>/s July 2, 1977. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 4,500 ft3/s and maximum (\*): | | | Discharge | Gage height | | | Discharge | Gage height | |---------|------|----------------------|-------------|------|------|----------------------|-------------| | Date | Time | (ft <sup>3</sup> /s) | (ft) | Date | Time | (ft <sup>3</sup> /s) | (ft) | | Sept. 9 | 1730 | *4,340 | *16.22 | | | | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 Minimum discharge, 2.2 ft3/s Oct. 30. | | | DICOIL | atob, cobi | o ibbi ib | M BECOME, | EAN VALUES | S COLODE | 1 1500 10 | | . 1505 | | | |-----------------------------------------------------|------------------------------------------|--------------------------------------------|-------------------------------------------------|----------------------------------------------|------------------------------------------|------------------------------------------------|----------------------------------------|--------------------------------------------|-------------------------------------------------|------------------------------------------|--------------------------------------------|---------------------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | 27<br>34<br>49<br>30<br>19 | 2.9<br>3.1<br>3.8<br>4.0<br>4.3 | 21<br>23<br>25<br>18<br>20 | 13<br>13<br>13<br>12<br>13 | 35<br>30<br>26<br>29<br>31 | 10<br>12<br>13<br>12<br>11 | 33<br>32<br>31<br>29<br>27 | 27<br>40<br>35<br>31<br>27 | 64<br>49<br>42<br>37<br>24 | 76<br>59<br>49<br>39<br>41 | 73<br>101<br>54<br>38<br>28 | 14<br>17<br>16<br>16<br>17 | | 6<br>7<br>8<br>9<br>10 | 13<br>9.7<br>8.0<br>7.4<br>6.7 | 4.5<br>4.6<br>4.8<br>5.2<br>7.2 | 22<br>20<br>15<br>11<br>9.0 | 14<br>17<br>20<br>23<br>25 | 29<br>27<br>25<br>22<br>19 | 12<br>13<br>12<br>11<br>100 | 26<br>26<br>27<br>24<br>21 | 24<br>21<br>19<br>18<br>16 | 20<br>17<br>18<br>25<br>18 | 34<br>28<br>25<br>21<br>19 | 26<br>22<br>20<br>17<br>15 | 14<br>17<br>75<br>2680<br>3580 | | 11<br>12<br>13<br>14<br>15 | 5.5<br>4.7<br>4.9<br>3.9<br>3.8 | 11<br>16<br>18<br>13<br>12 | 10<br>12<br>13<br>12<br>11 | 24<br>22<br>21<br>19<br>17 | 16<br>14<br>12<br>11<br>10 | 800<br>691<br>350<br>226<br>159 | 21<br>21<br>19<br>18<br>18 | 13<br>12<br>11<br>10<br>9.7 | 47<br>50<br>32<br>24<br>31 | 20<br>84<br>54<br>23<br>20 | 13<br>11<br>9.8<br>9.2<br>8.8 | 1230<br>728<br>530<br>413<br>336 | | 16<br>17<br>18<br>19<br>20 | 3.6<br>3.6<br>4.4<br>3.8<br>4.0 | 84<br>58<br>79<br>136<br>78 | 10<br>10<br>11<br>11 | 16<br>15<br>15<br>14<br>14 | 11<br>10<br>9.6<br>9.2<br>9.4 | 117<br>93<br>68<br>62<br>54 | 17<br>17<br>17<br>17<br>17 | 9.3<br>8.6<br>11<br>14<br>12 | 30<br>22<br>18<br>16<br>14 | 17<br>18<br>64<br>152<br>70 | 7.7<br>6.7<br>6.0<br>6.5<br>5.7 | 282<br>243<br>207<br>178<br>152 | | 21<br>22<br>23<br>24<br>25 | 4.1<br>3.7<br>3.7<br>3.3<br>3.1 | 50<br>41<br>35<br>30<br>29 | 12<br>12<br>13<br>14<br>13 | 13<br>13<br>13<br>12<br>12 | 9.6<br>9.4<br>9.6<br>9.8 | 44<br>45<br>42<br>40<br>38 | 16<br>17<br>17<br>17<br>16 | 9.9<br>9.9<br>10<br>24<br>11 | 12<br>11<br>11<br>10<br>22 | 108<br>64<br>42<br>33<br>27 | 5.3<br>5.2<br>8.1<br>7.1 | 130<br>113<br>97<br>87<br>79 | | 26<br>27<br>28<br>29<br>30<br>31 | 2.8<br>3.0<br>4.8<br>2.7<br>2.5<br>2.8 | 34<br>32<br>23<br>29<br>26 | 12<br>13<br>14<br>14<br>15 | 12<br>11<br>11<br>16<br>21<br>27 | 11<br>11<br>11<br> | 37<br>36<br>37<br>34<br>35<br>34 | 15<br>16<br>22<br>23<br>20 | 8.0<br>7.4<br>8.8<br>124<br>249<br>101 | 331<br>266<br>299<br>171<br>115 | 23<br>20<br>17<br>24<br>34<br>30 | 13<br>22<br>19<br>12<br>14 | 71<br>65<br>63<br>60<br>55 | | TOTAL<br>MEAN<br>MAX<br>MIN<br>AC-FT<br>CFSM<br>IN. | 282.5<br>9.11<br>49<br>2.5<br>560<br>.02 | 878.4<br>29.3<br>136<br>2.9<br>1740<br>.06 | 441.0<br>14.2<br>25<br>9.0<br>875<br>.03<br>.03 | 501<br>16.2<br>27<br>11<br>994<br>.03<br>.04 | 466.6<br>16.7<br>35<br>9.2<br>926<br>.03 | 3248<br>105<br>800<br>10<br>6440<br>.21<br>.24 | 637<br>21.2<br>33<br>15<br>1260<br>.04 | 931.6<br>30.1<br>249<br>7.4<br>1850<br>.06 | 1846<br>61.5<br>331<br>10<br>3660<br>.12<br>.14 | 1335<br>43.1<br>152<br>17<br>2650<br>.09 | 607.1<br>19.6<br>101<br>5.2<br>1200<br>.04 | 11565<br>385<br>3580<br>14<br>22940<br>.77<br>.86 | CAL YR 1988 TOTAL 22085.9 MEAN 60.3 MAX 800 MIN 1.6 AC-FT 43810 CFSM .12 IN. 1.63 WTR YR 1989 TOTAL 22739.2 MEAN 62.3 MAX 3580 MIN 2.5 AC-FT 45100 CFSM .12 IN. 1.68 ## 05487470 SOUTH RIVER NEAR ACKWORTH, IA LOCATION.--Lat 41°20'14", long 93°29'10", in SE1/4 SE1/4 sec.34, T.76 N., R.23 W., Warren County, Hydrologic Unit 07100008, on right bank 15 ft downstream from bridge on county highway, 0.5 mi downstream from Otter Creek, and 2.2 mi southwest of Ackworth. DRAINAGE AREA. -- 460 mi2. PERIOD OF RECORD. -- February 1940 to current year. REVISED RECORDS. -- WSP 1438: Drainage area. WSP 1508: 1941, 1945 (M), 1946. GAGE.--Water-stage recorder. Datum of gage is 769.97 ft above NGVD. Prior to June 12, 1946, nonrecording gage, June 13, 1946, to Apr. 13, 1960, water-stage recorder, and Apr. 14, 1960 to Sept. 30, 1961, nonrecording gage, all at site 4.0 mi downstream at datum 8.06 ft lower. REMARKS.--Estimated daily discharges: Oct. 23-26, Dec. 8-12, 15, 16, 28, 30, Jan. 7-11, 21, 22, Feb. 1 to Mar. 11, Mar. 18, 19, 21, Apr. 13-18, July 11, 12, Aug. 11-17, Aug. 19 to Sept. 7, and Sept. 28-30. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers data collection platform at station. AVERAGE DISCHARGE.--49 years, 244 ft3/s, 7.20 in/yr, 176,800 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 34,000 ft<sup>3</sup>/s June 5, 1947, gage height, 24.60 ft, site and datum then in use; maximum gage height, 32.85 ft July 5, 1981; no flow Sept. 19 to Oct. 13, 1956. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in June 1930 reached a stage of 24.5 ft, from information by local residents, discharge, about 30,000 ft<sup>3</sup>/s, at site 4.0 mi downstream. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 5,000 ft3/s and maximum (\*): | | | Discharge | Gage height | | | Discharge | Gage height | |---------|------|----------------------|-------------|------|------|----------------------|-------------| | Date | Time | (ft <sup>3</sup> /s) | (ft) | Date | Time | (ft <sup>3</sup> /s) | (ft) | | Sept. 9 | 1930 | *1,800 | *11.87 | | | | | Minimum daily discharge, 0.99 ft3/s Aug. 18. | | | DISCHARG | E, CUBIC | FEET PER | SECOND, | WATER YEAR<br>AN VALUES | OCTOBER | 1988 TO | SEPTEMBER | 1989 | | | |-----------------------------------|------------------------------------------|-------------------------------------------------|-------------------------------------------|------------------------------------------|------------------------------------------|-------------------------------------------------|-------------------------------------------|--------------------------------------------|------------------------------------------|--------------------------------------------|-------------------------------------------|-----------------------------------------------------| | DAY | OCT | NOA | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | 5.6<br>4.6<br>4.8<br>2.9<br>2.6 | 2.8<br>3.0<br>3.1<br>3.5<br>3.3 | 6.1<br>5.5<br>5.5<br>5.1<br>5.6 | 7.6<br>7.8<br>7.6<br>8.1<br>9.3 | 15<br>7.0<br>3.5<br>3.8<br>4.0 | 2.9<br>3.1<br>3.3<br>3.1<br>3.0 | 5.2<br>5.3<br>4.6<br>4.1<br>4.4 | 9.5<br>11<br>9.3<br>8.7<br>7.0 | 43<br>28<br>24<br>13<br>13 | 2.8<br>3.0<br>3.1<br>2.2<br>1.8 | 4.5<br>2.2<br>2.4<br>2.3<br>1.6 | 3.1<br>4.1<br>4.5<br>3.5<br>3.7 | | 6<br>7<br>8<br>9<br>10 | 2.8<br>2.6<br>2.8<br>2.8<br>2.7 | 5.0<br>4.7<br>3.4<br>3.6<br>4.1 | 5.5<br>4.6<br>3.7<br>3.6<br>3.9 | 11<br>10<br>9.0<br>8.4<br>9.0 | 3.8<br>3.6<br>3.3<br>3.2<br>3.1 | 3.1<br>3.3<br>3.2<br>3.1<br>25 | 4.0<br>4.4<br>4.4<br>3.7<br>3.6 | 6.0<br>5.0<br>4.3<br>3.7<br>3.5 | 8.8<br>6.2<br>5.0<br>4.9<br>4.6 | 1.6<br>1.6<br>1.6<br>1.2 | 1.4<br>1.2<br>1.2<br>1.1 | 4.5<br>3.6<br>38<br>1120<br>844 | | 11<br>12<br>13<br>14<br>15 | 2.4<br>2.4<br>2.6<br>2.7<br>2.5 | 4.5<br>7.2<br>7.5<br>8.4 | 4.3<br>4.8<br>5.3<br>4.2<br>3.8 | 9.6<br>10<br>11<br>13 | 3.0<br>2.9<br>3.1<br>3.3<br>3.2 | 60<br>87<br>49<br>31<br>19 | 3.7<br>3.6<br>3.6<br>3.6<br>4.1 | 3.1<br>3.0<br>2.8<br>2.8<br>2.7 | 4.8<br>4.5<br>3.1<br>2.9<br>2.7 | 142<br>135<br>21<br>14<br>12 | 1.2<br>1.1<br>1.0<br>1.1<br>1.2 | 275<br>94<br>43<br>29<br>17 | | 16<br>17<br>18<br>19<br>20 | 2.4<br>2.7<br>2.4<br>2.4<br>2.8 | 17<br>11<br>9.8<br>8.5<br>6.8 | 4.8<br>5.8<br>7.7<br>7.2<br>6.8 | 12<br>12<br>10<br>10<br>8.0 | 3.1<br>3.0<br>2.9<br>2.9<br>2.8 | 15<br>12<br>10<br>9.0<br>8.1 | 4.3<br>4.1<br>4.3<br>4.0<br>3.8 | 2.6<br>2.5<br>4.5<br>5.8<br>3.3 | 2.5<br>2.5<br>2.6<br>2.5<br>2.2 | 11<br>8.3<br>32<br>13<br>9.9 | 1.1<br>1.0<br>.99<br>1.5<br>2.1 | 10<br>8.0<br>6.2<br>4.8<br>4.2 | | 21<br>22<br>23<br>24<br>25 | 3.0<br>2.9<br>2.8<br>2.8<br>2.7 | 5.6<br>5.8<br>6.2<br>6.4<br>6.0 | 5.8<br>7.4<br>6.7<br>8.0<br>9.5 | 8.4<br>9.0<br>7.2<br>7.3<br>6.7 | 2.8<br>2.7<br>2.8<br>2.7<br>2.8 | 7.4<br>6.2<br>5.5<br>5.4<br>5.2 | 3.4<br>3.3<br>3.2<br>3.1<br>3.0 | 3.3<br>3.2<br>2.7<br>99<br>16 | 2.0<br>2.2<br>2.1<br>1.9<br>9.5 | 7.5<br>6.9<br>7.9<br>14<br>8.3 | 2.7<br>3.2<br>3.3<br>2.7<br>3.0 | 3.4<br>3.1<br>3.6<br>3.1<br>3.3 | | 26<br>27<br>28<br>29<br>30<br>31 | 2.7<br>3.4<br>2.4<br>2.5<br>2.5 | 15<br>17<br>9.5<br>7.9<br>7.2 | 8.7<br>8.4<br>8.2<br>8.4<br>9.0<br>8.2 | 6.3<br>8.8<br>11<br>44<br>38<br>28 | 3.0<br>3.2<br>3.0 | 5.3<br>5.8<br>6.3<br>6.6<br>5.6<br>5.1 | 3.5<br>4.8<br>8.2<br>5.5<br>4.6 | 5.0<br>3.1<br>5.0<br>409<br>176<br>65 | 35<br>55<br>24<br>7.9<br>3.8 | 7.0<br>6.0<br>5.5<br>6.1<br>10 | 3.6<br>3.9<br>4.1<br>4.4<br>4.1 | 3.3<br>3.5<br>3.3<br>3.1<br>3.3 | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 90.0<br>2.90<br>5.6<br>2.4<br>179<br>.01 | 213.8<br>7.13<br>17<br>2.8<br>424<br>.02<br>.02 | 192.1<br>6.20<br>9.5<br>3.6<br>381<br>.01 | 369.1<br>11.9<br>44<br>6.3<br>732<br>.03 | 103.5<br>3.70<br>15<br>2.7<br>205<br>.01 | 417.6<br>13.5<br>87<br>2.9<br>828<br>.03<br>.03 | 125.4<br>4.18<br>8.2<br>3.0<br>249<br>.01 | 888.4<br>28.7<br>409<br>2.5<br>1760<br>.06 | 324.2<br>10.8<br>55<br>1.9<br>643<br>.02 | 514.5<br>16.6<br>142<br>1.2<br>1020<br>.04 | 70.69<br>2.28<br>4.5<br>.99<br>140<br>.00 | 2553.2<br>85.1<br>1120<br>3.1<br>5060<br>.19<br>.21 | CAL YR 1988 TOTAL 16768.8 MEAN 45.8 MAX 800 MIN 1.3 AC-FT 33260 CFSM .10 IN. 1.36 WTR YR 1989 TOTAL 5862.49 MEAN 16.1 MAX 1120 MIN .99 AC-FT 11630 CFSM .03 IN. .47 ## 05487500 DES MOINES RIVER NEAR RUNNELLS, IA LOCATION.--Lat 41°29'19", long 93°20'17", in SE1/4 NW1/4 sec.12, T.77 N., R.22 W., Folk County, Hydrologic Unit 07100008, on left bank 10 ft downstream from bridge on State Highway 316, 0.2 mi downstream from South River River, 0.5 mi upstream from Camp Creek, 2.2 mi southeast of Runnells, 37.2 mi upstream from Red Rock Dam and at mi 179.5. DRAINAGE AREA. -- 11,655 mi2. PERIOD OF RECORD .-- October 1985 to current year. GAGE, -- Water-stage recorder. Datum of gage is 700.00 ft above NGVD (U.S. Army Corps of Engineers bench mark). REMARKS.--Estimated daily discharges: Nov. 11-13, Dec. 9-24, Dec. 28 to Mar. 12, Apr. 14-17. Records good except those for estimated daily discharges, which are poor. Flow regulated by Saylorville Lake (station 05481630) 34.2 mi upstream. Stage-discharge relation is affected at times by backwater from Lake Red Rock (05488100). Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers data collection platform at station. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 48,000 ft<sup>3</sup>/s July 2, 1986; maximum gage height, 57.65 ft Oct. 28, 1986, (backwater from Red Rock); minimum daily discharge, 405 ft<sup>3</sup>/s, Oct. 26, 1988. EXTREMES OUTSIDE PERIOD OF RECORD.--Floods occurred on May 31, 1903; June 14, 1947; June 26, 1947; and June 24, 1954. No gage height or discharge was determined. Gage height and discharge information is available for these floods at other sites on the Des Moines River. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 14,800 ft<sup>3</sup>/s Sept. 10, gage height, 48.65; minimum daily discharge, 405 ft<sup>3</sup>/s Oct. 26. | | | DISCHARGE | , CUBIC | FEET PER | SECOND, | WATER YEAR<br>EAN VALUES | OCTOBER | 1988 TO | SEPTEMBER | 1989 | | | |--------------------------------------|----------------------------------------|---------------------------------|----------------------------------------|----------------------------------------|-------------------------------------|----------------------------------------------|---------------------------------------|----------------------------------------------|----------------------------------------|----------------------------------------|-------------------------------------------|-----------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 697 | 468 | 670 | 580 | 700 | 560 | 2430 | 1380 | 3470 | 2560 | 708 | 699 | | 2 | 775 | 467 | 644 | 620 | 580 | 540 | 2370 | 1470 | 2880 | 2240 | 708 | 650 | | 3 | 863 | 477 | 643 | 560 | 540 | 590 | 2330 | 1830 | 2440 | 1890 | 708 | 596 | | 4 | 1020 | 498 | 652 | 580 | 740 | 650 | 1940 | 2190 | 2420 | 1660 | 731 | 626 | | 5 | 1040 | 506 | 654 | 570 | 900 | 610 | 1750 | 2200 | 2530 | 1440 | 715 | 660 | | 6 | 1040 | 497 | 672 | 580 | 840 | 580 | 1470 | 1850 | 3210 | 1230 | 670 | 616 | | 7 | 927 | 488 | 673 | 570 | 790 | 610 | 1300 | 1690 | 3230 | 1040 | 646 | 811 | | 8 | 878 | 488 | 634 | 720 | 760 | 580 | 1190 | 1430 | 2390 | 1010 | 623 | 1740 | | 9 | 838 | 483 | 540 | 840 | 750 | 560 | 1050 | 1340 | 2120 | 918 | 615 | 4910 | | 10 | 795 | 508 | 460 | 1000 | 730 | 800 | 984 | 1300 | 2260 | 863 | 604 | 13000 | | 11 | 718 | 490 | 440 | 1100 | 670 | 2000 | 936 | 1260 | 2610 | 823 | 598 | 6970 | | 12 | 683 | 540 | 430 | 1150 | 620 | 4500 | 899 | 1230 | 2640 | 1110 | 584 | 3120 | | 13 | 681 | 510 | 480 | 800 | 570 | 3700 | 950 | 1200 | 2180 | 1270 | 575 | 2260 | | 14 | 682 | 535 | 560 | 700 | 530 | 3300 | 1050 | 1190 | 2120 | 1610 | 568 | 1970 | | 15 | 678 | 535 | 620 | 640 | 500 | 2970 | 1100 | 1170 | 1780 | 1940 | 573 | 1680 | | 16 | 673 | 1020 | 600 | 580 | 540 | 2830 | 1070 | 1140 | 1380 | 1800 | 565 | 1360 | | 17 | 650 | 824 | 610 | 560 | 520 | 2760 | 1080 | 1100 | 1280 | 1390 | 557 | 1170 | | 18 | 627 | 909 | 620 | 540 | 500 | 2510 | 987 | 1090 | 1220 | 1540 | 558 | 1030 | | 19 | 615 | 814 | 600 | 540 | 490 | 2140 | 755 | 1150 | 1180 | 1830 | 554 | 899 | | 20 | 621 | 757 | 620 | 540 | 510 | 1680 | 685 | 1050 | 1170 | 1800 | 589 | 802 | | 21 | 633 | 715 | 600 | 540 | 530 | 1480 | 671 | 965 | 1010 | 1610 | 568 | 759 | | 22 | 631 | 686 | 580 | 550 | 500 | 1820 | 691 | 945 | 912 | 1440 | 583 | 731 | | 23 | 698 | 679 | 600 | 560 | 480 | 1940 | 559 | 941 | 837 | 1370 | 655 | 699 | | 24 | 736 | 693 | 640 | 560 | 500 | 1700 | 561 | 1710 | 815 | 1160 | 748 | 679 | | 25 | 811 | 704 | 653 | 580 | 480 | 1600 | 571 | 2990 | 961 | 1030 | 597 | 662 | | 26<br>27<br>28<br>29<br>30<br>31 | 405<br>451<br>485<br>485<br>485<br>474 | 798<br>798<br>729<br>706<br>690 | 705<br>736<br>700<br>640<br>600<br>620 | 560<br>540<br>600<br>780<br>780<br>900 | 520<br>570<br>600<br> | 1770<br>1850<br>1860<br>2290<br>2580<br>2610 | 582<br>628<br>1150<br>1420<br>1360 | 5240<br>8760<br>7970<br>6350<br>5250<br>4140 | 1480<br>1830<br>2720<br>3160<br>3040 | 987<br>879<br>800<br>763<br>754<br>709 | 1170<br>935<br>771<br>1380<br>1200<br>780 | 636<br>623<br>611<br>598<br>593 | | TOTAL<br>MEAN<br>MAX<br>MIN<br>AC-FT | 21795<br>703<br>1040<br>405<br>43230 | 634<br>1020<br>467 | 8896<br>610<br>736<br>430<br>7480 | 20720<br>668<br>1150<br>540<br>41100 | 16960<br>606<br>900<br>480<br>33640 | 1805<br>4500<br>540 | 34519<br>1151<br>2430<br>559<br>68470 | 73521<br>2372<br>8760<br>941<br>145800 | 61275<br>2042<br>3470<br>815<br>121500 | 41466<br>1338<br>2560<br>709<br>82250 | 21836<br>704<br>1380<br>554<br>43310 | 52160<br>1739<br>13000<br>593<br>103500 | CAL YR 1988 TOTAL 689650 MEAN 1884 MAX 6760 MIN 405 AC-FT 1368000 WTR YR 1989 TOTAL 438130 MEAN 1200 MAX 13000 MIN 405 AC-FT 869000 05487980 WHITE BREAST CREEK NEAR DALLAS, IA LOCATION.--Lat 41°14'41", long 93°16'08", in NW1/4 NW1/4 sec.3, T.74 N., R.21 W., Marion County, Hydrologic Unit 07100008, on left bank 15 ft downstream from bridge on county highway, 0.5 mi downstream from Kirk Branch, and 1.7 mi northwest of Dallas. DRAINAGE AREA. -- 342 mi2. PERIOD OF RECORD. -- October 1962 to current year. GAGE. -- Water-stage recorder. Datum of gage is 759.21 ft above NGVD. REMARKS.--Estimated daily discharges: Oct. 1-3, 5-18, 20-22, 26-29, Oct. 31 to Nov. 2, Nov. 4-5, Dec. 8-12, 15-22, Dec. 28 to Jan. 5, Feb. 4 to Mar. 13, 18, 19, July 25, 26, July 28 to Aug. 1, Aug. 6-21, Sept. 2-6, and Sept. 26-30. Records fair except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers data collection platform at station. AVERAGE DISCHARGE.--27 years, 198 ft $^3$ /s, 7.86 in/yr, 143,400 acre-ft/yr; median of yearly mean discharges, 160 ft $^3$ /s, 6.4 in/yr, 116,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 37,300 ft3/s July 16, 1982, gage height, 33.45 ft; minimum daily discharge, 0.03 ft3/s Aug. 13, 1989. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 11, 1962, reached a stage of 28.87 ft, from floodmark, discharge, about 12,000 ft<sup>3</sup>/s. Flood of June 6, 1947, may have been slightly higher. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 3,000 ft3/s and maximum (\*): | | | Discharge | Gage height | | | Discharge | Gage height | |---------|------|------------|-------------|------------|-------------|----------------------|-------------| | Date | Time | $(ft^3/s)$ | (ft) | Date | Time | (ft <sup>3</sup> /s) | (ft) | | Sept. 9 | 0330 | *4.080 | *18.24 | No other p | eak greater | than base dischar: | ze. | Minimum daily discharge, 0.03 ft3/s Aug. 13. | | | DISCHARG | E, CUBIC | FEET PER | SECOND, | WATER YEAR<br>EAN VALUES | OCTOBER | 1988 TO | SEPTEMBER | 1989 | | | |-----------------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|-------------------------------------------|----------------------------------------------------|-------------------------------------------|------------------------------------------|-------------------------------------------|----------------------------------------------------| | DAY | OCT | NOV | DEC | Jan | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | 3.3<br>2.7<br>2.2<br>1.8<br>1.5 | 1.8<br>1.7<br>1.6<br>1.5 | 1.8<br>2.1<br>2.3<br>2.5<br>2.6 | 2.4<br>2.3<br>2.4<br>2.6<br>2.5 | 2.8<br>3.0<br>1.8<br>2.0<br>2.2 | 1.5<br>1.6<br>1.7<br>7.0<br>28 | 6.3<br>6.2<br>5.7<br>5.2<br>5.0 | 23<br>43<br>26<br>20<br>17 | 38<br>25<br>127<br>23<br>12 | 2.6<br>2.6<br>2.6<br>2.3<br>2.3 | .40<br>.26<br>.26<br>.22<br>.13 | 16<br>10<br>5.0<br>3.0<br>2.0 | | 6<br>7<br>8<br>9<br>10 | 1.3<br>1.1<br>.86<br>.70<br>.62 | 1.6<br>1.6<br>1.9<br>1.6 | 2.7<br>2.8<br>2.5<br>2.4<br>2.6 | 2.4<br>2.5<br>2.3<br>2.6<br>2.7 | 2.4<br>2.5<br>2.4<br>2.3<br>2.2 | 9.0<br>6.0<br>5.0<br>7.0<br>20 | 4.9<br>4.6<br>4.4<br>4.2<br>4.0 | 13<br>10<br>7.6<br>6.9<br>7.0 | 7.5<br>6.9<br>6.7<br>6.7<br>6.3 | 2.3<br>1.9<br>1.8<br>1.7 | .10<br>.09<br>.08<br>.07<br>.06 | 1.0<br>12<br>111<br>2060<br>860 | | 11<br>12<br>13<br>14<br>15 | .56<br>.60<br>.74<br>1.0<br>1.2 | 1.6<br>1.7<br>2.3<br>2.4<br>2.6 | 2.8<br>3.0<br>3.3<br>3.5<br>3.1 | 2.7<br>2.8<br>2.9<br>2.9<br>3.1 | 2.1<br>2.0<br>2.1<br>2.3<br>2.2 | 40<br>30<br>21<br>17<br>12 | 3.8<br>3.7<br>3.5<br>3.1<br>3.1 | 7.2<br>7.6<br>7.8<br>8.1<br>7.9 | 7.4<br>7.3<br>7.0<br>6.6<br>5.2 | 1.3<br>3.8<br>3.0<br>1.3 | .05<br>.04<br>.03<br>.05<br>.06 | 199<br>71<br>37<br>25<br>19 | | 16<br>17<br>18<br>19<br>20 | 1.3<br>1.4<br>1.5<br>1.6<br>1.7 | 2.4<br>1.8<br>2.8<br>1.8<br>1.8 | 3.2<br>3.3<br>3.4<br>3.3<br>3.2 | 3.1<br>3.1<br>3.2<br>3.2<br>3.3 | 2.1<br>2.0<br>2.0<br>1.9 | 8.7<br>6.3<br>6.0<br>6.6<br>7.1 | 3.2<br>2.8<br>2.7<br>2.4<br>2.3 | 6.3<br>5.4<br>6.6<br>9.4<br>16 | 4.7<br>5.4<br>5.3<br>6.5<br>4.5 | .94<br>.64<br>.96<br>.77<br>1.1 | .07<br>.08<br>.07<br>.06<br>.10 | 13<br>11<br>8.8<br>9.5<br>6.3 | | 21<br>22<br>23<br>24<br>25 | 1.8<br>1.7<br>1.6<br>1.6 | 1.9<br>2.1<br>2.3<br>2.3<br>2.3 | 3.0<br>3.2<br>3.6<br>2.9<br>2.7 | 3.2<br>3.5<br>3.6<br>3.4<br>3.4 | 1.8<br>1.8<br>1.9<br>1.8 | 6.8<br>7.7<br>8.3<br>8.4<br>8.3 | 2.0<br>2.1<br>2.0<br>1.6<br>1.8 | 17<br>15<br>17<br>152<br>29 | 4.9<br>4.1<br>4.0<br>3.9 | 1.3<br>1.6<br>1.6<br>.91<br>.80 | .30<br>.87<br>1.9<br>1.8<br>1.5 | 5.1<br>4.6<br>3.9<br>4.0<br>3.6 | | 26<br>27<br>28<br>29<br>30<br>31 | 1.5<br>1.5<br>1.4<br>1.5<br>1.6 | 2.0<br>2.3<br>2.8<br>1.8<br>1.6 | 2.8<br>2.4<br>2.3<br>2.4<br>2.6<br>2.5 | 3.3<br>3.2<br>3.1<br>29<br>8.4<br>4.2 | 1.6<br>1.7<br>1.6<br> | 7.9<br>7.0<br>5.7<br>5.5<br>5.7<br>5.9 | 2.5<br>2.9<br>4.5<br>7.6<br>7.3 | 9.8<br>7.5<br>7.9<br>652<br>172<br>58 | 13<br>4.2<br>3.2<br>3.3<br>3.2 | .68<br>.55<br>.50<br>.52<br>.56 | 4.7<br>4.1<br>4.5<br>5.9<br>5.1 | 3.1<br>3.0<br>2.6<br>2.7<br>3.5 | | TOTAL<br>MEAN<br>MAX<br>MIN<br>AC-FT<br>CFSM<br>IN. | 45.18<br>1.46<br>3.3<br>.56<br>90<br>.00 | 59.0<br>1.97<br>2.8<br>1.5<br>117<br>.01 | 86.8<br>2.80<br>3.6<br>1.8<br>172<br>.01 | 123.3<br>3.98<br>29<br>2.3<br>245<br>.01 | 57.9<br>2.07<br>3.0<br>1.5<br>115<br>.01 | 318.7<br>10.3<br>40<br>1.5<br>632<br>.02 | 115.4<br>3.85<br>7.6<br>1.6<br>229<br>.01 | 1393.0<br>44.9<br>652<br>5.4<br>2760<br>.13<br>.15 | 381.8<br>12.7<br>127<br>3.2<br>757<br>.04 | 45.81<br>1.48<br>3.8<br>.48<br>91<br>.00 | 107.95<br>3.48<br>75<br>.03<br>214<br>.01 | 3515.7<br>117<br>2060<br>1.0<br>6970<br>.34<br>.38 | TOTAL 10883.79 MEAN 29.7 MAX 520 MIN .52 AC-FT 21590 CFSM .09 IN. 1.18 TOTAL 6250.54 MEAN 17.1 MAX 2060 MIN .03 AC-FT 12400 CFSM .05 IN. .67 CAL YR 1988 WTR YR 1989 ## 05488100 LAKE RED ROCK NEAR PELLA, IA LOCATION.--Lat 41°22'11", long 92°58'48", in NE1/4 NW1/4 sec.19, T.76 N., R.18 W., Marion County, Hydrologic Unit O7100008, at outlet works near right end of Red Rock Dam on Des Moines River, 1.4 mi upstream from Lake Creek, 4.5 mi southwest of Pella and at mile 142.3. DRAINAGE AREA, -- 12.323 mi2. PERIOD OF RECORD. -- March 1969 to current year. GAGE. -- Water-stage recorder. Datum of gage is at NGVD (levels by U.S. Army Corps of Engineers). REMARKS.--Reservoir is formed by earthfill dam completed in 1969. Storage began in March 1969. Releases controlled through 14 concrete conduits extending through the concrete ogee spillway section into the stilling basin. Inlet invert elevation at 690 ft above NGVD. Maximum design discharge through the conduits is 37,500 ft<sup>3</sup>/s but normal flood control operation limits maximum outflow to 30,000 ft<sup>3</sup>/s. Spillway section consists of 5 tainter gates, 41 ft wide and 46 ft high, on concrete ogee crest at elevation 736 ft. The storage capacity of the reservoir at full flood-control pool level, 780 ft, is 1,790,000 acre-ft, surface area, 65,500 acres and that of conservation pool level, 728 feet, is 89,000 acre-feet, surface area, 9,980 acres. Reservoir is used for flood control, low-flow augmentation, conservation and recreation. Normal operation will maintain an elevation of 728 ft with minimum release of 300 ft<sup>3</sup>/s and maximum release of 30,000 ft<sup>3</sup>/s during the nongrowing season, providing discharges at Ottumwa and Keosauqua do not exceed 30,000 ft<sup>3</sup>/s and 35,000 ft<sup>3</sup>/s respectively. Storage tables for water years 1985-1986 published as day second-feet instead of acre-feet storage. COOPERATION. -- Records provided by U.S. Army Corps of Engineers. EXTREMES FOR PERIOD OF RECORD.--Maximum daily contents, 1,765,000 acre-ft June 25, 1984; maximum elevation, 779.61 ft June 25, 1984; minimum daily contents, 43,900 acre-ft May 24, 1985, minimum elevation, 719.68 ft Feb. 17, 1977. EXTREMES FOR CURRENT YEAR.--Maximum daily contents, 153,000 acre-ft Sept. 9; maximum elevation, 735.6 ft Sept. 9; minimum daily contents, 106,000 acre-ft Oct. 1, 2; minimum elevation, 731.90 ft Oct. 1, 2. ## Capacity table (elevation, in feet, and contents, in acre-feet) | 722 | 45,600 | 740 | 256.000 | 760 | 789,000 | |-----|---------|-----|---------|-----|-----------| | 725 | 63,400 | 745 | 357,000 | 765 | 983,000 | | 730 | 110,000 | 750 | 479,000 | 770 | 1,213,000 | | 735 | 174,000 | 755 | 623,000 | | | ## RESERVOIR STORAGE (ACRE-FEET), WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 OBSERVATION AT 24:00 VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|----------------------------------------------------------|------------------------------------------------|------------------------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|------------------------------------------------|------------------------------------------------| | 1<br>2<br>3<br>4<br>5 | 106000<br>106000<br>108000<br>109000<br>110000 | 117000<br>117000<br>117000<br>118000<br>120000 | 140000<br>141000<br>141000<br>142000<br>143000 | 145000<br>144000<br>144000<br>144000<br>145000 | 141000<br>141000<br>138000<br>139000<br>139000 | 141000<br>141000<br>141000<br>142000<br>142000 | 139000<br>139000<br>139000<br>138000<br>136000 | 143000<br>142000<br>142000<br>143000<br>143000 | 149000<br>147000<br>146000<br>144000<br>141000 | 136000<br>136000<br>136000<br>137000<br>137000 | 137000<br>137000<br>137000<br>138000<br>138000 | 139000<br>137000<br>137000<br>138000<br>138000 | | 6<br>7<br>8<br>9<br>10 | 111000<br>112000<br>113000<br>113000<br>112000 | 118000<br>119000<br>119000<br>120000<br>120000 | 144000<br>144000<br>145000<br>145000<br>145000 | 145000<br>145000<br>144000<br>143000<br>143000 | 140000<br>141000<br>141000<br>142000<br>143000 | 141000<br>142000<br>142000<br>143000<br>144000 | 136000<br>137000<br>139000<br>140000 | 141000<br>141000<br>141000<br>142000<br>141000 | 141000<br>141000<br>139000<br>137000<br>137000 | 137000<br>137000<br>136000<br>136000<br>136000 | 137000<br>137000<br>137000<br>136000<br>136000 | 139000<br>141000<br>148000<br>153000<br>151000 | | 11<br>12<br>13<br>14<br>15 | 112000<br>111000<br>111000<br>111000<br>113000 | 119000<br>122000<br>122000<br>122000<br>125000 | 145000<br>145000<br>145000<br>145000<br>144000 | 144000<br>144000<br>145000<br>145000 | 143000<br>143000<br>143000<br>143000<br>143000 | 150000<br>152000<br>148000<br>145000<br>142000 | 141000<br>141000<br>142000<br>143000<br>144000 | 141000<br>141000<br>140000<br>140000 | 137000<br>138000<br>137000<br>136000 | 137000<br>138000<br>137000<br>137000<br>138000 | 136000<br>136000<br>136000<br>136000 | 143000<br>139000<br>140000<br>142000<br>144000 | | 16<br>17<br>18<br>19<br>20 | 112000<br>114000<br>113000<br>113000<br>113000 | 125000<br>126000<br>128000<br>129000<br>130000 | 144000<br>143000<br>143000<br>143000<br>144000 | 145000<br>145000<br>145000<br>145000<br>145000 | 143000<br>142000<br>142000<br>142000<br>142000 | 141000<br>142000<br>142000<br>142000<br>143000 | 145000<br>145000<br>146000<br>143000<br>141000 | 139000<br>138000<br>139000<br>141000 | 136000<br>136000<br>137000<br>137000<br>136000 | 138000<br>138000<br>140000<br>139000<br>138000 | 135000<br>135000<br>135000<br>135000<br>135000 | 146000<br>147000<br>147000<br>148000<br>148000 | | 21<br>22<br>23<br>24<br>25 | 114000<br>114000<br>115000<br>115000<br>116000 | 130000<br>131000<br>132000<br>133000<br>135000 | 144000<br>144000<br>144000<br>145000<br>144000 | 145000<br>145000<br>144000<br>144000<br>143000 | 143000<br>142000<br>142000<br>142000<br>142000 | 142000<br>141000<br>141000<br>140000<br>139000 | 140000<br>139000<br>139000<br>140000 | 139000<br>139000<br>139000<br>142000<br>141000 | 137000<br>137000<br>137000<br>137000<br>138000 | 137000<br>137000<br>137000<br>137000<br>136000 | 135000<br>135000<br>137000<br>137000<br>139000 | 148000<br>148000<br>147000<br>148000<br>148000 | | 26<br>27<br>28<br>29<br>30<br>31 | 115000<br>117000<br>116000<br>116000<br>116000<br>117000 | 137000<br>139000<br>138000<br>139000<br>140000 | 145000<br>145000<br>144000<br>144000<br>144000 | 143000<br>143000<br>144000<br>145000<br>144000<br>143000 | 142000<br>142000<br>142000<br> | 138000<br>140000<br>140000<br>139000<br>141000<br>139000 | 140000<br>142000<br>142000<br>142000<br>142000 | 139000<br>136000<br>137000<br>136000<br>136000<br>148000 | 138000<br>138000<br>137000<br>137000<br>137000 | 136000<br>136000<br>135000<br>137000<br>137000<br>137000 | 145000<br>144000<br>143000<br>143000<br>140000 | 148000<br>148000<br>149000<br>149000<br>149000 | | MEAN<br>MAX<br>MIN | 113000<br>117000<br>106000 | 126000<br>140000<br>117000 | 144000<br>145000<br>140000 | 144000<br>145000<br>143000 | 142000<br>143000<br>138000 | 142000<br>152000<br>138000 | 141000<br>146000<br>136000 | 140000<br>148000<br>136000 | 139000<br>149000<br>136000 | 137000<br>140000<br>135000 | 138000<br>145000<br>135000 | 145000<br>153000<br>137000 | CAL YR 1988 MEAN 93900 MAX 145000 MIN 72100 WTR YR 1989 MEAN 137000 MAX 153000 MIN 106000 ## 05488200 ENGLISH CREEK NEAR KNOXVILLE, IA LOCATION.--Lat 41°16'00", long 93°05'00", in NE1/4 NE1/4 SE1/4 sec.16, T.75 N., R.19 W., Marion County, Hydrologic Unit 07100009, on left bank 30 ft from left upstream abutment of bridge on State Highway 92, 3 mi east of Knoxville, and 11.4 mi upstream from mouth at Des Moines River. DRAINAGE AREA. -- 90.1 mi2. PERIOD OF RECORD. -- July 1985 to current year. GAGE.--Water-stage recorder. Datum of gage is 721.79 ft above NGVD. REMARKS.--Estimated daily discharges: Oct. 3 to Nov. 8, Dec. 2-15, Dec. 20 to Jan. 13, Jan. 17-19, Feb. 18 to Mar. 10, Mar. 15-17, May 4-22, June 2, 4-24, June 27 to July 11, July 17, July 20 to Aug. 22, Sept. 3-6, and Sept. 18-26. Records fair except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers satellite data collection platform at station. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,270 ft<sup>3</sup>/s May 17, 1986, gage height, 21.76 ft; no flow for several days in 1988 and 1989. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of July 16, 1982 reached a stage of 30.28 ft, gage datum, discharge 28,000 ft<sup>3</sup>/s, from contracted-opening indirect computations. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 600 ft3/s and maximum (\*); Discharge Gage height Date Time (ft $^3$ /s) (ft) Date Time (ft $^3$ /s) (ft) Sept. 9 0700 \*1,370 \*18.74 No other peak greater than base discharge. No flow Aug. 8-13. | | | DISCHARGE | , CUBIC | FEET PER | | WATER YEAR<br>EAN VALUES | OCTOBER | 1988 TO | SEPTEMBER | 1989 | | | |-------|-------|-----------|---------|----------|-------|--------------------------|---------|---------|-----------|------|--------|---------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 6.0 | .16 | . 52 | .42 | .35 | . 48 | 1.2 | 6.3 | 1.9 | .60 | . 04 | 26 | | 2 | 1.0 | .15 | . 45 | .40 | .36 | . 49 | .94 | 3.0 | 1.5 | . 45 | .03 | 3.3 | | 3 | .70 | . 14 | .35 | .38 | .37 | .52 | 1.0 | .86 | 34 | .40 | .02 | 1.5 | | 4 | . 52 | . 13 | .30 | .37 | .37 | 1.7 | .97 | .70 | 13 | .30 | .02 | .70 | | 5 | .38 | . 12 | .27 | .39 | . 44 | 6.0 | .89 | .80 | 6.0 | . 20 | .01 | .40 | | 6 | .30 | .11 | .24 | .40 | . 48 | 2.5 | .79 | .60 | 2.7 | . 15 | .01 | .25 | | 7 | . 18 | . 12 | . 21 | .41 | . 56 | 1.8 | .72 | . 50 | 1.0 | . 10 | .01 | 3.8 | | 8 | . 15 | . 13 | . 19 | . 42 | .61 | 1.0 | . 90 | . 45 | 1.1 | .07 | .00 | 136 | | 9 | . 13 | .13 | . 18 | .42 | . 50 | 3.0 | . 92 | .39 | . 90 | . 05 | .00 | 1240 | | 10 | . 12 | . 18 | .19 | .39 | . 50 | 6.0 | . 82 | .35 | . 70 | . 04 | .00 | 411 | | 11 | .11 | .15 | . 19 | .37 | . 53 | 10 | .75 | .31 | 1.1 | .05 | .00 | 37 | | 12 | .10 | . 98 | .21 | .34 | . 52 | 4.6 | .72 | . 27 | 1.8 | .89 | .00 | 24 | | 13 | .09 | . 75 | .20 | .32 | . 56 | 1.6 | .80 | . 25 | 1.1 | .40 | .00 | 17 | | 14 | . 11 | .33 | . 19 | .30 | . 56 | 1.2 | . 93 | . 23 | .90 | . 21 | .01 | 13 | | 15 | .20 | . 35 | .18 | .37 | . 60 | 1.1 | . 93 | . 26 | .78 | .11 | .01 | 9.7 | | 16 | .28 | .81 | . 18 | .31 | . 58 | 1.0 | . 85 | .20 | . 70 | .03 | .02 | 7.3 | | 17 | . 33 | . 55 | . 19 | .35 | . 54 | . 90 | . 73 | . 15 | . 64 | .01 | .03 | 5.7 | | 18 | .38 | . 55 | . 20 | . 32 | . 53 | . 80 | . 59 | . 11 | .90 | 1.5 | . 02 | 5.0 | | 19 | . 34 | . 49 | . 24 | .31 | . 52 | . 90 | . 54 | 2.0 | .70 | . 53 | . 02 | 4.0 | | 20 | . 39 | .31 | . 29 | .30 | . 51 | 1.1 | . 45 | . 90 | . 60 | .35 | .04 | 3.5 | | 21 | . 43 | .27 | .31 | .29 | . 50 | 1.1 | .41 | .60 | . 54 | . 25 | .03 | 3.0 | | 22 | . 46 | .21 | .35 | .31 | .49 | 1.4 | .39 | . 50 | . 50 | . 15 | .40 | 2.7 | | 23 | . 50 | . 15 | .39 | .34 | . 50 | 1.5 | .39 | 13 | . 54 | . 15 | 15 | 2.5 | | 24 | . 52 | . 15 | . 42 | . 34 | . 48 | 1.5 | .38 | 23 | . 42 | . 11 | 15 | 2.2 | | 25 | . 40 | . 15 | . 44 | . 34 | . 55 | 1.3 | . 40 | 3.8 | 7.2 | .08 | 14 | 2.0 | | 26 | .30 | 3.1 | . 46 | . 34 | . 52 | 1.4 | 1.1 | . 48 | 7.3 | . 08 | 42 | 1.7 | | 27 | . 25 | 3.7 | .48 | . 34 | . 49 | 1.6 | 2.3 | . 68 | 3.0 | .08 | 28 | 1.5 | | 28 | . 23 | 5.4 | . 50 | .76 | . 47 | 1.7 | 4.7 | 1.6 | 1.7 | . 07 | 5.1 | 1.1 | | 29 | .21 | 2.1 | . 48 | 7.9 | | 1.9 | 1.9 | 3.2 | 1.0 | .06 | 2.8 | .72 | | 30 | . 19 | .80 | . 46 | 1.8 | | 2.1 | 2.4 | 3.9 | .70 | .05 | 3.2 | .37 | | 31 | . 17 | | . 44 | .37 | | 1.4 | | . 96 | | . 06 | 5.4 | | | TOTAL | 15.47 | | 9.70 | 20.42 | 13.99 | | 30.81 | 70.35 | 94.92 | 7.58 | 131.22 | 1966.94 | | MEAN | . 50 | .76 | .31 | . 66 | . 50 | 2.05 | 1.03 | 2.27 | 3.16 | . 24 | 4.23 | 65.6 | | MAX | 6.0 | 5.4 | . 52 | 7.9 | .61 | 10 | 4.7 | 23 | 34 | 1.5 | 42 | 1240 | | MIN | .09 | . 11 | . 18 | .29 | .35 | .48 | .38 | .11 | .42 | .01 | .00 | .25 | | AC-FT | 31 | 45 | 19 | 41 | 28 | 126 | 61 | 140 | 188 | 15 | 260 | 3900 | | CFSM | .01 | .01 | .00 | .01 | .01 | .02 | .01 | . 03 | . 04 | .00 | .05 | .73 | | IN. | .01 | .01 | .00 | .01 | .01 | .02 | .01 | .03 | .04 | .00 | . 05 | .81 | CAL YR 1988 TOTAL 2663.69 MEAN 7.28 MAX 100 MIN .00 AC-FT 5280 CFSM .08 IN. 1.10 WTR YR 1989 TOTAL 2447.66 MEAN 6.71 MAX 1240 MIN .00 AC-FT 4850 CFSM .07 IN. 1.01 #### 05488500 DES MOINES RIVER NEAR TRACY, IA LOCATION.--Lat 41°16'53", long 92°51'34", in NW1/4 SE1/4 sec.19, T.75 N., R.17 W., Mahaska County, Hydrologic Unit 07100009, on right bank 250 ft upstream from abandoned Bellefountaine Bridge, 0.8 mi east of Tracy, 3.1 mi upstream from Cedar Creek, 3.8 mi downstream from bridge on newly located State Highway 92, 6.4 mi downstream from English Creek, and at mile 130.4. DRAINAGE AREA. -- 12,479 mi2. PERIOD OF RECORD. -- March, 1920 to current year. Monthly discharge only for some periods, published in WSP 1308. REVISED RECORDS. -- WSP 1438: Drainage area. WSP 1508: 1920 (M), 1922 (M), 1933. GAGE.--Water-stage recorder. Datum of gage is 670.91 ft above NGVD. Prior to June 26, 1940, and June 30, 1952, to Nov. 4, 1960, nonrecording gage, and June 27, 1940, to June 29, 1952, water-stage recorder, at site 250 ft downstream at same datum. REMARKS.--Estimated daily discharges: Dec. 11, 12, 15-18, Dec. 27 to Jan. 2, Jan. 4, 8-11, Feb. 3-10, 12, 13, 15-27, and Mar. 5, 6. Records good except those for periods of estimated daily discharges, which are fair. Flow regulated by Lake Red Rock (station 05488100) 11.9 mi upstream, since March 12, 1969. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers gage-height telemeter and data collection platform at station. AVERAGE DISCHARGE.--69 years, 5,043 ft<sup>3</sup>/s, 5.49 in/yr, 3,654,000 acre-ft/yr; median of yearly mean discharges, 4,160 ft<sup>3</sup>/s, 4.5 in/yr, 3,010,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 155,000 ft<sup>3</sup>/s, June 14, 1947, gage height, 26.5 ft; minimum daily discharge, 40 ft<sup>3</sup>/s Jan. 29 to Feb. 1, 1940. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since 1851, that of June 14, 1947. Flood of May 31, 1903, reached a stage of about 25 ft, discharge, about 130,000 ft<sup>3</sup>/s. Minimum daily discharge since at least 1910, that of Jan. 29 to Feb. 1, 1940. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 13,200 ft<sup>3</sup>/s Sept. 10, gage height, 8.85 ft; minimum daily discharge, 324 ft<sup>3</sup>/s Nov. 6. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | | | DISCHA | KGE, CUBI | C FEEL FE | | , WAIER IEA<br>MEAN VALUES | | ER 1900 IU | SEFIEMBER | 1303 | | | |--------|-------|--------|-----------|-----------|-------|----------------------------|-------|---------------|-------------|-------|-------------|--------| | DAY | ост | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 411 | 344 | 338 | 650 | 1930 | 599 | 2470 | 1540 | 3290 | 2810 | 425 | 1190 | | | 403 | 344 | 340 | 650 | 1230 | 599 | 2480 | 1980 | 3290 | 2560 | 423 | 1020 | | 2<br>3 | 390 | 335 | 339 | 669 | 800 | 601 | 2480 | 2310 | 3300 | 1920 | 423 | 590 | | 4 | 382 | | | | | | | | | 1200 | 422 | 406 | | | | 336 | 339 | 660 | 600 | 610 | 2480 | 2100 | 3340 | | | | | 5 | 384 | 338 | 342 | 697 | 500 | 620 | 2280 | 2090 | 3290 | 1180 | 420 | 381 | | 6 | 507 | 324 | 350 | 692 | 450 | 620 | 1740 | 2100 | 3280 | 1170 | 416 | 373 | | 7 | 415 | 333 | 346 | 640 | 435 | 614 | 1210 | 1800 | 3280 | 1160 | 417 | 411 | | 8 | 389 | 331 | 341 | 660 | 430 | 613 | 660 | 1260 | 3270 | 1090 | 414 | 907 | | 9 | 564 | 345 | 345 | 640 | 430 | 613 | 629 | 1250 | 2960 | 921 | 408 | 4070 | | 10 | 987 | 338 | 354 | 620 | 560 | 732 | 622 | 1240 | 2370 | 751 | 365 | 12600 | | 11 | 879 | 339 | 360 | 620 | 799 | 1490 | 597 | 1250 | 2390 | 635 | 363 | 12200 | | 12 | 835 | 369 | 360 | 628 | 820 | 3800 | 628 | 1260 | 2600 | 915 | 366 | 6870 | | 13 | 632 | 344 | 446 | 612 | 820 | 5950 | 629 | 1260 | 2820 | 1190 | 366 | 2410 | | 14 | 411 | 338 | 628 | 606 | 736 | 5520 | 686 | 1270 | 2400 | 1550 | 363 | 1770 | | 15 | | | | | | | | | | 1570 | 36 <b>3</b> | 872 | | 13 | 403 | 365 | 665 | 604 | 780 | 4100 | 798 | 1260 | 1970 | 13/0 | 363 | 6/2 | | 16 | 400 | 367 | 660 | 604 | 800 | 3200 | 807 | 1260 | 1490 | 1570 | 363 | 840 | | 17 | 399 | 345 | 655 | 603 | 720 | 2880 | 803 | 1250 | 1210 | 1530 | 363 | 829 | | 18 | 388 | 347 | 650 | 605 | 620 | 2200 | 937 | 1140 | 1210 | 1380 | 363 | 823 | | 19 | 393 | 348 | 644 | 640 | 600 | 1760 | 1500 | 876 | <b>1200</b> | 1820 | 376 | 820 | | 20 | 396 | 340 | 620 | 710 | 600 | 1370 | 1630 | 832 | 1180 | 2130 | 369 | 817 | | 21 | 386 | 340 | 602 | 713 | 600 | 1580 | 940 | 818 | 964 | 1860 | 363 | 816 | | 22 | 387 | 347 | 609 | 716 | 600 | 1980 | 814 | 807 | 824 | 1390 | 363 | 823 | | 23 | 396 | 343 | 605 | | | | | 804 | 811 | 1390 | 417 | 751 | | 23 | | | | 716 | 610 | 1980 | 818 | | | | 378 | 580 | | 24 | 380 | 347 | 609 | 716 | 620 | 1980 | 756 | 1290 | 807 | 1380 | | | | 25 | 393 | 347 | 601 | 723 | 620 | 1980 | 628 | 2630 | 832 | 1310 | 372 | 444 | | 26 | 395 | 380 | 619 | 719 | 600 | 1980 | 638 | 4620 | 1090 | 855 | 690 | 436 | | 27 | 397 | 355 | 640 | 720 | 600 | 1840 | 725 | 7160 | 1850 | 796 | 1310 | 438 | | 28 | 348 | 341 | 660 | 734 | 601 | 1570 | 1050 | 7610 | 2450 | 632 | 1390 | 439 | | 29 | 352 | 346 | 650 | 832 | | 1890 | 1420 | 5000 | 2800 | 449 | 1590 | 439 | | 30 | 351 | 336 | 650 | 1340 | | 2460 | 1420 | 3750 | 2800 | 438 | 1980 | 449 | | 31 | 347 | | 650 | 1970 | | 2460 | | 2900 | | 429 | 1670 | | | | | | | | | _ | | _ | | | | | | TOTAL | 14100 | 10352 | 16017 | 22709 | 19511 | 60191 | 35275 | <b>6</b> 6717 | 65368 | 39981 | 18311 | 55814 | | MEAN | 455 | 345 | 517 | 733 | 697 | 1942 | 1176 | 2152 | 2179 | 1290 | 591 | 1860 | | MAX | 987 | 380 | 665 | 1970 | 1930 | 5950 | 2480 | 7610 | 3340 | 2810 | 1980 | 12600 | | MIN | 347 | 324 | 338 | 603 | 430 | 599 | 597 | 804 | 807 | 429 | 363 | 373 | | AC-FT | 27970 | 20530 | 31770 | 45040 | 38700 | 119400 | 69970 | 132300 | 129700 | 79300 | 36320 | 110700 | | | | | | | | | | | | | | | CAL YR 1988 TOTAL 687748 MEAN 1879 MAX 6090 MIN 324 AC-FT 1364000 WTR YR 1989 TOTAL 424346 MEAN 1163 MAX 12600 MIN 324 AC-FT 841700 ## 05489000 CEDAR CREEK NEAR BUSSEY, IA LOCATION.--Lat 41°13'09", long 92°54'38", at SW corner sec.11, T.74 N., R.18 W., Marion County, Hydrologic Unit 07100009, on left bank 10 ft downstream from bridge on State Highway 156, 0.8 mi downstream from North Cedar Creek, 1.6 mi northwest of Bussey, 3.0 mi upstream from Honey Creek, and 8.9 mi upstream from mouth. DRAINAGE AREA. -- 374 mi2. PERIOD OF RECORD, -- October 1947 to current year. REVISED RECORDS, -- WSP 1438: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 682.15 ft above NGVD (levels by U.S. Army Corps of Engineers). Prior to Feb. 21, 1949, nonrecording gage at same site and datum. REMARKS.--Estimated daily discharges: Oct. 27 to Nov. 2, Dec. 15-17, 27, 28, 31, Jan. 5-9, Feb. 2 to Mar. 17, and June 30 to July 4. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers satellite data collection platform and gage-height telemeter at station. AVERAGE DISCHARGE.--42 years, 213 $ft^3/s$ , 7.73 in/yr, 154,300 acre-ft/yr; median of yearly mean discharges, 180 $ft^3/s$ , 6.5 in/yr, 130,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 96,000 ft<sup>3</sup>/s July 3, 1982, gage height, 34.61 ft; no flow Sept. 6-20, 1955, Oct. 11, 12, 1956, Aug. 12, 13, 1989. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in June 1946 reached a stage of 28.45 ft on upstream side and 28.05 ft on downstream side of bridge, levels to floodmarks by U.S. Army Corps of Engineers, discharge, 31.500 ft<sup>3</sup>/s. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 4,000 ft3/s and maximum (\*); | | | Discharge | Gage height | | | Discharge | Gage height | |---------|------|------------|-------------|----------|--------------|----------------------|-------------| | Date | Time | $(ft^3/s)$ | (ft) | Date | Time | (ft <sup>3</sup> /s) | (ft) | | Sept. 9 | 2330 | *5.710 | *19.17 | No other | peak greater | than base discha | rge. | No flow, Aug. 12, 13. | | | DISCHARG | E, CUBIC | FEET PER | SECOND, | WATER YEAR<br>EAN VALUES | OCTOBER | R 1988 TO | SEPTEMBE | R 1989 | | | |-----------------------------------|------------------------------------------|-------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|-------------------------------------------|-------------------------------------------|--------------------------------------------|------------------------------------------|--------------------------------------------------|---------------------------------------------------|-----------------------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | 22<br>6.8<br>3.2<br>2.3<br>1.4 | .82<br>.78<br>.74<br>.67<br>.62 | 4.8<br>4.0<br>4.0<br>3.0<br>3.1 | 2.6<br>2.4<br>2.3<br>2.4<br>2.5 | 28<br>12<br>8.0<br>5.4<br>4.0 | 1.9<br>2.0<br>2.1<br>9.0<br>50 | 7.6<br>7.6<br>7.0<br>6.4<br>5.4 | 21<br>63<br>52<br>34<br>20 | 19<br>13<br>52<br>27<br>8.2 | 2.0<br>1.6<br>1.6<br>.65<br>.34 | .38<br>.34<br>.32<br>.29<br>.25 | 305<br>96<br>36<br>12<br>4.1 | | 6<br>7<br>8<br>9<br>10 | .84<br>.66<br>.56<br>.53<br>.49 | .63<br>.69<br>.68<br>.98 | 3.1<br>3.1<br>2.9<br>2.6<br>2.5 | 2.6<br>2.7<br>2.7<br>2.6<br>2.6 | 3.6<br>3.3<br>3.1<br>2.9<br>2.8 | 17<br>10<br>8.0<br>13<br>35 | 5.2<br>4.7<br>4.8<br>4.9<br>5.1 | 9.3<br>5.6<br>5.2<br>3.9 | 4.0<br>2.6<br>2.9<br>2.6<br>2.1 | .27<br>.24<br>.19<br>.17<br>.10 | .19<br>.11<br>.07<br>.06<br>.06 | 1.9<br>3.9<br>682<br>4390<br>1810 | | 11<br>12<br>13<br>14<br>15 | .38<br>.36<br>.31<br>.35<br>.90 | 2.9<br>2.1<br>4.4<br>3.0<br>7.4 | 2.4<br>2.0<br>1.9<br>2.0<br>1.9 | 2.5<br>2.5<br>2.5<br>2.5<br>3.4 | 2.7<br>2.6<br>2.5<br>2.5<br>2.4 | 80<br>64<br>50<br>40<br>32 | 5.3<br>5.2<br>4.8<br>4.1<br>4.0 | 3.3<br>2.8<br>2.5<br>2.3<br>2.4 | 5.8<br>6.0<br>4.0<br>2.9<br>2.6 | .21<br>39<br>55<br>25<br>11 | .04<br>.00<br>.00<br>.03<br>.06 | 257<br>153<br>104<br>79<br>59 | | 16<br>17<br>18<br>19<br>20 | 1.1<br>1.3<br>1.5<br>1.3 | 20<br>7.5<br>3.9<br>3.6<br>5.3 | 1.8<br>1.7<br>1.6<br>1.8<br>2.6 | 3.4<br>2.9<br>2.9<br>3.1<br>3.5 | 2.4<br>2.3<br>2.2<br>2.2<br>2.2 | 27<br>22<br>18<br>15<br>14 | 4.0<br>3.9<br>4.3<br>6.1<br>5.3 | 1.2<br>.90<br>.73<br>3.6<br>4.7 | 2.4<br>2.3<br>2.7<br>2.8<br>2.5 | 7.4<br>4.4<br>13<br>8.1<br>4.7 | .06<br>.06<br>.02<br>.05<br>.12 | 46<br>34<br>25<br>19<br>16 | | 21<br>22<br>23<br>24<br>25 | 1.7<br>1.8<br>2.0<br>1.7<br>1.6 | 3.4<br>2.7<br>2.4<br>2.5<br>2.6 | 2.6<br>2.7<br>2.8<br>3.4<br>3.7 | 3.5<br>3.5<br>3.5<br>3.5<br>3.6 | 2.1<br>2.0<br>1.9<br>2.1<br>1.9 | 11<br>8.4<br>7.6<br>6.7<br>6.9 | 4.9<br>3.7<br>3.5<br>3.5<br>6.8 | 11<br>3.9<br>2.1<br>70<br>78 | 2.4<br>2.4<br>2.9<br>1.4<br>5.1 | 1.8<br>1.2<br>1.1<br>.75<br>.77 | .11<br>.06<br>2.6<br>2.0<br>.70 | 12<br>11<br>10<br>8.7<br>7.7 | | 26<br>27<br>28<br>29<br>30<br>31 | 1.2<br>1.1<br>1.0<br>.95<br>.90 | 10<br>12<br>9.5<br>6.5<br>6.0 | 3.3<br>3.5<br>3.3<br>3.1<br>2.9<br>2.8 | 4.2<br>4.7<br>5.8<br>15<br>32<br>33 | 2.0<br>2.1<br>2.0<br> | 6.5<br>8.2<br>13<br>13<br>14<br>8.6 | 4.0<br>4.5<br>5.4<br>4.9<br>6.7 | 32<br>13<br>5.8<br>6.4<br>29 | 11<br>9.6<br>5.4<br>3.6<br>2.8 | .67<br>.52<br>.49<br>.50<br>.56 | 4.5<br>10<br>18<br>7.0<br>2.4<br>207 | 9.4<br>6.8<br>6.0<br>6.2<br>8.9 | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 62.59<br>2.02<br>22<br>.31<br>124<br>.01 | 126.11<br>4.20<br>20<br>.62<br>250<br>.01 | 86.9<br>2.80<br>4.8<br>1.6<br>172<br>.01 | 166.9<br>5.38<br>33<br>2.3<br>331<br>.01 | 113.2<br>4.04<br>28<br>1.9<br>225<br>.01 | 613.9<br>19.8<br>80<br>1.9<br>1220<br>.04 | 153.6<br>5.12<br>7.6<br>3.5<br>305<br>.01 | 517.63<br>16.7<br>78<br>.73<br>1030<br>.04 | 214.0<br>7.13<br>52<br>1.4<br>424<br>.02 | 183.81<br>5.93<br>55<br>.10<br>365<br>.02<br>.02 | 256.88<br>8.29<br>207<br>.00<br>510<br>.02<br>.03 | 8219.6<br>274<br>4390<br>1.9<br>16300<br>.73<br>.82 | CAL YR 1988 TOTAL 14701.39 MEAN 40.2 MAX 720 MIN .31 AC-FT 29160 CFSM .11 IN. 1.46 WTR YR 1989 TOTAL 10715.12 MEAN 29.4 MAX 4390 MIN .00 AC-FT 21250 CFSM .08 IN. 1.06 #### 05489500 DES MOINES RIVER AT OTTUMWA. IA LOCATION.--Lat 41°00'39", long 92°24'40", in SE1/4 NE1/4 sec.25, T.72 N., R.14 W., Wapello County, Hydrologic Unit 07100009, on right bank 15 ft downstream from Wabash Railroad Bridge at Ottumwa, 0.4 mi downstream from Ottumwa powerplant, 6.5 mi upstream from Village Creek, 9.5 mi downstream from South Avery Creek, and at mile 94.1. DRAINAGE AREA. -- 13,374 mi2. PERIOD OF RECORD.--March 1917 to current year (published as "at Eldon" October 1930 to March 1935). Monthly discharge only for some periods, published in WSP 1308. REVISED RECORDS.--WSP 525: 1917-20. WSP 1308: 1917-23 (M), 1925-27 (M), 1931. WSP 1438: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 622.00 ft above NGVD. Prior to Sept. 30, 1930, nonrecording gage at Market Street Bridge 1,700 ft upstream at datum 0.83 ft higher. Oct. 1, 1930, to Mar. 31, 1935, nonrecording gage at Eldon 15 mi downstream at different datum. Apr. 1, 1935, to Oct. 25, 1963, water-stage recorder at site 1,100 ft downstream at Vine Street Bridge at datum 0.77 ft higher. REMARKS.--Estimated daily discharges: Jan. 7, 8, and Feb. 4-14, 16-26. Records good except those for estimated daily discharges, which are poor. Prior to Dec. 12, 1958, and since Nov. 30, 1960, diurnal fluctuation at low and medium stages are caused by powerplant upstream of station about 1/2 mile. Flow regulated by Lake Red Rock (station 05488100) 48.2 mi upstream, since March 12, 1969. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers satellite data collection platform at station. AVERAGE DISCHARGE.--72 years, 5,466 $ft^3/s$ , 5.55 in/yr, 3,960,000 acre-ft/yr; median of yearly mean discharges, 4,610 $ft^3/s$ , 4.7 in/yr, 3,340,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 135,000 ft<sup>3</sup>/s June 7, 1947, gage height, 20.2 ft, site and datum then in use; minimum daily discharge, 30 ft<sup>3</sup>/s Jan. 27-29, 31, Feb. 2, 3, 5-7, 1940. EXTREMES OUTSIDE PERIOD OF RECORD.—Maximum stage since at least 1850, that of June 7, 1947. Flood of May 31, 1903, reached a stage of 19.4 ft, former site and datum at Vine Street Bridge or about 22 ft at Market Street Bridge, from information by U.S. Army Corps of Engineers and U.S. National Weather Service, discharge, about 140,000 ft<sup>3</sup>/s. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 14,500 ft<sup>3</sup>/s Sept. 10, gage height, 6.39 ft; minimum daily discharge 84 ft<sup>3</sup>/s Dec. 11. | | | DISCHARGE | CUBIC | FEET PER | | , WATER YEAR<br>MEAN VALUES | OCTOBER | 1988 TC | SEPTEMBER | 1989 | | | |-------------|-------|-------------|-------|----------|-------|-----------------------------|---------|---------|-----------|-------|-------|--------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 440 | 452 | 345 | 675 | 2030 | 639 | 2850 | 1660 | 3430 | 3050 | 622 | 2100 | | | 459 | 384 | 486 | 648 | 1980 | 699 | 2760 | 1810 | 3840 | 3130 | 450 | 1610 | | 2<br>3<br>4 | 342 | 385 | 405 | 633 | 742 | 681 | 2640 | 2080 | 4470 | 2510 | 469 | 1160 | | Ă | 379 | 402 | 387 | 718 | 580 | 868 | 2810 | 2470 | 3560 | 1940 | 663 | 789 | | 5 | 364 | 392 | 419 | 726 | 660 | | 2720 | | | 1070 | 449 | | | | 304 | 392 | 419 | 726 | 000 | 1210 | 2/20 | 2260 | 3550 | 1070 | 449 | 427 | | 6<br>7 | 400 | 371 | 422 | 665 | 580 | 883 | 2300 | 2210 | 3690 | 1110 | 476 | 643 | | 7 | 473 | 382 | 415 | 780 | 520 | 902 | 1830 | 2100 | 3540 | 1380 | 413 | 436 | | 8 | 405 | 466 | 417 | 750 | 490 | 829 | 1260 | 1660 | 3540 | 1100 | 521 | 1720 | | 9 | 387 | 474 | 322 | 658 | 490 | 723 | 608 | 1140 | 3550 | 1030 | 425 | 10000 | | 10 | 518 | 392 | 395 | 911 | 540 | 1030 | 691 | 1220 | 2890 | 918 | 362 | 12400 | | 10 | 210 | 392 | 393 | 911 | 340 | 1030 | 091 | 1220 | 2090 | 310 | 302 | 12400 | | 11 | 883 | 391 | 84 | 846 | 620 | 1160 | 677 | 1220 | 2730 | 780 | 500 | 13100 | | 12 | 825 | 475 | 388 | 731 | 760 | 2140 | 624 | 1220 | 2950 | 2540 | 483 | 10100 | | 13 | 635 | 445 | 240 | 531 | 870 | 5490 | 603 | 1220 | 3120 | 1240 | 436 | 4820 | | 14 | 934 | 374 | 607 | 834 | 640 | 6040 | 688 | 1210 | 3090 | 1440 | 416 | 2700 | | 15 | 432 | 584 | 577 | 620 | 479 | 5010 | 632 | 912 | 2500 | 1940 | 326 | 1870 | | 13 | 432 | 364 | 3// | 020 | 4/9 | 2010 | 632 | 912 | 2300 | 1940 | 320 | 10/0 | | 16 | 451 | 59 <b>3</b> | 454 | 597 | 700 | 3390 | 735 | 1290 | 1900 | 1690 | 581 | 824 | | 17 | 497 | 450 | 688 | 609 | 810 | 3550 | 840 | 1250 | 1430 | 1700 | 156 | 1330 | | 18 | 293 | 463 | 701 | 691 | 710 | 2810 | 748 | 1270 | 1360 | 1680 | 460 | 836 | | 19 | 439 | 433 | 779 | 637 | 630 | 2380 | 1040 | 1390 | 1260 | 1830 | 604 | 922 | | 20 | 406 | 388 | 780 | 609 | 500 | 1840 | 1770 | 899 | 1190 | 2210 | 146 | 964 | | | | | | | | | | | | | | | | 21 | 489 | 421 | 676 | 659 | 600 | 1360 | 1430 | 763 | 1240 | 2300 | 468 | 1020 | | 22 | 402 | 376 | 684 | 688 | 660 | 1800 | 1050 | 843 | 868 | 1730 | 447 | 927 | | 23 | 392 | 372 | 642 | 690 | 700 | 2260 | 741 | 825 | 867 | 1550 | 528 | 847 | | 24 | 455 | 513 | 710 | 716 | 680 | 2220 | 827 | 1460 | 998 | 1520 | 507 | 770 | | 25 | 408 | 370 | 724 | 657 | 600 | 2040 | 683 | 2240 | 779 | 1530 | 596 | 795 | | | | | | | | | | | | | | | | 26 | 399 | 506 | 528 | 620 | 640 | 2020 | 654 | 3420 | 1540 | 1090 | 365 | 532 | | 27 | 444 | 478 | 720 | 661 | 767 | 2230 | 658 | 5620 | 2160 | 1050 | 1050 | 511 | | 28 | 414 | 401 | 576 | 697 | 716 | 2100 | 746 | 8150 | 2290 | 676 | 1520 | 504 | | 29 | 374 | 433 | 469 | 762 | | 1650 | 1090 | 6030 | 2950 | 850 | 1560 | 482 | | 30 | 316 | 349 | 768 | 903 | | 2150 | 1300 | 4760 | 3070 | 467 | 1910 | 489 | | 31 | 404 | | 724 | 1590 | | 2760 | | 3520 | | 440 | 3110 | | | | | | | | | | | | | | | | | TOTAL | 14459 | | 6532 | 22512 | 20694 | 64864 | 38005 | 68122 | 74352 | 47491 | 21019 | 75628 | | MEAN | 466 | 430 | 533 | 726 | 739 | 2092 | 1267 | 2197 | 2478 | 1532 | 678 | 2521 | | MAX | 934 | 593 | 780 | 1590 | 2030 | 6040 | 2850 | 8150 | 4470 | 3130 | 3110 | 13100 | | MIN | 293 | 349 | 84 | 531 | 479 | 639 | 603 | 763 | 779 | 440 | 146 | 427 | | AC-FT | 28680 | | 2790 | 44650 | 41050 | | 75380 | 135100 | 147500 | 94200 | 41690 | 150000 | CAL YR 1988 TOTAL 785944 MEAN 2147 MAX 6910 MIN 84 AC-FT 1559000 WTR YR 1989 TOTAL 476593 MEAN 1306 MAX 13100 MIN 84 AC-FT 945300 #### 05490500 DES MOINES RIVER AT KEOSAUOUA. IA LOCATION.--Lat 40°43'40", long 91°57'34", in SE1/4 SW1/4 sec.36, T.69 N., R.10 W., Van Buren County, Hydrologic Unit 07100009, on right bank 10 ft upstream from bridge on State Highway 1 at Keosauqua, 4.0 mi downstream from Chequest Creek, and at mile 51.3. DRAINAGE AREA, -- 14,038 mi2. PERIOD OF RECORD.--May 1903 to July 1906, April to December 1910, August 1911 to current year. Monthly discharge only for some periods, published in WSP 1308. REVISED RECORDS.--WSP 525: 1913-20. WSP 1438: Drainage area. WSP 1508: 1903, 1905-6, 1915-18 (M), 1922 (M), 1924-26 (M), 1932-34 (M), 1937, 1942 (M). GAGE.--Water-stage recorder. Datum of gage is 547.35 ft above NGVD. Prior to Dec. 24, 1933, nonrecording gage, and Dec. 25, 1933, to Sept. 30, 1972, water-stage recorder, at same site at datum 10.00 ft higher. REMARKS.--Estimated daily discharges: Dec. 12-23, Jan. 16-20, and Feb. 6 to Mar. 12. Records good except those for estimated daily discharges, which are poor. Prior to Dec. 21, 1958, and since Nov. 30, 1960, some diurnal fluctuation at medium and low stages caused by power plant at Ottumwa. Flow regulated by Lake Red Rock (station 05488100) 91.0 mi upstream, since March 12, 1969. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers satellite data collection platform at station. AVERAGE DISCHARGE.--80 years (water years 1904-05, 1912-89), 5,843 ft<sup>3</sup>/s, 5.65 in/yr, 4,230,000 acre-ft/yr; median of yearly mean discharges, 4,990 ft<sup>3</sup>/s, 4.8 in/yr, 3,620,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 146,000 ft<sup>3</sup>/s June 1, 1903, gage height, 27.85 ft, from flood-mark, datum then in use; minimum daily discharge, 40 ft<sup>3</sup>/s Jan. 30, 1940. EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood of June 1, 1851, reached a stage of 24 ft, discharge not determined. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 15,700 ft<sup>3</sup>/s Sept. 9, maximum gage height, 15.75 ft Sept. 9, backwater from ice; minimum daily discharge, 247 ft<sup>3</sup>/s Aug. 22. | | | DISCHARGE | , CUBIC | FEET PER | | WATER YEAR<br>EAN VALUES | OCTOBER | 1988 TO | SEPTEMBER | 1989 | | | |--------------------------------------|----------------------------------------|---------------------------------|----------------------------------------|-----------------------------------------|--------------------------------------|----------------------------------------------|---------------------------------------|----------------------------------------------|----------------------------------------|------------------------------------------|---------------------------------------------|-----------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 440 | 452 | 345 | 675 | 2030 | 639 | 2850 | 1660 | 3430 | 3050 | 622 | 2100 | | 2 | 459 | 384 | 486 | 648 | 1980 | 699 | 2760 | 1810 | 3840 | 3130 | 450 | 1610 | | 3 | 342 | 385 | 405 | 633 | 742 | 681 | 2640 | 2080 | 4470 | 2510 | 469 | 1160 | | 4 | 379 | 402 | 387 | 718 | 580 | 868 | 2810 | 2470 | 3560 | 1940 | 663 | 789 | | 5 | 364 | 392 | 419 | 726 | 660 | 1210 | 2720 | 2260 | 3550 | 1070 | 449 | 427 | | 6 | 400 | 371 | 422 | 665 | 580 | 883 | 2300 | 2210 | 3690 | 1110 | 476 | 643 | | 7 | 473 | 382 | 415 | 780 | 520 | 902 | 1830 | 2100 | 3540 | 1380 | 413 | 436 | | 8 | 405 | 466 | 417 | 750 | 490 | 829 | 1260 | 1660 | 3540 | 1100 | 521 | 1720 | | 9 | 387 | 474 | 322 | 658 | 490 | 723 | 608 | 1140 | 3550 | 1030 | 425 | 10000 | | 10 | 518 | 392 | 395 | 911 | 540 | 1030 | 691 | 1220 | 2890 | 918 | 362 | 12400 | | 11 | 883 | 391 | 84 | 846 | 620 | 1160 | 677 | 1220 | 2730 | 780 | 500 | 13100 | | 12 | 825 | 475 | 388 | 731 | 760 | 2140 | 624 | 1220 | 2950 | 2540 | 483 | 10100 | | 13 | 635 | 445 | 240 | 531 | 870 | 5490 | 603 | 1220 | 3120 | 1240 | 436 | 4820 | | 14 | 934 | 374 | 607 | 834 | 640 | 6040 | 688 | 1210 | 3090 | 1440 | 416 | 2700 | | 15 | 432 | 584 | 577 | 620 | 479 | 5010 | 632 | 912 | 2500 | 1940 | 326 | 1870 | | 16 | 451 | 593 | 454 | 597 | 700 | 3390 | 735 | 1290 | 1900 | 1690 | 581 | 824 | | 17 | 497 | 450 | 688 | 609 | 810 | 3550 | 840 | 1250 | 1430 | 1700 | 156 | 1330 | | 18 | 293 | 463 | 701 | 691 | 710 | 2810 | 748 | 1270 | 1360 | 1680 | 460 | 836 | | 19 | 439 | 433 | 779 | 637 | 630 | 2380 | 1040 | 1390 | 1260 | 1830 | 604 | 922 | | 20 | 406 | 388 | 780 | 609 | 500 | 1840 | 1770 | 899 | 1190 | 2210 | 146 | 964 | | 21 | 489 | 421 | 676 | 659 | 600 | 1360 | 1430 | 763 | 1240 | 2300 | 468 | 1020 | | 22 | 402 | 376 | 684 | 688 | 660 | 1800 | 1050 | 843 | 868 | 1730 | 447 | 927 | | 23 | 392 | 372 | 642 | 690 | 700 | 2260 | 741 | 825 | 867 | 1550 | 528 | 847 | | 24 | 455 | 513 | 710 | 716 | 680 | 2220 | 827 | 1460 | 998 | 1520 | 507 | 770 | | 25 | 408 | 370 | 724 | 657 | 600 | 2040 | 683 | 2240 | 779 | 1530 | 596 | 795 | | 26<br>27<br>28<br>29<br>30<br>31 | 399<br>444<br>414<br>374<br>316<br>404 | 506<br>478<br>401<br>433<br>349 | 528<br>720<br>576<br>469<br>768<br>724 | 620<br>661<br>697<br>762<br>903<br>1590 | 640<br>767<br>716<br> | 2020<br>2230<br>2100<br>1650<br>2150<br>2760 | 654<br>658<br>746<br>1090<br>1300 | 3420<br>5620<br>8150<br>6030<br>4760<br>3520 | 1540<br>2160<br>2290<br>2950<br>3070 | 1090<br>1050<br>676<br>850<br>467<br>440 | 365<br>1050<br>1520<br>1560<br>1910<br>3110 | 532<br>511<br>504<br>482<br>489 | | TOTAL<br>MEAN<br>MAX<br>MIN<br>AC-FT | 14459<br>466<br>934<br>293<br>28680 | 430<br>593<br>349 | 6532<br>533<br>780<br>84<br>2790 | 22512<br>726<br>1590<br>531<br>44650 | 20694<br>739<br>2030<br>479<br>41050 | 2092<br>6040<br>639 | 38005<br>1267<br>2850<br>603<br>75380 | 68122<br>2197<br>8150<br>763<br>135100 | 74352<br>2478<br>4470<br>779<br>147500 | 47491<br>1532<br>3130<br>440<br>94200 | 21019<br>678<br>3110<br>146<br>41690 | 75628<br>2521<br>13100<br>427<br>150000 | CAL YR 1988 TOTAL 785944 MEAN 2147 MAX 6910 MIN 84 AC-FT 1559000 WTR YR 1989 TOTAL 476593 MEAN 1306 MAX 13100 MIN 84 AC-FT 945300 #### MISSOURI RIVER BASIN #### BIG STOUX RIVER BASIN ## 06483500 ROCK RIVER NEAR ROCK VALLEY, IA LOCATION.--Lat 43°12'52", long 96°17'39", in SW1/4 SW1/4 sec.16, T.97 N., R.46 W., Sioux County, Hydrologic Unit 10170204, on left bank 3 ft upstream from bridge on county highway K30, 0.3 mi north of Rock Valley and at mile 19.1. DRAINAGE AREA, --1,592 mi2. PERIOD OF RECORD. -- June 1948 to current year. REVISED RECORDS. -- WSP 1439: Drainage area. GAGE.--Water-stage encoder. Datum of gage is 1,222.54 ft above NGVD. Prior to Aug. 13, 1952, nonrecording gage with supplementary water-stage recorder operating above 6.2 ft gage height. June 4, 1949 to Aug. 12, 1952 and Aug. 13, 1952 to May 4, 1976, water-stage recorder, at site 3.2 mi downstream at datum 10.73 ft lower. REMARKS.--Estimated daily discharges: Nov. 10, 16-22, Nov. 27 to Mar. 10, and Mar. 15-23. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain-gage and satellite data collection platform at station. AVERAGE DISCHARGE.--41 years, 412 $ft^3/s$ , 3.51 in/yr, 298,500 acre-ft/yr; median of yearly mean discharges, 300 $ft^3/s$ , 2.6 in/yr, 217,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 40,400 ft<sup>3</sup>/s Apr. 7, 1969, gage height, 17.32 ft, site and datum then in use; no flow for many days during winter period in 1959 and 1977. EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood in 1897 reached a stage of 17,0 ft, former site and datum, discharge not determined, from information by State Highway Commission. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 3,000 ft3/s and maximum (\*): | | | Discharge | Gage height | | | Discharge | Gage height | |---------|------|----------------------|-------------|----------|------------|----------------------|-------------| | Date | Time | (ft <sup>3</sup> /s) | (ft) | Date | Time | (ft <sup>3</sup> /s) | (ft) | | Mar. 12 | 0015 | *3,340 | *11.39 | No other | peak great | er than base disch | arge. | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 Minimum daily discharge, 5.4 ft3/s Feb. 3. | | | <b>D1D4</b> | NOD, CODIC | , , , , , , , , , , , , , , , , , , , , | ii oboonb | MEAN VALUE | | 1000 10 | | 1000 | | | |-----------------------------------------------------|------------------------------------------------|------------------------------------------|------------------------------------------------|-----------------------------------------------|------------------------------------------|------------------------------------------------------|--------------------------------------------------|-------------------------------------------------|------------------------------------------|-----------------------------------------|-------------------------------------------------|-----------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | 70<br>64<br>55<br>50<br>45 | 34<br>35<br>36<br>41<br>50 | 30<br>80<br>88<br>58<br>74 | 22<br>17<br>19<br>21<br>32 | 19<br>9.0<br>5.4<br>6.0<br>7.0 | 12<br>10<br>9.4<br>8.0<br>7.0 | 345<br>310<br>288<br>265<br>245 | 296<br>263<br>234<br>213<br>193 | 159<br>141<br>125<br>112<br>102 | 209<br>168<br>142<br>156<br>139 | 47<br>43<br>40<br>36<br>33 | 29<br>26<br>25<br>30<br>29 | | 6<br>7<br>8<br>9<br>10 | 43<br>41<br>40<br>39<br>35 | 52<br>54<br>53<br>54<br>46 | 84<br>62<br>30<br>19<br>15 | 25<br>18<br>14<br>15<br>15 | 8.0<br>9.9<br>8.0<br>9.0 | 7.2<br>8.5<br>40<br>125<br>350 | 231<br>218<br>215<br>201<br>192 | 173<br>161<br>152<br>140<br>129 | 93<br>83<br>75<br>69<br>64 | 122<br>107<br>94<br>81<br>72 | 30<br>29<br>27<br>24<br>22 | 29<br>46<br>69<br>67<br>68 | | 11<br>12<br>13<br>14<br>15 | 34<br>32<br>33<br>34<br>32 | 48<br>54<br>59<br>60<br>62 | 12<br>30<br>50<br>24<br>15 | 16<br>17<br>19<br>23<br>22 | 17<br>18<br>18<br>17<br>15 | 2670<br>2910<br>1610<br>972<br>540 | 186<br>178<br>174<br>164<br>159 | 121<br>111<br>104<br>99<br>94 | 59<br>54<br>50<br>49<br>49 | 66<br>99<br>159<br>209<br>223 | 21<br>21<br>21<br>21<br>20 | 57<br>49<br>44<br>40<br>36 | | 16<br>17<br>18<br>19<br>20 | 30<br>32<br>33<br>31<br>32 | 40<br>28<br>50<br>46<br>33 | 20<br>25<br>37<br>33<br>30 | 22<br>23<br>32<br>40<br>27 | 14<br>14<br>12<br>10<br>11 | 310<br>180<br>160<br>340<br>250 | 153<br>148<br>143<br>139<br>135 | 89<br>82<br>83<br>87<br>83 | 47<br>46<br>51<br>47<br>42 | 169<br>145<br>186<br>174<br>147 | 18<br>17<br>16<br>16<br>20 | 30<br>28<br>25<br>24<br>25 | | 21<br>22<br>23<br>24<br>25 | 30<br>30<br>30<br>31<br>30 | 36<br>50<br>72<br>78<br>81 | 28<br>33<br>31<br>29<br>26 | 33<br>54<br>42<br>40<br>30 | 9.4<br>7.3<br>6.5<br>11<br>29 | 265<br>285<br>340<br>1000<br>1570 | 133<br>128<br>124<br>124<br>130 | 78<br>76<br>91<br>80<br>731 | 41<br>41<br>42<br>46<br>54 | 127<br>113<br>101<br>91<br>82 | 27<br>27<br>58<br>49<br>30 | 28<br>27<br>25<br>24<br>24 | | 26<br>27<br>28<br>29<br>30<br>31 | 32<br>30<br>29<br>30<br>31<br>34 | 88<br>200<br>27<br>75<br>50 | 27<br>25<br>23<br>21<br>23<br>30 | 19<br>22<br>31<br>45<br>66<br>58 | 27<br>22<br>16 | 1140<br>835<br>683<br>557<br>461<br>391 | 126<br>137<br>263<br>298<br>311 | 763<br>414<br>277<br>210<br>173<br>164 | 80<br>110<br>370<br>382<br>276 | 72<br>61<br>52<br>64<br>70 | 59<br>123<br>65<br>49<br>40<br>33 | 23<br>21<br>20<br>20<br>22 | | TOTAL<br>MEAN<br>MAX<br>MIN<br>AC-FT<br>CFSM<br>IN. | 1142<br>36.8<br>70<br>29<br>2270<br>.02<br>.03 | 1692<br>56.4<br>200<br>27<br>3360<br>.04 | 1112<br>35.9<br>88<br>12<br>2210<br>.02<br>.03 | 879<br>28.4<br>66<br>14<br>1740<br>.02<br>.02 | 369.5<br>13.2<br>29<br>5.4<br>733<br>.01 | 18046.1<br>582<br>2910<br>7.0<br>35790<br>.37<br>.42 | 5863<br>195<br>345<br>124<br>11630<br>.12<br>.14 | 5964<br>192<br>763<br>76<br>11830<br>.12<br>.14 | 2959<br>98.6<br>382<br>41<br>5870<br>.06 | 3760<br>121<br>223<br>52<br>7460<br>.08 | 1082<br>34.9<br>123<br>16<br>2150<br>.02<br>.03 | 1010<br>33.7<br>69<br>20<br>2000<br>.02 | CAL YR 1988 TOTAL 85096 MEAN 233 MAX 1750 MIN 11 AC-FT 168800 CFSM .15 IN. 1.99 WTR YR 1989 TOTAL 43878.6 MEAN 120 MAX 2910 MIN 5.4 AC-FT 87030 CFSM .08 IN. 1.03 ## 06485500 BIG SIOUX RIVER AT AKRON, IA (National stream-quality accounting network station) LOCATION.--Lat 42°50'14", long 96°33'41", in SW1/4SE1/4SW1/4 sec.30, T.93 N., R.48 W., Plymouth County, on left bank 15 ft downstream from Iowa Highway 403 bridge, 0.5 mi northwest of Akron, and 2.9 mi upstream from Union Creek DRAINAGE AREA. -- 8,424 mi<sup>2</sup>, approximately, of which about 1,487 mi<sup>2</sup> is probably noncontributing. ## WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- October 1928 to current year. REVISED RECORDS.--WSP 1309: 1929(M), 1931-33(M), 1936(M), 1938(M), 1940(M). WSP 1389: Drainage area. WDR SD-84-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 1,118.90 ft above National Geodetic Vertical Datum of 1929. Prior to Dec. 3, 1934, nonrecording gage at bridge 0.5 mi downstream at same datum. From Dec. 3, 1934, to Oct. 31, 1985, water-stage recorder at site 0.6 mi downstream at same datum. REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Army Corps of Engineers satellite data-collection platform at station. Several observations of water temperature and specific conductance were made during the year. AVERAGE DISCHARGE.--61 years, 1,030 $ft^3/s$ , 746,200 acre-ft/yr; median of yearly mean discharges, 750 $ft^3/s$ , 543,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 80,800 ft<sup>3</sup>/s, Apr. 9, 1969, gage height, 22.99 ft; minimum daily, 4.0 ft<sup>3</sup>/s, Jan. 17, 1977. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 3,500 ft3/s and maximum (\*): | | | Discharge | Gage height | | Discharge | Gage height | |---------|------|------------|-------------|-----------------------|------------|-------------| | Date | Time | $(ft^3/s)$ | (ft) | Date Time | $(ft^3/s)$ | (ft) | | Mar. 12 | 1900 | (a)*4,100 | *15.36 | No other peak greater | than base | discharge. | (a) Backwater from ice. Minimum daily discharge, 106 ft<sup>3</sup>/s, Aug. 20. DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 MEÁN VALUES DAY OCT NOV MAY JUN JUL AUG SEP DEC JAN FEB MAR APR e160 e140 e180 e120 175 e160 e170 e140 e140 371 229 130 e180 e120 e180 e120 e180 e140 e180 e120 e200 e140 e170 e120 226 e200 e140 e170 e120 e190 e140 e170 e120 e190 e140 e170 e120 e190 e140 e160 e200 e180 e120 e160 e1000 e180 e120 e160 e2000 e180 e120 e160 e4000 e3500 e180 e120 e150 e170 e120 e150 e3000 e170 e130 e150 e2500 e170 e130 e2000 e150 e170 e130 e140 e1400 e160 e130 e1450 e140 e160 147 e150 e140 e1500 e160 e150 e140 e1500 e155 e150 e130 e1300 e155 e160 e130 152 e155 e160 e130 25 e150 e170 e130 e140 e170 e120 e140 e170 e120 e140 e170 e120 e140 e180 e120 e140 175 e190 e190 e140 e140 e200 TOTAL 258 200 200 180 1130 MEAN MAX MIN AC-FT CAL YR 1988 TOTAL 221655 MEAN 606 MAX 3010 MIN 98 AC-FT 439700 WTR YR 1989 TOTAL 147415 MEAN 404 MAX 4000 MIN 106 AC-FT 292400 e Estimated ## 06486000 MISSOURI RIVER AT SIOUX CITY, IA LOCATION.--Lat. 42°29'09", long 96°24'49", in NW1/4 SE1/4 sec.16 T.29 N., R.9 E., sixth prinicipal meridian, Dakota County, Nebraska, Hydrologic Unit 10230001, on right bank on upstream side of bridge on U.S. Highway 20 and 77 at South Sioux City, Nebraska, 1.9 mi downstream from Big Sioux River, and at mile 732.2. DRAINAGE. -- 314,600 mi<sup>2</sup>, approximately. The 3,959 mi<sup>2</sup> in Great Divide basin are not included. ## WATER-DISCHARGE RECORDS PERIOD OF RECORD. --October 1897 to current year in reports of the U.S. Geological Survey. Prior to October 1928 and October 1931 to September 1938, monthly discharges only, published in WSP 1310. January 1879 to December 1890, monthly discharges only, in House Document 238, 73rd Congress, 2d session, Missouri River. Gage height records collected in this vicinity September 1878 to December 1899 are contained in reports of Missouri River Commission and since July 1889 are contained in reports of U.S. Weather Bureau. REVISED RECORDS. -- WSP 716: 1929-30. WSP 876: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 1,056.98 ft above NGVD. Sept. 2, 1878, to Dec. 31, 1905, nonrecording gages at various locations within 1.7 mi of present site and at various datums. Jan. 1, 1906 to Feb. 14, 1935, nonrecording gage, and Feb. 15, 1935 to Sept. 30, 1969, water-stage recorder at site 227 ft downstream at datum 19.98 ft higher, and Oct. 1, 1969 to Sept. 30, 1970 at datum 20.00 ft higher. Oct. 1, 1970 to Jan. 30, 1981, water-stage recorder at site 227 ft downstream at present datum. REMARKS.--Estimated daily discharges: Jan. 6, 7, and Feb. 5-28. Records good except those for estimated daily discharges, which are poor. Flow regulated by upstream main-stem reservoirs. U.S. Army Corps of Engineers rain-gage and satellite data collection platform at station. AVERAGE DISCHARGE. -- 92 years, 31,970 ft3/s, 23,160,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 441,000 ft<sup>3</sup>/s Apr. 14, 1952, gage height, 24.28 ft, datum then in use; minimum, 2,500 ft<sup>3</sup>/s Dec. 29, 1941; minimum gage height, 7.83 ft Jan. 9,1989. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 35,500 ft<sup>3</sup>/s, Nov. 3; maximum gage height, 19.20 ft, July 18; minimum daily discharge, 5,060 ft<sup>3</sup>/s, Jan. 9; minimum gage height, 7.83 ft, Jan. 9, result of freeze up. | | | DISCHA | ARGE, CUBIC | FEET F | PER SECO | ND, WATER<br>MEAN VAL | | ER 1988 T | O SEPTEMBER | 1989 | | | |-------------|---------------|---------|-------------|--------|----------------|-----------------------|--------|-----------|-------------|--------|---------|---------------| | DAY | OCT | NOV | DEC | JAN | FE | B MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 31100 | 34700 | 13300 | 14300 | 1350 | 13800 | 29200 | 31300 | 31300 | 31800 | 31400 | 2910 <b>0</b> | | 2 | 31000 | 34800 | 13500 | 12700 | 1080 | | | 31000 | 31700 | 31500 | 31400 | 2970 <b>0</b> | | 1<br>2<br>3 | 30700 | 35200 | 13700 | 13300 | 1030 | | | 31300 | 31400 | 30100 | 31700 | 29700 | | 4 | 30600 | 34900 | 13500 | 14100 | 1220 | | | 31700 | 31800 | 29600 | 31800 | 31600 | | 5 | 31300 | 35000 | 13600 | 14000 | 1590 | | | 31700 | 31700 | 30700 | 32000 | 30000 | | 6 | 32200 | 35100 | 13700 | 14800 | 1810 | 14300 | 28600 | 31600 | 31500 | 29100 | 32000 | 28500 | | 7 | 32500 | 34700 | 13700 | 14000 | 1800 | | | 31300 | 32000 | 27800 | 32000 | 29400 | | 8 | 32700 | 34800 | 13400 | 8700 | 1800 | | | 31500 | 32100 | 30300 | 32000 | 29600 | | 9 | 32800 | 33000 | 13100 | 5060 | 1780 | | | 31600 | 31900 | 29800 | 31800 | 27600 | | 10 | 32800 | 30700 | 13200 | 11700 | 1800 | | | 32300 | 31900 | 28500 | 31600 | 25100 | | 11 | 32900 | 29200 | 12500 | 15300 | 1870 | 16800 | 30400 | 32300 | 32000 | 30200 | 31300 | 24400 | | 12 | 33300 | 26700 | 12400 | 15300 | 1880 | | | 32700 | 32700 | 30600 | 31400 | 25300 | | 13 | 33300 | 23500 | 14300 | 14900 | 1830 | | | 32500 | 32100 | 30700 | 31800 | 26700 | | 14 | 33800 | 20000 | 13600 | 14100 | 1800 | | | 32600 | 31200 | 31500 | 31800 | 27000 | | 15 | 34100 | 17200 | 12600 | 14000 | 1790 | | | 32400 | 31600 | 32900 | 31600 | 27100 | | 16 | 3400 <b>0</b> | 15100 | 11900 | 13800 | 1790 | 12500 | 30500 | 32500 | 31800 | 32100 | 31600 | 27400 | | 17 | 33700 | 13700 | 11800 | 14000 | 1780 | | | 33100 | 31800 | 32400 | 32000 | 27600 | | 18 | 33500 | 13700 | 12700 | 14100 | 1760 | | | 33500 | 32400 | 33300 | 32400 | 28000 | | 19 | 33500 | 13800 | 13300 | 14200 | 1630 | | | 33400 | 31600 | 31200 | 32400 | 28000 | | 20 | 33900 | 13700 | 12900 | 14400 | 1480 | | | 32800 | 31400 | 30000 | 32300 | 28200 | | | | | | | | | | | | | | | | 21 | 33800 | 13700 | 12400 | 13700 | 1620 | | | 32600 | 31500 | 28600 | 33200 | 28300 | | 22 | 33700 | 13600 | 12700 | 14200 | 1660 | 12300 | 32100 | 32600 | 31500 | 30500 | 33200 | 28500 | | 23 | 33900 | 13500 | 12900 | 14800 | 14900 | 12400 | 32100 | 32500 | 31400 | 29500 | 32300 | 28500 | | 24 | 33800 | 13000 | 12300 | 14400 | 14700 | 12900 | 32000 | 32200 | 31400 | 28600 | 31800 | 2900 <b>0</b> | | 25 | 34300 | 13600 | 11800 | 13900 | 1620 | | | 31400 | 32300 | 30400 | 31600 | 2900 <b>0</b> | | 26 | 34000 | 13500 | 11700 | 13600 | 1 <b>5</b> 500 | 18600 | 32100 | 31200 | 31000 | 30000 | 31700 | 29100 | | 27 | 34100 | 13600 | 12600 | 13700 | 13700 | 21900 | 32000 | 31100 | 28900 | 29200 | 31200 | 29400 | | 28 | 33800 | 12900 | 11400 | 13900 | 13100 | 24800 | 32300 | 30700 | 30300 | 30500 | 30100 | 29400 | | 29 | 33800 | 13600 | 11800 | 13800 | | | | 31400 | 29300 | 32300 | 29700 | 29400 | | 30 | 33800 | 13400 | 12700 | 13900 | | | | 30200 | 29000 | 32400 | 28800 | 29400 | | 31 | 34300 | | 14400 | 14000 | | | | 30500 | | 31500 | 28500 | | | TOTAL | 1027000 | 663900 | 399400 | 420660 | 449600 | 491100 | 922300 | 989500 | 942500 | 947600 | 978400 | 850000 | | MEAN | 33130 | 22130 | 12880 | 13570 | 16060 | | 30740 | 31920 | 31420 | 30570 | 31560 | 28330 | | MAX | 34300 | 35200 | 14400 | 15300 | 1880 | | | 33500 | 32700 | 33300 | 33200 | 31600 | | MIN | 30600 | 12900 | 11400 | 5060 | 10300 | | | 30200 | 28900 | 27800 | 28500 | 24400 | | | 2037000 | 1317000 | | 834400 | 89180 | | | 1963000 | | 880000 | 1941000 | 1686000 | CAL YR 1988 TOTAL 9912300 MEAN 27080 MAX 38400 MIN 11100 AC-FT 19660000 WTR YR 1989 TOTAL 9081960 MEAN 24880 MAX 35200 MIN 5060 AC-FT 18010000 # 06486000 MISSOURI RIVER AT SIOUX CITY, IA--Continued WATER-QUALITY RECORDS LOCATION.--Samples for particle-size distribution were collected from boat cross-section 0.2 mile downstream from gage. PERIOD OF RECORD. -- Water years 1972 to current year. Daily sediment loads October 1954 to September 1971 in reports of U.S. Army Corps of Engineers. PERIOD OF DAILY RECORD. -SPECIFIC CONDUCTANCE: October 1972 to September 1976, November 1977 to September 1981. WATER TEMPERATURES: October 1971 to September 1976, November 1977 to September 1981. SUSPENDED-SEDIMENT DISCHARGE: October 1971 to September 1976. EXTREMES FOR PERIOD OF DAILY RECORD. -SPECIFIC CONDUCTANCE: Maximum daily, 950 microsiemens June 17, 19, 1981; minimum daily, 410 microsiemens Mar. 22, 1978. WATER TEMPERATURES: Maximum daily, 28.0°C July 30, 1976 and Aug. 7, 1979; minimum daily, 0.0°C on many days during the winter periods. SEDIMENT CONCENTRATIONS: Maximum daily mean, 1,620 mg/L Nov. 20, 1972; minimum daily mean, 42 mg/L Dec. 29, 1975. SEDIMENT LOADS: Maximum daily, 222,000 tons Nov. 20, 1972; minimum daily, 2,970 tons Dec. 29, 1975. ## WATER-QUAILITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | |-----------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------| | OCT 1988<br>04<br>07<br>11<br>14<br>21<br>25 | 0705<br>0820<br>0920<br>1000<br>0740<br>1225<br>0930<br>1215 | 30600<br>32400<br>32800<br>33700<br>33500<br>33900<br>34300<br>33800 | 16.0<br>12.0<br>14.0<br>12.0<br>12.5<br>10.5 | 750<br>740<br>760<br>755<br>700<br>745<br>760<br>750 | MAY 1989<br>09<br>12<br>15<br>18<br>22<br>25<br>30<br>JUN | 0700<br>0950<br>1305<br>0930<br>1610<br>0820<br>1600 | 31600<br>33000<br>32000<br>33900<br>32600<br>31600<br>29800 | 14.0<br>14.0<br>17.0<br>17.0<br>19.0<br>18.5 | 740<br>750<br>760<br>770<br>770<br>720<br>755 | | NOV<br>01<br>04<br>10<br>15<br>21<br>29 | 0650<br>1300<br>0900<br>0730<br>1110<br>1145<br>1225 | 34900<br>34000<br>35100<br>30500<br>17500<br>13700<br>13300 | 8.5<br>9.0<br>7.5<br>7.0<br>7.5<br>2.5 | 770<br>755<br>770<br>730<br>740<br>750<br>760 | 02<br>06<br>13<br>15<br>20<br>23<br>27 | 1330<br>1130<br>0700<br>1130<br>0815<br>0730<br>1130<br>0900<br>1100 | 31800<br>31500<br>31800<br>32100<br>32000<br>32400<br>30500<br>29000<br>28300 | 19.0<br>25.0<br>19.0<br>21.0<br>17.0<br>20.0<br>22.0<br>22.0<br>21.0 | 740<br>745<br>730<br>720<br>750<br>790<br>760<br>740<br>740 | | 06<br>14<br>19<br>JAN 1989<br>18<br>24<br>FEB<br>14 | 0700<br>1330<br>1600<br>0815<br>1030 | 13300<br>13200<br>13400<br>14100<br>14200<br>18000 | 3.0<br>1.0<br>0.0<br>0.5<br>0.0 | 770<br>760<br>720<br>780<br>800<br>740 | JUL 05<br>11<br>14<br>18<br>21<br>24 | 0640<br>0900<br>1030<br>0615<br>0835<br>1100<br>0730 | 29400<br>29800<br>31500<br>33900<br>28400<br>31600<br>29200 | 26.5<br>25.0<br>25.0<br>24.0<br>24.0<br>23.0<br>25.0 | 770<br>730<br>730<br>740<br>775<br>740<br>790 | | MAR<br>08<br>14<br>21<br>28<br>APR<br>11 | 1515<br>1230<br>0945<br>0920<br>0745<br>1705<br>1230 | 14300<br>16200<br>12100<br>24200<br>31300<br>30900<br>32100 | 1.0<br>0.5<br>0.5<br>9.0<br>5.0<br>9.0 | 875<br>700<br>790<br>620<br>690<br>750<br>750 | AUG 01<br>01<br>08<br>11<br>15<br>18<br>22 | 0830<br>0850<br>0630<br>1030<br>1100<br>0645<br>0930<br>1200 | 31500<br>31700<br>32100<br>31200<br>31500<br>32400<br>33300<br>31500 | 26.0<br>27.0<br>22.0<br>27.0<br>27.0<br>23.5<br>23.0<br>26.0 | 780<br>780<br>760<br>760<br>770<br>790<br>740<br>760 | | 21<br>25<br>28<br>MAY<br>02<br>04 | 1200<br>1300<br>0655<br>0830 | 31900<br>32300<br>30900<br>31800 | 16.0<br>17.0<br>13.5<br>14.0 | 750<br>750<br>760<br>760 | 29<br>SEP<br>12<br>19<br>26 | 0640<br>0905<br>0905<br>0715 | 30100<br>24600<br>27700<br>28900 | 23.5<br>18.5<br>18.0<br>18.5 | 780<br>800<br>780<br>750 | ## 06486000 MISSOURI RIVER AT SIOUX CITY, IA--Continued WATER-QUALITY RECORDS PARTICLE-SIZE DISTRIBUTION OF SUSPENDED SEDIMENT, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | TIME | SAMPLE<br>LOC-<br>ATION,<br>CROSS<br>SECTION<br>(FT FM<br>L BANK)<br>(00009) | DEPTH<br>AT<br>SAMPLE<br>LOC-<br>ATION,<br>TOTAL<br>(FEET)<br>(81903) | SAM-<br>PLING<br>DEPTH<br>(FEET)<br>(00003) | STREAM<br>VELOC-<br>ITY,<br>POINT<br>(FPS)<br>(81904) | SEDI-<br>MENT,<br>SUS-<br>PENDED<br>(MG/L)<br>(80154) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>7 FINER<br>THAN<br>.004 MM<br>(70338) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>% FINER<br>THAN<br>.062 MM<br>(70342) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>Z FINER<br>THAN<br>.125 MM<br>(70343) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>Z FINER<br>THAN<br>.250 MM<br>(70344) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>Z FINER<br>THAN<br>.500 MM<br>(70345) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>Z FINER<br>THAN<br>1.00 MM<br>(70346) | |-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------| | OCT 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 | WATER 0915 0910 09120 09224 09245 09445 0955 1010 10135 1025 1035 11055 1105 11105 11127 11305 1143 11443 | TEMPERATU 495 495 495 495 495 490 400 400 400 400 400 400 295 295 295 295 295 295 190 190 190 110 110 110 110 110 | 7RE, 12.0° 20.2° | C (0905-<br>10.1<br>14.4<br>16.8<br>18.2<br>19.0<br>3.70<br>11.6<br>13.5<br>15.2<br>3.40<br>7.30<br>10.4<br>12.2<br>13.1<br>13.7<br>4.00<br>8.60<br>12.3<br>15.5<br>16.2<br>4.20<br>9.10<br>13.0<br>9.10 | 1145); 07<br>2.74<br>2.63<br>2.29<br>3.839<br>3.07<br>3.63<br>2.63<br>4.94<br>3.63<br>3.28<br>4.80<br>4.80<br>4.80<br>4.80<br>4.80<br>4.80<br>4.80<br>4.8 | ISCHARGE,<br>100<br>115<br>114<br>106<br>123<br>135<br>104<br>109<br>142<br>289<br>335<br>157<br> | 32,400 f | Ct <sup>3</sup> /s. 75<br>75<br>773<br>761<br>661<br>675<br>699<br>538<br>325<br>200<br>44-<br><br>300<br>125<br>213<br>136<br>188<br>398<br>326<br>113<br>128 | 89<br>88<br>88<br>767<br>89<br>88<br>754<br>34<br>60<br> | 98<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>999<br>98<br>1000<br><br>96<br><br>96<br><br>98<br>88<br>86<br>62<br>95<br>95<br>95<br>95<br>86<br>67<br>72<br>15<br>84 | 100 100 100 100 100 100 100 100 | 100 | | | | SAMPLE | DEPTH | | | | CED | CED | | arn. | CED | CED | | DATE | TIME | LOC-<br>ATION,<br>CROSS<br>SECTION<br>(FT FM<br>L BANK)<br>(00009) | AT<br>SAMPLE<br>LOC-<br>ATION,<br>TOTAL<br>(FEET)<br>(81903) | SAM-<br>PLING<br>DEPTH<br>(FEET)<br>(00003) | STREAM<br>VELOC-<br>ITY,<br>POINT<br>(FPS)<br>(81904) | SEDI-<br>MENT,<br>SUS-<br>PENDED<br>(MG/L)<br>(80154) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>Z FINER<br>THAN<br>.004 MM<br>(70338) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>Z FINER<br>THAN<br>.062 MM<br>(70342) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>FINER<br>THAN<br>.125 MM<br>(70343) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>Z FINER<br>THAN<br>.250 MM<br>(70344) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>FINER<br>THAN<br>.500 MM<br>(70345) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>Z FINER<br>THAN<br>1.00 MM<br>(70346) | ## 06486000 MISSOURI RIVER AT SIOUX CITY, IA--Continued WATER-QUALITY RECORDS PARTICLE-SIZE DISTRIBUTION OF SUSPENDED SEDIMENT, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 SED. SED. SED. SED. | DATE | TIME | LOC-<br>ATION,<br>CROSS<br>SECTION<br>(FT FM<br>L BANK)<br>(00009) | AT<br>SAMPLE<br>LOC-<br>ATION,<br>TOTAL<br>(FEET)<br>(81903) | SAM-<br>PLING<br>DEPTH<br>(FEET)<br>(00003) | STREAM<br>VELOC-<br>ITY,<br>POINT<br>(FPS)<br>(81904) | SEDI-<br>MENT,<br>SUS-<br>PENDED<br>(MG/L)<br>(80154) | SUSP.<br>FALL<br>DIAM.<br>Z FINER<br>THAN<br>.004 MM<br>(70338) | SUSP.<br>FALL<br>DIAM.<br>I FINER<br>THAN<br>.062 MM<br>(70342) | SUSP.<br>FALL<br>DIAM.<br>I FINER<br>THAN<br>.125 MM<br>(70343) | SUSP.<br>FALL<br>DIAM.<br>Z FINER<br>THAN<br>.250 MM<br>(70344) | SUSP.<br>FALL<br>DIAM.<br>Z FINER<br>THAN<br>.500 MM<br>(70345) | SUSP.<br>FALL<br>DIAM.<br>Z FINER<br>THAN<br>1.00 MM<br>(70346) | |-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------| | JUN 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 | WATER 0853 0856 90902 0902 0902 0902 0902 0902 0903 1 0934 7 0945 0 0955 9 1003 1 1002 1 102 1 102 1 11 1 1 1 1 1 1 1 1 | TEMPERATU 500 500 500 500 500 500 500 390 390 390 390 390 390 300 300 300 3 | 17.0° 17.2° | C (0850-<br>4.00<br>8.60<br>12.3<br>15.5<br>16.2<br>7.80<br>11.1<br>13.0<br>14.7<br>3.40<br>7.30<br>10.4<br>12.2<br>13.1<br>13.7<br>8.10<br>11.6<br>13.5<br>14.6<br>15.2<br>3.550<br>10.7<br>12.5<br>14.6<br>15.5<br>14.6 | 1125); 37<br>4.261<br>3.618<br>2.311<br>1.98<br>4.361<br>328<br>328<br>328<br>3.07<br>4.159<br>3.832<br>3.333<br>3.39<br>4.159<br>3.399<br>2.857<br>4.374<br>3.613<br>3.399<br>2.857<br>4.374<br>3.613<br>3.399<br>3.399<br>4.375<br>3.399<br>4.375<br>3.399<br>4.375<br>3.399<br>4.375<br>3.399<br>4.375<br>3.399<br>4.375<br>3.399<br>4.375<br>3.399<br>4.375<br>3.399<br>4.375<br>3.399<br>4.375<br>3.399<br>4.375<br>3.399<br>4.375<br>3.399<br>4.375<br>3.399<br>4.375<br>3.399<br>4.375<br>3.399<br>4.375<br>3.399<br>4.375<br>3.399<br>4.375<br>3.399<br>4.375<br>3.399<br>4.375<br>3.399<br>4.375<br>3.399<br>4.375<br>3.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399<br>4.399 | ISCHARGE, 131 135 168 379 677 163 235 249 287 351 366 233 289 242 235 316 659 275 161 180 199 224 339 154 | 32,000 f | 24 <sup>3</sup> /s. 842<br>672<br>288<br>191<br>534<br>440<br>342<br>325<br>530<br> | 989738425661708865 | 986<br>930<br>684<br>998<br>996<br>996<br>997<br> | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 | | | DATE | TIME | SAMPLE<br>LOC-<br>ATION,<br>CROSS<br>SECTION<br>(FT FM<br>L BANK)<br>(00009) | DEPTH<br>AT<br>SAMPLE<br>LOC-<br>ATION,<br>TOTAL<br>(FEET)<br>(81903) | SAM-<br>PLING<br>DEPTH<br>(FEET)<br>(00003) | STREAM<br>VELOC-<br>ITY,<br>POINT<br>(FPS)<br>(81904) | SEDI-<br>MENT,<br>SUS-<br>PENDED<br>(MG/L)<br>(80154) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>7 FINER<br>THAN<br>.004 MM<br>(70338) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>7 FINER<br>THAN<br>.062 MM<br>(70342) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>FINER<br>THAN<br>.125 MM<br>(70343) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>I FINER<br>THAN<br>.250 MM<br>(70344) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>I FINER<br>THAN<br>.500 MM<br>(70345) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>Z FINER<br>THAN<br>1.00 MM<br>(70346) | | JUL 27 | WATER<br>0720<br>0724<br>0728<br>0736<br>0736<br>0740<br>0755<br>0759<br>0807<br>0811<br>0815<br>0835<br>0840<br>0845<br>0850 | TEMPERATU<br>500<br>500<br>500<br>500<br>500<br>500<br>420<br>420<br>420<br>420<br>420<br>420<br>350<br>350<br>350 | 19.0° 19.0° | C (0720-<br>4.40<br>9.50<br>13.6<br>17.1<br>17.9<br>4.50<br>9.70<br>13.9<br>16.2<br>17.5<br>18.3<br>3.80<br>8.30<br>11.9 | 1000); 0<br>4.31<br>3.83<br>3.96<br>3.18<br>4.65<br>4.04<br>3.31<br>2.63<br>2.20<br>4.48<br>3.83<br>3.83<br>3.44 | ISCHARGE, 58 77 70 74 86 96 68 96 127 199 279 508 145 | 29,200 f | 2t <sup>3</sup> /s. 92 86 87 83 57 846 42 26 17 38 | 97<br>98<br>92<br>91<br>68<br>92<br>93<br>64<br>59<br>32<br>32<br> | 100<br>100<br>100<br>99<br>85<br>95<br>100<br>100<br>99<br>96<br>98<br>95 | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 | | ## 06486000 MISSOURI RIVER AT SIOUX CITY, IA--Continued WATER-QUALITY RECORDS PARTICLE-SIZE DISTRIBUTION OF SUSPENDED SEDIMENT, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | TIME | SAMPLE<br>LOC-<br>ATION,<br>CROSS<br>SECTION<br>(FI FM<br>L BANK)<br>(00009) | DEPTH<br>AT<br>SAMPLE<br>LOC-<br>ATION,<br>TOTAL<br>(FEET)<br>(81903) | SAM-<br>PLING<br>DEPTH<br>(FEET)<br>(00003) | STREAM<br>VELOC-<br>ITY,<br>POINT<br>(FPS)<br>(81904) | SEDI-<br>MENT,<br>SUS-<br>PENDED<br>(MG/L)<br>(80154) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>Z FINER<br>THAN<br>.004 MM<br>(70338) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>Z FINER<br>THAN<br>.062 MM<br>(70342) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>7 FINER<br>THAN<br>.125 MM<br>(70343) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>Z FINER<br>THAN<br>.250 MM<br>(70344) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>Z FINER<br>THAN<br>.500 MM<br>(70345) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>Z FINER<br>THAN<br>1.00 MM<br>(70346) | |-----------------|---------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------| | SEP<br>07<br>07 | WATER<br>0810 | TEMPERATU<br>500 | RE, 23.0° | C (0810-<br>4.30 | 1050); <sub>83</sub> D | ISCHARGE, | 28,900 f | t <sup>3</sup> /s. | 99 | 100 | | | | 07<br>07 | 0813 | 500 | 10.0_ | 9.30 | 3.83<br>3.72 | 78 | | 89 | 94 | 100 | | | | 07 | 0816 | 500 | | 13.3 | 3.55 | 90 | | 87 | 95 | 100 | | | | 07<br>07 | 0819<br>0821 | 500<br>500 | | 15.5<br>16.7 | 3.33<br>3.11 | 86<br>84 | | 85<br><b>8</b> 8 | 91<br>97 | 96<br>100 | 100 | | | 0/ | 0824 | 500 | | 17.5 | 2:74 | 80 | | 83 | 93 | 99 | 100 | | | 07 | 0827 | 500 | | | | 86 | | 8 <b>8</b> | 95 | 99 | 100 | | | 117 | 0845 | 425 | 18.0 | 4.20 | 4.37 | 84 | | 71<br>57 | 88<br>79 | 100 | | | | 07<br>07 | 0848<br>0851 | 425<br>425 | | 9.00<br>12.9 | 4.04<br>3.50 | 107<br>138 | | 40 | /9<br>59 | 100<br>98 | 100 | | | 07 | 0854 | 425 | | 15.0 | 3.55 | 161 | | 32 | 47 | 99 | 100 | | | 07 | 0857 | 425 | | 16.2 | 3.07 | 1810 | | _ 4 | 26 | 96 | 100 | | | 07<br>07 | 0900<br>0905 | 425<br>425 | | 17.0 | 3.11 | 275<br>119 | | 25<br>52 | 41<br>68 | 97<br>98 | 100<br>100 | | | 07 | 0918 | 310 | 12.0 | 2.80 | 4.26 | 119 | | | | | 100 | | | 07<br>07 | 0924 | 310 | | 6.00 | 4.26 | | | | | | | | | 07 | 0926 | 310 | | 8.60 | 3.72 | | | | | | | | | 07<br>07 | 0930<br>0935 | 310<br>310 | | 10.0<br>10.8 | 3.39<br>2.85 | | | | | | | | | 07 | 0940 | 310 | | 10.5 | 2.03 | 165 | | 39 | 58 | 96 | 100 | | | 07<br>07 | 0945 | 310 | | _ == | . == | 158 | 14 | 24 | | | | | | 07<br>07 | 0948<br>0952 | 195<br>195 | 12.4 | 2.90<br>6.20 | 4.37<br>4.20 | 108<br>131 | | 60<br>52 | 75<br>64 | 100<br>95 | 100 | | | 07 | 0956 | 195 | | 8.90 | 3.68 | 190 | | 36 | 46 | 93 | 100 | | | u/ | 1000 | 195 | | 10.3 | 2.74 | 476 | | 16 | 25 | 68 | 100 | | | 07 | 1004 | 195 | | 11.2 | 2.20 | 689 | | . 9 | 16 | 56 | 100 | | | 07<br>07 | 1007<br>1025 | 195<br>80.0 | 14.0 | 3.20 | 4.48 | 107<br>86 | | 49<br>69 | 62<br>77 | 94<br>94 | 100<br>100 | | | 07 | 1028 | 80.0 | 14.0 | 7.00 | 4.48 | 120 | | 50 | 60 | 93 | 100 | | | 0/ | 1031 | 80.0 | | 10.0 | 3.83 | 135 | | 36 | 43 | 92 | 100 | | | 07<br>07 | 1034<br>1037 | 80.0 | | 11.7 | 3.07 | 246 | | 28<br>18 | 35<br>23 | 84<br>61 | 100<br>99 | 100 | | 07 | 1042 | 80.0<br>80.0 | | 12.6<br>13.2 | 2.63<br>2.03 | 360<br>447 | | 12 | 23<br>19 | 65 | 100 | 100 | | ÖŹ | 1049 | 80.0 | | 10.2 | 2.00 | 119 | | 40 | 48 | 86 | 100 | | SIZE DISTRIBUTION OF SURFACE BED MATERIAL, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | TIME | NUMBER OF SAM- PLING POINTS (COUNT) (00063) | BED<br>MAT.<br>SIEVE<br>DIAM.<br>7 FINER<br>THAN<br>.062 MM<br>(80164) | BED<br>MAT.<br>SIEVE<br>DIAM.<br>Z FINER<br>THAN<br>.125 MM<br>(80165) | BED<br>MAT.<br>SIEVE<br>DIAM.<br>7 FINER<br>THAN<br>.250 MM<br>(80166) | BED<br>MAT.<br>SIEVE<br>DIAM.<br>7 FINER<br>THAN<br>.500 MM<br>(80167) | BED<br>MAT.<br>SIEVE<br>DIAM.<br>Z FINER<br>THAN<br>1.00 MM<br>(80168) | BED<br>MAT.<br>SIEVE<br>DIAM.<br>Z FINER<br>THAN<br>2.00 MM<br>(80169) | BED<br>MAT.<br>SIEVE<br>DIAM.<br>Z FINER<br>THAN<br>4.00 MM<br>(80170) | BED<br>MAT.<br>SIEVE<br>DIAM.<br>Z FINER<br>THAN<br>8.00 MM<br>(80171) | |-----------|------|---------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------| | OCT | | | | | | | | | | | | 07<br>May | 1041 | 5 | 0 | 1 | 24 | 81 | 97 | 99 | 99 | 100 | | 04<br>JUN | 1140 | 5 | | 0 | 26 | 91 | 99 | 100 | | | | 15<br>JUL | 1200 | 5 | | 0 | 6 | 87 | 100 | | | | | 27<br>SEP | 1005 | 5 | 0 | 1 | 11 | 78 | 97 | 98 | 99 | 100 | | 07 | 1125 | 5 | 1 | 1 | 17 | 76 | 97 | 99 | 99 | 100 | ## PERRY CREEK BASIN 183 ## 06600000 PERRY CREEK AT 38th STREET, SIOUX CITY, IA LOCATION.--Lat 42°32'08", long 96°24'39", in SE1/4 SE1/4 Sec.8, T.89 N., R. 47 W., Woodbury County, Hydrologic Unit 10230001, on left bank at downstream side of bridge on 38th Street in Sioux City, 1.9 mi downstream from West Branch, and 3.6 mi upstream from mouth. DRAINAGE AREA. -- 65.1 mi2. PERIOD OF RECORD. -- October 1945 to September 1969, June 1981 to current year. REVISED RECORDS. -- WSP 1440: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 1,112.04 ft above NGVD (City of Sioux City benchmark). Prior to May 20, 1954, nonrecording gage with supplementary water-stage recorder in operation above 5.0 ft gage height and May 20, 1954 to Sept. 30, 1969, water-stage recorder at present site at datum 5.0 ft higher. REMARKS.--Estimated daily discharges: Nov. 28 to Dec. 1, Dec. 7-12, 14-16, 24, 25, 27-30, Jan. 1-4, 7-12, 14-16, 19, 20, 25-28, Feb. 1-25, and Mar. 1-7, 16-18, 21. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. National Weather Service Limited Automatic Remote Collector at station. AVERAGE DISCHARGE.--32 years (water years 1946-69, 1982-89), 17.2 ft<sup>3</sup>/s, 3.59 in/yr, 12,460 acre-ft/yr; median of yearly mean discharges, 14 ft<sup>3</sup>/s, 2.9 in/yr, 10,100 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 7,780 ft<sup>3</sup>/s Sept. 10, 1949, gage height, 26.80 ft, present datum, from rating curve extended above 1,700 ft<sup>3</sup>/s on basis of slope-area measurement of peak flow; no flow at times in 1946, 1958-60. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of July 7, 1944, reached a stage of about 30.5 ft, from floodmarks, present datum, discharge, 9,600 ft<sup>3</sup>/s, on basis of contracted-opening measurement of peak flow by U.S. Army Corps of Engineers. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 800 ft3/s and maximum (\*): | | | Discharge | Gage height | | | Discharge | Gage height | |---------|------|----------------------|-------------|---------|------|----------------------|-------------| | Date | Time | (ft <sup>3</sup> /s) | (ft) | Date | Time | (ft <sup>3</sup> /s) | (ft) | | Mar. 9 | 1955 | 1.660 | 13.73 | July 29 | 1055 | 825 | 11.12 | | July 18 | 0130 | *3,390 | *17.93 | Sept. 7 | 1615 | 1,390 | 12.97 | Minimum discharge 2.0 ft3/s July 6, 10-14. | | | DISCHAR | GE, CUBIC | FEET PER | SECOND, | WATER YEAR<br>MEAN VALUES | OCTOBER | 1988 TO | SEPTEMBER | 1989 | | | |-----------------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------------|------------------------------------------|----------------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|----------------------------------------------------|------------------------------------------|--------------------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | 4.1<br>3.7<br>3.7<br>3.9<br>3.8 | 6.1<br>6.1<br>6.7<br>8.5<br>7.0 | 3.5<br>5.4<br>5.8<br>5.1<br>6.1 | 3.2<br>3.0<br>3.6<br>4.2<br>52 | 7.0<br>3.3<br>2.3<br>2.4<br>2.7 | 5.4<br>4.3<br>5.0<br>3.9<br>3.1 | 8.0<br>7.9<br>8.0<br>7.7<br>7.3 | 5.7<br>5.7<br>5.6<br>6.5<br>6.1 | 4.7<br>4.3<br>4.4<br>3.8<br>3.7 | 3.2<br>3.2<br>3.1<br>2.7<br>2.6 | 6.3<br>5.4<br>5.4<br>5.6<br>6.6 | 3.8<br>3.6<br>4.3<br>11<br>5.3 | | 6<br>7<br>8<br>9<br>10 | 7.4<br>3.9<br>3.9<br>3.7<br>3.5 | 6.2<br>5.9<br>5.4<br>5.7<br>4.9 | 6.2<br>5.4<br>4.0<br>4.7<br>3.6 | 68<br>13<br>5.4<br>6.6<br>5.4 | 3.1<br>3.7<br>2.9<br>2.8<br>3.9 | 2.7<br>6.6<br>14<br>501<br>281 | 7.2<br>7.6<br>7.9<br>7.1<br>6.6 | 5.5<br>5.4<br>5.9<br>5.3<br>5.2 | 3.7<br>3.6<br>3.6<br>3.5<br>3.6 | 2.3<br>2.3<br>2.3<br>2.4<br>2.1 | 5.3<br>4.8<br>4.6<br>4.4<br>4.1 | 4.9<br>276<br>35<br>14<br>8.4 | | 11<br>12<br>13<br>14<br>15 | 3.3<br>3.6<br>3.3<br>3.5<br>3.7 | 5.0<br>9.6<br>6.3<br>4.5<br>5.7 | 2.6<br>4.2<br>5.5<br>4.5<br>3.0 | 5.6<br>5.6<br>6.0<br>5.9<br>5.2 | 5.0<br>5.5<br>6.0<br>5.6<br>5.4 | 87<br>38<br>22<br>33<br>21 | 6.9<br>6.7<br>6.9<br>6.7<br>6.2 | 5.0<br>4.6<br>4.4<br>4.4 | 3.9<br>5.3<br>3.8<br>3.5<br>3.5 | 2.2<br>2.1<br>2.1<br>2.1<br>5.9 | 4.2<br>4.0<br>5.5<br>11<br>5.0 | 5.8<br>4.5<br>4.3<br>4.1<br>3.8 | | 16<br>17<br>18<br>19<br>20 | 4.0<br>5.5<br>5.9<br>6.4<br>6.2 | 6.3<br>5.4<br>6.5<br>6.7<br>5.4 | 3.7<br>4.5<br>4.5<br>5.7<br>9.7 | 5.8<br>6.1<br>6.3<br>7.0<br>7.2 | 5.2<br>4.5<br>4.0<br>3.8<br>4.7 | 13<br>7.6<br>9.0<br>11<br>10 | 6.2<br>6.5<br>7.3<br>6.9<br>6.6 | 4.5<br>4.1<br>4.9<br>5.4<br>4.7 | 3.1<br>4.1<br>3.7<br>3.6<br>2.9 | 3.3<br>108<br>692<br>20<br>8.7 | 4.6<br>4.0<br>3.8<br>3.8<br>4.0 | 3.6<br>3.5<br>3.4<br>3.2<br>3.4 | | 21<br>22<br>23<br>24<br>25 | 6.7<br>6.3<br>5.7<br>6.1<br>6.1 | 4.7<br>5.6<br>5.5<br>5.8<br>6.0 | 6.3<br>6.2<br>7.0<br>5.1<br>3.5 | 8.3<br>8.0<br>8.0<br>7.8<br>6.5 | 3.7<br>2.8<br>2.6<br>5.0 | 8.9<br>9.9<br>11<br>11 | 6.5<br>6.5<br>5.9<br>6.0<br>6.6 | 4.2<br>4.2<br>4.1<br>4.2<br>4.2 | 2.8<br>3.2<br>3.5<br>4.4<br>6.7 | 5.5<br>4.2<br>3.7<br>3.5<br>3.3 | 15<br>6.2<br>5.0<br>4.6<br>4.7 | 3.1<br>3.2<br>3.1<br>3.4<br>3.6 | | 26<br>27<br>28<br>29<br>30<br>31 | 6.2<br>6.1<br>5.6<br>5.7<br>6.3<br>6.1 | 7.2<br>6.2<br>3.4<br>5.2<br>5.6 | 5.0<br>3.5<br>2.5<br>3.0<br>3.6<br>4.3 | 5.6<br>6.2<br>6.8<br>8.1<br>11<br>21 | 57<br>18<br>9.3<br> | 11<br>12<br>11<br>9.6<br>9.1<br>7.9 | 6.1<br>6.7<br>6.5<br>6.7<br>5.8 | 4.3<br>4.4<br>4.7<br>5.6<br>4.5 | 5.5<br>8.2<br>4.4<br>3.5<br>3.3 | 3.0<br>2.8<br>2.7<br>231<br>29<br>8.6 | 10<br>6.6<br>4.9<br>4.7<br>4.2<br>4.1 | 3.4<br>3.3<br>3.4<br>3.4<br>3.3 | | TOTAL<br>MEAN<br>MAX<br>MIN<br>AC-FT<br>CFSM<br>IN. | 153.9<br>4.96<br>7.4<br>3.3<br>305<br>.08 | 179.1<br>5.97<br>9.6<br>3.4<br>355<br>.09 | 147.7<br>4.76<br>9.7<br>2.5<br>293<br>.07 | 322.4<br>10.4<br>68<br>3.0<br>639<br>.16<br>.18 | 195.2<br>6.97<br>57<br>2.3<br>387<br>.11 | 1190.0<br>38.4<br>501<br>2.7<br>2360<br>.59<br>.68 | 205.5<br>6.85<br>8.0<br>5.8<br>408<br>.11 | 152.2<br>4.91<br>6.5<br>4.1<br>302<br>.08 | 121.8<br>4.06<br>8.2<br>2.8<br>242<br>.06 | 1169.9<br>37.7<br>692<br>2.1<br>2320<br>.58<br>.67 | 172.4<br>5.56<br>15<br>3.8<br>342<br>.09 | 439.1<br>14.6<br>276<br>3.1<br>871<br>.22<br>.25 | CAL YR 1988 TOTAL 4585.0 MEAN 12.5 MAX 180 MIN 1.4 AC-FT 9090 CFSM .19 IN. 2.62 WTR YR 1989 TOTAL 4449.2 MEAN 12.2 MAX 692 MIN 2.1 AC-FT 8820 CFSM .19 IN. 2.54 ## FLOYD RIVER BASIN ## 06600100 FLOYD RIVER AT ALTON, IA LOCATION.--Lat 42°58'55", long 96°00'03", in NE1/4 NE1/4 sec.11, T.94 N., R.44 W., Sioux County, Hydrologic Unit 10230002, on left bank 270 ft downstream from South County Road at east edge of Alton, 34.3 mi upstream from West Branch Floyd River, and at mile 58.1. DRAINAGE AREA. -- 268 mi2. PERIOD OF RECORD. --October 1955 to current year. Prior to December 1955, monthly discharge only, published in WSP 1730. REVISED RECORDS. -- WDR IA-82-1: Drainage area. GAGE. -- Water-stage encoder. Datum of gage is 1,269.55 ft above NGVD. REMARKS.--Estimated daily discharges: Nov. 28, Dec. 1, 4, 7-17, Dec. 24 to Jan. 13, Jan. 15, 16, 26, Feb. 1 to Mar. 10, and Mar. 15-18, 20-23. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain-gage and satellite data collection platform at station. AVERAGE DISCHARGE.--34 years, 70.8 $ft^3/s$ , 3.59 in/yr, 51,290 acre-ft/yr; median of yearly mean discharges, 56 $ft^3/s$ , 2.8 in/yr, 40,600 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 16,300 ft<sup>3</sup>/s June 20, 1983, gage height 18.54 ft, from flood-mark, from rating curve extended above 8,500 ft<sup>3</sup>/s; no flow at times in 1956, 1958-59, 1965, 1968, 1977. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in June 1953 reached a discharge of about 45,500 ft<sup>3</sup>/s, from information by U. S. Army Corps of Engineers. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 800 ft3/s and maximum (\*): | | | Discharge | Gage height | • | | | Discharge | Gage height | |---------|------|------------|---------------|---|---------|------|----------------------|-------------| | Date | Time | $(ft^3/s)$ | (ft) | | Date | Time | (ft <sup>3</sup> /s) | (ft) | | Mar. 10 | 0815 | Ice jam | <b>*9</b> .76 | | Mar. 11 | 0400 | <b>*5</b> 96 | 8.75 | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 Minimum discharge, 1.1 ft3/s Sept. 28-30. | | | DIOGILI | ROD, CODIC | , 1001 10 | l DECORD | MEAN VALUE | S S | 1000 10 | ODI I III IDD | R 1000 | | | |-----------------------------------|----------------------------------------|---------------------------------------|------------------------------------------|---------------------------------------|------------------------------------------|---------------------------------------------|-----------------------------------------------|-----------------------------------------|------------------------------------------|---------------------------------------------------|-------------------------------------------|------------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | 29<br>28<br>25<br>23<br>22 | 17<br>16<br>16<br>16<br>15 | 13<br>16<br>15<br>14<br>15 | 11<br>11<br>12<br>15<br>20 | 15<br>5.0<br>4.2<br>4.7<br>5.2 | 8.0<br>6.8<br>7.2<br>6.4<br><b>5</b> .6 | 25<br>24<br>24<br>24<br>23 | 32<br>28<br>26<br>25<br>26 | 18<br>16<br>14<br>12<br>11 | 7.9<br>6.8<br>6.0<br>16<br>33 | 8.0<br>7.3<br>7.0<br>6.5<br>6.1 | 3.0<br>2.7<br>2.4<br>2.7<br>3.2 | | 6<br>7<br>8<br>9<br>10 | 22<br>21<br>20<br>19<br>18 | 13<br>13<br>13<br>12<br>12 | 16<br>15<br>13<br>12<br>10 | 19<br>15<br>11<br>12<br>11 | 6.1<br>7.0<br>5.2<br>5.5<br>9.0 | 5.0<br>10<br>45<br>130<br>350 | 22<br>23<br>24<br>24<br>21 | 23<br>21<br>20<br>19<br>18 | 11<br>10<br>10<br>10<br>9.6 | 16<br>9.8<br>7.0<br>5.7<br>4.7 | 6.1<br>5.7<br>4.9<br>4.4<br>4.0 | 3.0<br>8.9<br>12<br>9.8<br>6.8 | | 11<br>12<br>13<br>14<br>15 | 16<br>16<br>19<br>19<br>17 | 12<br>15<br>16<br>16<br>16 | 8.4<br>20<br>23<br>19<br>10 | 12<br>13<br>15<br>21<br>16 | 10<br>9.4<br>8.8<br>8.4<br>7.9 | 472<br>185<br>108<br>97<br>88 | 21<br>20<br>20<br>20<br>19 | 17<br>16<br>16<br>16<br>15 | 9.3<br>9.1<br>8.9<br>9.0<br>8.5 | 4.5<br>34<br>34<br>15<br>12 | 3.5<br>3.1<br>2.8<br>2.7<br>2.6 | 5.1<br>4.3<br>3.6<br>3.2<br>3.1 | | 16<br>17<br>18<br>19<br>20 | 16<br>16<br>16<br>15 | 11<br>12<br>19<br>20<br>13 | 11<br>12<br>13<br>14<br>13 | 17<br>18<br>15<br>13<br>12 | 7.2<br>6.7<br>6.1<br><b>5</b> .6<br>7.6 | 70<br>40<br>25<br>85<br>62 | 19<br>19<br>19<br>19 | 14<br>13<br>14<br>15<br>14 | 7.8<br>7.3<br>8.4<br>8.3<br>6.8 | 9.3<br>20<br>125<br>91<br>46 | 2.5<br>2.3<br>2.2<br>2.0<br>2.0 | 3.1<br>3.0<br>2.9<br>2.7<br>2.5 | | 21<br>22<br>23<br>24<br>25 | 15<br>15<br>14<br>14<br>13 | 13<br>23<br>22<br>25<br>25 | 14<br>14<br>15<br>14<br>13 | 12<br>13<br>13<br>14<br>15 | 6.2<br>5.3<br>4.8<br>9.0<br>30 | 45<br>33<br>39<br>44<br>55 | 20<br>19<br>20<br>21<br>23 | 12<br>11<br>12<br>32<br>153 | 6.7<br>6.1<br>5.7<br>5.7<br>9.3 | 28<br>20<br>16<br>13<br>11 | 2.1<br>3.1<br>5.4<br>4.5<br>3.3 | 2.4<br>2.2<br>1.6<br>1.8<br>2.0 | | 26<br>27<br>28<br>29<br>30<br>31 | 13<br>14<br>13<br>12<br>12<br>12 | 25<br>19<br>13<br>17<br>16 | 14<br>13<br>11<br>13<br>14<br>15 | 13<br>16<br>17<br>17<br>26<br>51 | 20<br>15<br>10<br> | 50<br>44<br>39<br>33<br>29<br>26 | 24<br>23<br>29<br>36<br>34 | 54<br>33<br>26<br>23<br>20<br>19 | 11<br>15<br>15<br>11<br>9.1 | 9.9<br>8.7<br>7.8<br>14<br>12<br>9.5 | 3.4<br>4.3<br>4.7<br>4.1<br>3.5<br>3.4 | 1.6<br>1.3<br>1.2<br>1.1<br>1.5 | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 540<br>17.4<br>29<br>12<br>1070<br>.06 | 491<br>16.4<br>25<br>11<br>974<br>.06 | 432.4<br>13.9<br>23<br>8.4<br>858<br>.05 | 496<br>16.0<br>51<br>11<br>984<br>.06 | 244.9<br>8.75<br>30<br>4.2<br>486<br>.03 | 2243.0<br>72.4<br>472<br>5.0<br>4450<br>.27 | 678<br>22.6<br>36<br>19<br>1340<br>.08<br>.09 | 783<br>25.3<br>153<br>11<br>1550<br>.09 | 299.6<br>9.99<br>18<br>5.7<br>594<br>.04 | 653.6<br>21.1<br>125<br>4.5<br>1300<br>.08<br>.09 | 127.5<br>4.11<br>8.0<br>2.0<br>253<br>.02 | 104.7<br>3.49<br>12<br>1.1<br>208<br>.01 | CAL YR 1988 TOTAL 20469.9 MEAN 55.9 MAX 557 MIN 3.8 AC-FT 40600 CFSM .21 IN. 2.84 WTR YR 1989 TOTAL 7093.7 MEAN 19.4 MAX 472 MIN 1.1 AC-FT 14070 CFSM .07 IN. .98 ## FLOYD RIVER BASIN 185 ## 06600300 WEST BRANCH FLOYD RIVER NEAR STRUBLE, IA LOCATION.--Lat 42°55'25", long 96°10'34", in NE1/4 NE1/4 sec. 32, T.94 N., R.45 W., Sioux County, Hydrologic Unit 10230002, on left bank near wingwall at downstream side of bridge on county highway B62, 0.1 mi west of U.S. Highway 75, 0.8 mi downstream from Orange City slough, 2.2 mi northeast of Struble, 21.4 mi upstream from Floyd River, and at mile 45.2 upstream from mouth of Floyd River. DRAINAGE AREA. -- 180 mi2. PERIOD OF RECORD. --October 1955 to current year. Prior to December 1955, monthly discharge only, published in WSP 1730. REVISED RECORDS. -- WDR IA-82-1: Drainage area, 1978-81 (P). GAGE.--Water-stage recorder. Datum of gage is 1,239.40 ft above NGVD (State Highway Commission bench mark). Prior to Jan. 5, 1978, at site 721 ft right at old channel at same datum. REMARKS.--Estimated daily discharges: Nov. 28 to Dec. 4, Dec. 8 to Mar. 9, and Mar. 14-21. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. National Weather Service Limited Automatic Remote Collector at station. AVERAGE DISCHARGE.--34 years, $45.9 \text{ ft}^3/\text{s}$ , 3.46 in/yr, 33,250 acre-ft/yr; median of yearly mean discharges, $35 \text{ ft}^3/\text{yr}$ , 2.6 in/yr, 25,400 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 8,060 ft<sup>3</sup>/s Mar. 28, 1962, gage height, 15.63 ft; maximum gage height, 15.86 ft June 20, 1983; no flow at times some years. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 400 ft3/s and maximum (\*): | | Discharge | Gage height | | | Discharge | Gage height | |------------|-------------------------|--------------|---------|------|----------------------|-------------| | Date Tim | ne (ft <sup>3</sup> /s) | (ft) | Date | Time | (ft <sup>3</sup> /s) | (ft) | | Mar. 9 220 | 0 ice jam | <b>*9.87</b> | July 18 | 0015 | 542 | 8.02 | | Mar 10 003 | เก *คดกั | 9 40 | · · | | | | Minimum discharge, 3.1 ft<sup>3</sup>/s Sept. 26 | | | DISCHA | RGE, CUBIC | FEET PER | SECOND | , WATER YEAR<br>MEAN VALUES | OCTOBER | 1988 TO | SEPTEMBER | 1989 | | | |-----------------------------------|------------------------------------------------|-----------------------------------------------|--------------------------------------------------|-----------------------------------------------|------------------------------------------|----------------------------------------------------|-----------------------------------------------|-------------------------------------------------|------------------------------------------|--------------------------------------------|-------------------------------------------|------------------------------------------| | DAY | OCT | NOA | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | 64<br>56<br>51<br>48<br>45 | 24<br>24<br>25<br>26<br>24 | 30<br>33<br>28<br>24<br>29 | 13<br>11<br>15<br>25<br>35 | 10<br>6.0<br>5.0<br>5.6<br>6.3 | 8.4<br>7.3<br>7.8<br>7.2<br>6.2 | 19<br>19<br>19<br>18<br>18 | 20<br>18<br>17<br>16<br>16 | 10<br>9.6<br>9.4<br>8.9<br>8.6 | 7.6<br>7.1<br>6.8<br>7.9<br>7.1 | 7.6<br>7.5<br>7.4<br>7.3<br>8.6 | 5.4<br>5.2<br>5.6<br>8.4<br>5.0 | | 6<br>7<br>8<br>9<br>10 | 43<br>41<br>40<br>36<br>36 | 24<br>24<br>23<br>24<br>23 | 24<br>22<br>17<br>15 | 29<br>15<br>10<br>13<br>12 | 7.0<br>8.3<br>7.0<br>7.8 | 6.5<br>13<br>40<br>180<br>517 | 17<br>19<br>21<br>20<br>19 | 15<br>14<br>13<br>12<br>12 | 9.0<br>8.5<br>8.1<br>8.0<br>8.1 | 5.9<br>5.8<br>5.8<br>5.2<br>5.1 | 7.2<br>6.4<br>6.4<br>6.2<br>5.8 | 4.7<br>12<br>22<br>10<br>6.5 | | 11<br>12<br>13<br>14<br>15 | 34<br>33<br>32<br>31<br>31 | 23<br>26<br>25<br>23<br>23 | 8.0<br>25<br>32<br>26<br>9.2 | 14<br>18<br>20<br>25<br>23 | 11<br>12<br>13<br>12<br>12 | 193<br>90<br>54<br>44<br>37 | 19<br>20<br>21<br>21<br>22 | 12<br>11<br>11<br>11 | 8.0<br>8.1<br>8.0<br>8.0 | 5.9<br>6.6<br>8.9<br>6.4<br>7.2 | 5.7<br>5.6<br>6.4<br>6.4<br>5.6 | 5.2<br>4.8<br>5.1<br>4.8<br>4.9 | | 16<br>17<br>18<br>19<br>20 | 30<br>30<br>30<br>29<br>30 | 21<br>24<br>24<br>24<br>23 | 15<br>17<br>26<br>24<br>22 | 21<br>20<br>26<br>28<br>22 | 11<br>10<br>7.0<br>7.5<br>8.4 | 30<br>20<br>30<br>47<br>23 | 21<br>20<br>23<br>23<br>22 | 11<br>11<br>11<br>11 | 7.9<br>8.0<br>9.5<br>8.2<br>7.6 | 6.2<br>30<br>194<br>47<br>18 | 5.7<br>6.3<br>5.2<br>5.2<br>5.4 | 4.8<br>4.8<br>4.9<br>4.5<br>4.5 | | 21<br>22<br>23<br>24<br>25 | 29<br>28<br>27<br>27<br>28 | 25<br>25<br>26<br>30<br>30 | 20<br>24<br>21<br>18<br>15 | 24<br>31<br>27<br>28<br>23 | 7.2<br>5.9<br>5.6<br>9.0<br>20 | 26<br>28<br>28<br>28<br>28 | 21<br>20<br>22<br>21<br>20 | 10<br>10<br>12<br>15 | 7.8<br>7.6<br>7.8<br>8.5 | 13<br>11<br>9.6<br>9.6<br>9.0 | 6.2<br>7.7<br>7.1<br>5.9<br>4.8 | 4.5<br>3.9<br>3.7<br>3.9<br>3.8 | | 26<br>27<br>28<br>29<br>30<br>31 | 28<br>27<br>25<br>24<br>24<br>24 | 30<br>23<br>16<br>35<br>28 | 17<br>14<br>12<br>10<br>15<br>20 | 15<br>18<br>23<br>22<br>21<br>19 | 18<br>16<br>10 | 25<br>26<br>23<br>22<br>21<br>20 | 19<br>19<br>24<br>22<br>21 | 9.5<br>9.1<br>9.5<br>9.8<br>9.3 | 11<br>10<br>8.7<br>8.5<br>7.9 | 9.2<br>8.5<br>7.8<br>19<br>13<br>8.4 | 7.9<br>8.5<br>6.7<br>6.1<br>5.8<br>5.9 | 4.1<br>4.7<br>4.5<br>3.7<br>4.6 | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 1061<br>34.2<br>64<br>24<br>2100<br>.19<br>.22 | 745<br>24.8<br>35<br>16<br>1480<br>.14<br>.15 | 623.2<br>20.1<br>33<br>8.0<br>1240<br>.11<br>.13 | 646<br>20.8<br>35<br>10<br>1280<br>.12<br>.13 | 268.6<br>9.59<br>20<br>5.0<br>533<br>.05 | 1636.4<br>52.8<br>517<br>6.2<br>3250<br>.29<br>.34 | 610<br>20.3<br>24<br>17<br>1210<br>.11<br>.13 | 378.2<br>12.2<br>20<br>9.1<br>750<br>.07<br>.08 | 258.3<br>8.61<br>11<br>7.6<br>512<br>.05 | 512.6<br>16.5<br>194<br>5.1<br>1020<br>.09 | 200.5<br>6.47<br>8.6<br>4.8<br>398<br>.04 | 174.5<br>5.82<br>22<br>3.7<br>346<br>.03 | CAL YR 1988 TOTAL 13856.3 MEAN 37.9 MAX 1590 MIN 1.3 AC-FT 27480 CFSM .21 IN. 2.86 WTR YR 1989 TOTAL 7114.3 MEAN 19.5 MAX 517 MIN 3.7 AC-FT 14110 CFSM .11 IN. 1.47 #### 06600500 FLOYD RIVER AT JAMES, IA LOCATION.--Lat 42°34'36", long 96°18'43", in SE1/4 SE1/4 sec.30, T.90 N., R.46 W., Plymouth County, Hydrologic Unit 10230002, on right bank at downstream side of bridge on county highway C70, 0.2 mi east of James, 14.3 mi downstream from West Branch Floyd River, and at mile 7.5. DRAINAGE AREA. -- 886 mi2. PERIOD OF RECORD .-- December 1934 to current year. REVISED RECORDS.--WSP 1240: 1935 (M), 1936, 1937-38 (M), 1942, 1945. WSP 1440: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 1,092.59 ft above NGVD. Prior to Sept. 11, 1938, June 9 to Nov. 5, 1953, and Oct. 1, 1955, to May 22, 1957, nonrecording gage and May 23, 1957, to Sept. 30, 1970, water-stage recorder at same site at datum 10.0 ft higher. REMARKS.--Estimated daily discharges: Nov. 28 to Mar. 11, Mar. 18 and July 18, 19. Records good except for estimated daily discharges which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. Satellite data collection platform at station. AVERAGE DISCHARGE.--54 years (water years 1936-89), 221 ft<sup>3</sup>/s, 3.39 in/yr, 160,100 acre-ft/yr; median of yearly mean discharges, 160 ft<sup>3</sup>/s, 2.4 in/yr, 116,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 71,500 ft<sup>3</sup>/s June 8, 1953, gage height, 25.3 ft, from flood-marks, datum then in use, from rating curve extended above 16,000 ft<sup>3</sup>/s on basis of contracted-opening and flow-over-embankment measurement of peak flow; minimum daily discharge, 0.90 ft<sup>3</sup>/s Jan. 10-22, 1977. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage and discharge since 1892, that of June 8, 1953, from information by U. S. Army Corps of Engineers. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 2,500 ft3/s and maximum (\*): | | | Discharge | Gage height | | Discharge | Gage height | |---------|---------|----------------------|-------------|-----------------------|----------------------|-------------| | Date | Time | (ft <sup>3</sup> /s) | (ft) | Date Time | (ft <sup>3</sup> /s) | (ft) | | July 18 | unknown | *3.500 | *16.07 | No other peak greate: | r than base disc | harge. | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 Minimum discharge, 24 ft3/s Sept. 30 | | | 2200 | , 0021 | | M | EAN VALUE | S | . 2000 10 | | | | | |-------------|------|------|------------|------|------|-----------|------|-----------|------|-------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 171 | 81 | 70 | 54 | 84 | 55 | 104 | 95 | 67 | 50 | 75 | 33 | | 2 | 152 | 81 | 94 | 48 | 55 | 50 | 99 | 92 | 65 | 46 | 65 | 32 | | 3 | 146 | 88 | 100 | 53 | 27 | 50 | 97 | 90 | 61 | 43 | 60 | 32 | | 3<br>4 | 134 | 91 | 80 | 60 | 30 | 45 | 95 | 88 | 56 | 42 | 57 | 38 | | 5 | 127 | 90 | 85 | 79 | 31 | 40 | 93 | 84 | 53 | 41 | 88 | 36 | | 6<br>7 | 121 | 84 | 102 | 100 | 31 | 35 | 91 | 80 | 51 | 44 | 106 | 36 | | 7 | 119 | 82 | 85 | 70 | 33 | 36 | 90 | 79 | 49 | 54 | 57 | 131 | | 8 | 117 | 80 | 6 <b>6</b> | 55 | 30 | 42 | 91 | 77 | 47 | 46 | 52 | 278 | | 9 | 117 | 79 | 58 | 61 | 29 | 80 | 90 | 73 | 47 | 41 | 49 | 92 | | 10 | 112 | 77 | 45 | 58 | 35 | 700 | 89 | 73 | 46 | 38 | 45 | 67 | | 11 | 106 | 78 | 40 | 58 | 41 | 1100 | 88 | 70 | 46 | 38 | 43 | 53 | | 12 | 103 | 93 | 72 | 60 | 42 | 874 | 86 | 68 | 48 | 41 | 42 | 46 | | 13 | 100 | 95 | 90 | 61 | 41 | 399 | 87 | 67 | 47 | 42 | 43 | 41 | | 14 | 100 | 90 | 80 | 66 | 40 | 310 | 85 | 66 | 45 | 56 | 46 | 39 | | 15 | 101 | 90 | 47 | 63 | 38 | 203 | 84 | 65 | 45 | 70 | 45 | 38 | | 16 | 98 | 87 | 57 | 59 | 37 | 203 | 83 | 65 | 44 | 58 | 44 | 37 | | 17 | 99 | 63 | 70 | 58 | 35 | 154 | 82 | 63 | 44 | 152 | 43 | 35 | | 18 | 100 | 93 | 82 | 61 | 34 | 125 | 83 | 63 | 47 | 2060 | 41 | 35 | | 19 | 96 | 98 | 78 | 66 | 33 | 148 | 84 | 67 | 47 | 590 | 37 | 34 | | 20 | 94 | 91 | 72 | 68 | 35 | 167 | 83 | 66 | 44 | 304 | 36 | 30 | | 21 | 96 | 81 | 68 | 75 | 32 | 123 | 83 | 63 | 42 | 180 | 39 | 28 | | 22 | 94 | 93 | 78 | 88 | 31 | 146 | 83 | 60 | 47 | 126 | 36 | 28 | | 23 | 92 | 106 | 70 | 76 | 30 | 146 | 80 | 60 | 44 | 100 | 36 | 27 | | 24 | 87 | 108 | 66 | 74 | 50 | 148 | 81 | 62 | 44 | 86 | 36 | 27 | | 25 | 87 | 113 | 64 | 70 | 76 | 142 | 84 | 95 | 54 | 79 | 35 | 26 | | <b>*</b> 26 | 85 | 119 | 66 | 65 | 90 | 147 | 82 | 132 | 59 | 72 | 38 | 25 | | 27 | 86 | 115 | 63 | 74 | 74 | 143 | 82 | 113 | 61 | 67 | 41 | 25 | | 28 | 83 | 62 | 62 | 83 | 61 | 135 | 94 | 88 | 58 | 63 | 38 | 25 | | 29 | 82 | 80 | 62 | 100 | | 127 | 97 | 82 | 53 | 276 | 37 | 25 | | 30 | 79 | 86 | 64 | 150 | | 118 | 95 | 74 | 50 | 257 | 35 | 25 | | 31 | 80 | | 70 | 140 | | 108 | | 69 | | 101 | 34 | | | TOTAL | 3264 | 2674 | 2206 | 2253 | 1205 | 6299 | 2645 | 2389 | 1511 | 5263 | 1479 | 1424 | | MEAN | 105 | 89.1 | 71.2 | 72.7 | 43.0 | 203 | 88.2 | 77.1 | 50.4 | 170 | 47.7 | 47.5 | | MAX | 171 | 119 | 102 | 150 | 90 | 1100 | 104 | 132 | 67 | 2060 | 106 | 278 | | MIN | 79 | 62 | 40 | 48 | 27 | 35 | 80 | 60 | 42 | 38 | 34 | 25 | | AC-FT | 6470 | 5300 | 4380 | 4470 | 2390 | 12490 | 5250 | 4740 | 3000 | 10440 | 2930 | 2820 | | CFSM | . 12 | . 10 | .08 | .08 | .05 | .23 | .10 | .09 | .06 | . 19 | .05 | .05 | | IN. | . 14 | . 11 | .09 | .09 | .05 | .26 | . 11 | .10 | .06 | .22 | .06 | .06 | | | | | | | | | | | | | | | CAL YR 1988 TOTAL 62102 MEAN 170 MAX 1670 MIN 33 AC-FT 123200 CFSM .19 IN. 2.61 WTR YR 1989 TOTAL 32612 MEAN 89.3 MAX 2060 MIN 25 AC-FT 64690 CFSM .10 IN. 1.37 ## 06601200 MISSOURI RIVER AT DECATUR, NE LOCATION.--Lat 42°00'26", long 96°14'29", in NE1/4 SW1/4 sec.36, T.24 N., R.10 E., Burt County, Hydrologic Unit 10230001, on right bank 0.1 mi upstream from Iowa Highway 175 bridge at Decatur, and at mile 691.0. DRAINAGE AREA. -- 316,200 mi<sup>2</sup>, approximately. The 3,959 mi<sup>2</sup> in Great Divide basin are not included. PERIOD OF RECORD. -- October 1987 to September 1989. GAGE.--Water-stage encoder. Datum of gage is 1,010.00 ft above NGVD, supplementary adjustment of 1954. REMARKS.--Estimated daily discharges: Feb. 4-27. Records good except those for estimated daily discharges, which are poor. Flow regulated by upstream main-stem reservoirs. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain-gage and satellite data collection platform at station. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 40,600 ft<sup>3</sup>/s Sept. 16, 1988, gage height, 25.59 ft; minimum daily discharge, 8,290 ft<sup>3</sup>/s Jan. 9, 1989; minimum gage height, 13.78, Jan. 9, 1989. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 38,300 ft<sup>3</sup>/s July 18, gage height, 24.55 ft; minimum daily discharge, 8,290 ft<sup>3</sup>/s Jan. 9; minimum gage height, 13.78, Jan. 9, 1989. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 MEAN VALUES | | | | | | | IIIIII VIIIO | 10 | | | | | | |--------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 32300 | 34600 | 13600 | 14700 | 14100 | 13700 | 29600 | 32000 | 32000 | 31200 | 32000 | 30000 | | 2<br>3 | 32100<br>32000 | 34800<br>35100 | 13700 | 14100<br>13100 | 12600 | 14400 | 29500 | 31900 | 32400 | 32500<br>32100 | 31900<br>32000 | 30400<br>30700 | | 4 | 31900 | 35000 | 13700<br>13700 | 14200 | 10900<br>13000 | 13700<br>11600 | 29500<br>29700 | 31800<br>32100 | 32100<br>31800 | 30400 | 31900 | 32600 | | 5 | 32200 | 35200 | 13600 | 14200 | 16900 | 11300 | 29300 | 32400 | 32500 | 30400 | 32000 | 31600 | | | | | | | | | | | | | | | | 6 | 32900 | 35300 | 13600 | 14900 | 18800 | 13300 | 28900 | 32200 | 31800 | 31000 | 32100 | 29600 | | 7 | 33100 | 34900 | 13700 | 14500 | 18900 | 15100 | 28800 | 31800 | 3190 <b>0</b> | 28500 | 32000 | 28700 | | 8 | 33100 | 34600 | 13500 | 13100 | 18800 | 15800 | 29700 | 31500 | 32800 | 29100 | 32000 | 30600 | | 9 | 33400 | 34000 | 13300 | 8290 | 18500 | 15700 | 29900 | 31800 | 32700 | 31400 | 32000 | 28900 | | 10 | 33400 | 31100 | 13200 | 9010 | 18700 | 19800 | 30000 | 32400 | 32400 | 29500 | 31800 | 26800 | | 11 | 33500 | 29700 | 13000 | 14000 | 19400 | 19100 | 30100 | 32700 | 32300 | 29800 | 31900 | 25200 | | 12 | 34000 | 28000 | 12400 | 15600 | 19500 | 17400 | 31100 | 32900 | 32900 | 31700 | 32000 | 25300 | | 13 | 34000 | 25400 | 13300 | 15700 | 19000 | 17300 | 31600 | 33200 | 33000 | 31300 | 32200 | 26700 | | 14 | 34200 | 22500 | 14500 | 14900 | 18800 | 17300 | 31400 | 33400 | 31600 | 31800 | 32600 | 27400 | | 15 | 34700 | 19900 | 13500 | 14600 | 18600 | 16400 | 31000 | 33400 | 31200 | 33300 | 32400 | 27400 | | 16 | 34800 | 17700 | 12700 | 14700 | 18500 | 14200 | 31100 | 33300 | 32000 | 34300 | 32100 | 27800 | | 17 | 34800 | 15800 | 12400 | 14800 | 18400 | 13100 | 31000 | 33300 | 31700 | 33000 | 31800 | 27900 | | 18 | 34600 | 15000 | 13000 | 15000 | 18200 | 12300 | 31100 | 33500 | 32200 | 36400 | 32000 | 28100 | | 19 | 34500 | 14900 | 13800 | 15000 | 17000 | 11700 | 31500 | 33600 | 32300 | 35100 | 31900 | 28300 | | 20 | 34600 | 14700 | 14300 | 15000 | 15200 | 12200 | 31600 | 33400 | 3150 <b>0</b> | 33600 | 32100 | 28700 | | 21 | 34900 | 14500 | 13700 | 14400 | 15900 | 12500 | 31900 | 33100 | 31600 | 31500 | 32300 | 28800 | | 22 | 34600 | 14400 | 13500 | 13800 | 16700 | 12900 | 32300 | 33000 | 32100 | 30900 | 33500 | 29000 | | 23 | 34500 | 14300 | 13800 | 14200 | 15200 | 13100 | 32400 | 33100 | 31900 | 31400 | 32400 | 29100 | | 24 | 34500 | 13900 | 13700 | 14500 | 15000 | 13300 | 32700 | 33000 | 31800 | 29300 | 32100 | 29500 | | 25 | 34500 | 13900 | 13100 | 14600 | 15900 | 14300 | 32900 | 32300 | 32500 | 29500 | 32100 | 29600 | | 26 | 34500 | 14100 | 12700 | 14300 | 15600 | 16900 | 32900 | 31800 | 32700 | 31100 | 32500 | 29700 | | 27 | 34400 | 14100 | 12900 | 14100 | 14800 | 20300 | 32400 | 32200 | 30400 | 29800 | 32700 | 29900 | | 28 | 34400 | 13900 | 13200 | 14100 | 14000 | 23500 | 32500 | 32000 | 2960 <b>0</b> | 30000 | 31500 | 30100 | | 29 | 34200 | 13600 | 11900 | 14200 | | 26700 | 32200 | 34100 | 31200 | 32300 | 31200 | 30200 | | 30 | 34000 | 13800 | 12600 | 14200 | | 29400 | 32100 | 32700 | 28700 | 33500 | 30500 | 30200 | | 31 | 34200 | | 13900 | 14400 | | 29700 | | 31500 | | 32400 | 29900 | | | TOTAL | 1048800 | 688700 | 413500 | 436200 | 466900 | 508000 | 930700 | 1011400 | 95560 <b>0</b> | 978100 | 991400 | 868800 | | MEAN | 33830 | 22960 | 13340 | 14070 | 16670 | 16390 | 31020 | 32630 | 31850 | 31550 | 31980 | 28960 | | MAX | 34900 | 35300 | 14500 | 15700 | 19500 | 29700 | 32900 | 34100 | 33000 | 36400 | 33500 | 32600 | | MIN | 31900 | 13600 | 11900 | 8290 | 10900 | 11300 | 28800 | 31500 | 2870 <b>0</b> | 28500 | 29900 | 25200 | | AC-FT | 2080000 | 1366000 | 820200 | 865200 | 926100 | 1008000 | 1846000 | 2006000 | 1895000 | 1940000 | 1966000 | 1723000 | CAL YR 1988 TOTAL 10152000 MEAN 27740 MAX 40100 MIN 11900 AC-FT 20140000 WTR YR 1989 TOTAL 9298100 MEAN 25470 MAX 36400 MIN 8290 AC-FT 18440000 ## MONONA-HARRISON DITCH BASIN ## 06602020 WEST FORK DITCH AT HORNICK, IA LOCATION.--Lat 42°13'37", long 96°04'40", in SW1/4 sec.27, T.86 N., R.45 W., Woodbury County, Hydrologic Unit 10230004, on left bank at upstream side of State Highway 141 bridge, 1.0 mi east of Hornick, 9.2 mi upstream from Wolf Creek, and 13.5 mi north of Onawa. DRAINAGE AREA. -- 403 mi 2. PERIOD OF RECORD. --April 1939 to September 1969 (published as "at Holly Springs"), July 1974 to current year. REVISED RECORDS, -- WSP 1240: 1943, 1945 (M). WSP 1310: 1941 (M) 1944-46 (M). WSP 1440: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 1,045.82 ft above NGVD. Prior to June 16, 1959, nonrecording gage at site 3.0 mi upstream and June 16, 1959 to Sept. 30, 1969, recording gage at site 2.2 mi upstream at datum 7.0 ft higher. REMARKS.--Estimated daily discharges: Nov. 28 to Dec. 6, Dec. 9 to Mar. 10, and Mar. 17-19. Records good except those for estimated daily discharges, which are poor. West Fork ditch is a dredged channel which diverts flow of West Fork Little Sioux River at Holly Springs 5.5 mi south, then southeast 6.5 mi to a point 1.2 mi west of Kennebec, where Wolf Creek enters from left. From this point, ditch roughly parallels the Little Sioux River and is known as Monona-Harrison ditch. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. National Weather Service gage-height telemeter at station. AVERAGE DISCHARGE.--45 years (water years 1940-69, 1975-89), 109 ft<sup>3</sup>/s, 3.67 in/yr, 78,970 acre-ft/yr; median of yearly mean discharges, 89 ft<sup>3</sup>/s, 3.0 in/yr, 64,500 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 12,400 ft<sup>3</sup>/s Mar. 28, 1962, gage height, 22.46 ft, site and datum then in use; maximum gage height, 25.2 ft Mar. 30, 1960, from floodmark, site and datum then in use; minimum daily discharge, 0.2 ft<sup>3</sup>/s July 30, Aug. 17, 1956. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 1,800 ft3/s and maximum (\*): Discharge Gage height Date Time $(ft^3/s)$ (ft) Date Time $(ft^3/s)$ (ft) No other peak greater than base discharge. (a) Ice jam. Minimum daily discharge, 19 ft3/s, Sept. 2. | | | DISCHARGE | , CUBIC | FEET PER | SECOND, | WATER YEAR<br>EAN VALUES | OCTOBER | 1988 TO | SEPTEMBER | 1989 | | | |-----------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|------------------------------------------------|------------------------------------------|------------------------------------------------|------------------------------------------|----------------------------------------|-------------------------------------------------| | DAY | OCT | NOA | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | 68<br>69<br>63<br>59<br>57 | 46<br>47<br>47<br>48<br>48 | 45<br>43<br>50<br>47<br>49 | 39<br>35<br>37<br>40<br>66 | 150<br>100<br>25<br>28<br>30 | 50<br>47<br>49<br>42<br>37 | 62<br>59<br>59<br>57<br>57 | 53<br>50<br>49<br>47<br>46 | 41<br>40<br>37<br>35<br>35 | 33<br>32<br>31<br>30<br>30 | 42<br>33<br>30<br>28<br>28 | 20<br>19<br>20<br>191<br>139 | | 6<br>7<br>8<br>9<br>10 | 56<br>55<br>54<br>53<br>52 | 47<br>47<br>46<br>46<br>45 | 50<br>53<br>48<br>39<br>34 | 150<br>40<br>32<br>37<br>35 | 32<br>42<br>37<br>36<br>42 | 35<br>37<br>60<br>250<br>1300 | 56<br>56<br>57<br>56<br>55 | 45<br>44<br>43<br>41<br>40 | 34<br>33<br>32<br>32<br>32 | 29<br>28<br>39<br>30<br>26 | 27<br>27<br>26<br>25<br>25 | 39<br>43<br>363<br>134<br>54 | | 11<br>12<br>13<br>14<br>15 | 51<br>50<br>50<br>49<br>49 | 45<br>50<br>52<br>50<br>49 | 30<br>44<br>56<br>48<br>33 | 34<br>36<br>38<br>42<br>40 | 46<br>52<br>50<br>45<br>43 | 947<br>355<br>174<br>129<br>174 | 54<br>53<br>54<br>52<br>52 | 39<br>38<br>37<br>36<br>35 | 33<br>36<br>32<br>32<br>32 | 26<br>25<br>25<br>26<br>30 | 24<br>23<br>24<br>25<br>29 | 40<br>34<br>31<br>30<br>29 | | 16<br>17<br>18<br>19<br>20 | 49<br>49<br>49<br>49 | 52<br>48<br>51<br>54<br>55 | 36<br>43<br>52<br>48<br>45 | 38<br>38<br>40<br>43<br>46 | 40<br>37<br>34<br>32<br>37 | 121<br>90<br>82<br>88<br>95 | 51<br>49<br>49<br>51<br>50 | 35<br>35<br>34<br>35<br>35 | 32<br>32<br>33<br>33<br>33 | 30<br>29<br>691<br>192<br>61 | 24<br>23<br>23<br>23<br>23 | 27<br>27<br>26<br>25<br>24 | | 21<br>22<br>23<br>24<br>25 | 49<br>48<br>47<br>46<br>46 | 50<br>53<br>61<br>56<br>56 | 42<br>45<br>43<br>40<br>39 | 50<br>60<br>54<br>52<br>47 | 34<br>31<br>30<br>32<br>60 | 76<br>80<br>78<br>76<br>72 | 48<br>48<br>48<br>46<br>45 | 34<br>32<br>32<br>32<br>36 | 31<br>32<br>34<br>35<br>38 | 42<br>36<br>33<br>31<br>30 | 24<br>24<br>22<br>21<br>21 | 23<br>23<br>22<br>22<br>22 | | 26<br>27<br>28<br>29<br>30<br>31 | 46<br>46<br>45<br>46<br>46 | 56<br>56<br>41<br>45<br>47 | 40<br>38<br>37<br>36<br>39<br>43 | 43<br>45<br>46<br>50<br>52<br>66 | 120<br>90<br>60<br> | 71<br>67<br>66<br>67<br>65<br>63 | 45<br>45<br>46<br>56<br>57 | 52<br>40<br>39<br>113<br>43<br>41 | 39<br>40<br>40<br>38<br>34 | 28<br>28<br>27<br>51<br>84<br>65 | 26<br>25<br>25<br>24<br>22<br>21 | 22<br>22<br>21<br>21<br>21 | | TOTAL<br>MEAN<br>MAX<br>MIN<br>AC-FT<br>CFSM<br>IN. | 1591<br>51.3<br>69<br>45<br>3160<br>.13<br>.15 | 1494<br>49.8<br>61<br>41<br>2960<br>.12<br>.14 | 1335<br>43.1<br>56<br>30<br>2650<br>.11<br>.12 | 1471<br>47.5<br>150<br>32<br>2920<br>.12<br>.14 | 1395<br>49.8<br>150<br>25<br>2770<br>.12<br>.13 | 4943<br>159<br>1300<br>35<br>9800<br>.40<br>.46 | 1573<br>52.4<br>62<br>45<br>3120<br>.13<br>.15 | 1311<br>42.3<br>113<br>32<br>2600<br>.10 | 1040<br>34.7<br>41<br>31<br>2060<br>.09<br>.10 | 1898<br>61.2<br>691<br>25<br>3760<br>.15 | 787<br>25.4<br>42<br>21<br>1560<br>.06 | 1534<br>51.1<br>363<br>19<br>3040<br>.13<br>.14 | CAL YR 1988 TOTAL 23241 MEAN 63.5 MAX 687 MIN 25 AC-FT 46100 CFSM .16 IN. 2.15 WTR YR 1989 TOTAL 20372 MEAN 55.8 MAX 1300 MIN 19 AC-FT 40410 CFSM .14 IN. 1.88 ## MONONA-HARRISON DITCH BASIN #### 06602400 MONONA-HARRISON DITCH NEAR TURIN, IA LOCATION.--Lat 41°57'52", long 95°59'30", in NW1/4 NE1/4 sec.32, T.83 N., R.44 W., Monona County, Hydrologic Unit 10230004, on left pier at downstream side of bridge on county highway E54, 1.0 mi west of gaging station on Little Sloux River near Turin, 4 mi southwest of Turin, 5.2 mi northeast of Blencoe, and 12.5 mi upstream from mouth. DRAINAGE AREA, -- 900 mi2. PERIOD OF RECORD. --April 1939 to current year. Records for April 1939 to January 1958 not equivalent owing to diversion from Little Sioux River through equalizer ditch 1.5 mi upstream. Prior to May 1942, published as "near Blencoe". GAGE.--Water-stage encoder. Datum of gage is 1,015.00 ft above NGVD (U.S. Army Corps of Engineers bench mark). Prior to May 7, 1942, nonrecording gage at site 4.8 mi downstream at datum 5.40 ft lower. May 7, 1942 to Oct. 13, 1953, nonrecording gage and Oct. 14, 1953 to Sept. 30, 1975, recording gage at same site at datum 5.00 ft higher. REMARKS.--Estimated daily discharges: Nov. 28 to Dec. 1, Dec. 8-17, Dec. 20 to Jan. 13, Feb. 1-19, Feb 28 to Mar. 9, Mar 16-18. Records good except those for estimated daily discharges, which are poor. Monona-Harrison ditch is a dug channel and is a continuation of West Fork ditch, paralleling the Little Sioux River, and discharging into the Missouri River 1.5 mi upstream from the mouth of the Little Sioux River. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain-gage and satellite data collection platform at station. AVERAGE DISCHARGE.--31 years (water years 1959-89), 246 ft<sup>3</sup>/s, 3.71 in/yr, 178,200 acre-ft/yr; median of yearly mean discharges, 200 ft<sup>3</sup>/s, 3.0 in/yr, 145,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 19,900 ft<sup>3</sup>/s Feb. 19, 1971, gage height, 28.03 ft, present datum; minimum daily discharge, 8.5 ft<sup>3</sup>/s Jan. 3-11, 1959. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 2,500 ft3/s and maximum (\*): Discharge Gage height Date Time (ft $^3$ /s) (ft) Date Time (ft $^3$ /s) (ft) No other peak greater thann base discharge. DISCHARGE CURIC FEET PER SECOND WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 Minimum discharge, 14 ft3/s Jan. 20, result of freezeup. | | | DISCHARGE | COBIC | FEET PER | SECOND,<br>M | WATER YEA<br>EAN VALUES | R OCTOBER | 1988 TO | SEPTEMBER | 1989 | | | |-----------------------------------|-------------------------------------------------|------------------------------------------|------------------------------------------------|------------------------------------------|------------------------------------------|---------------------------------------------------|-------------------------------------------------|------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-----------------------------------------|-----------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 120 | 70 | 76 | 62 | 110 | 88 | 100 | 81 | 102 | 65 | 89 | 39 | | 2 | 119 | 72 | 90 | 53 | 70 | 76 | 96 | 77 | 86 | 63 | 61 | 38 | | 3 | 106 | 73 | 91 | 56 | 46 | 74 | 97 | 75 | 89 | 62 | 52 | 38 | | 4 | 96 | 75 | 84 | 62 | 50 | 64 | 92 | 75 | 75 | 60 | 52 | 126 | | 5 | 91 | 77 | 85 | 70 | 53 | 55 | 89 | 72 | 69 | 58 | 49 | 919 | | 6 | 89 | 74 | 89 | 400 | 58 | 50 | 88 | 70 | 67 | 58 | 46 | 133 | | 7 | 87 | 74 | 88 | 170 | 70 | 52 | 88 | 70 | 67 | 58 | 44 | 92 | | 8 | 88 | 75 | 70 | 69 | 64 | 59 | 90 | 70 | 71 | 58 | 43 | 834 | | 9 | 87 | 73 | 62 | 84 | 60 | 250 | 96 | 66 | 62 | 65 | 41 | 982 | | 10 | 87 | 74 | 57 | 72 | 72 | 3790 | 88 | 64 | 63 | 56 | 40 | 249 | | 11 | 83 | 74 | 53 | 78 | 93 | 2350 | 86 | 63 | 65 | 48 | 39 | 129 | | 12 | 81 | 81 | 68 | 87 | 98 | 836 | 85 | 62 | 77 | 48 | 37 | 91 | | 13 | 82 | 92 | 75 | 110 | 93 | 349 | 86 | 61 | 74 | 45 | 37 | 76 | | 14 | 82 | 94 | 70 | 98 | 87 | 204 | 87 | 61 | 65 | 43 | 42 | 69 | | 15 | 79 | 89 | 58 | 81 | 81 | 214 | 84 | 60 | 65 | 46 | 49 | 64 | | 16 | 77 | 86 | 62 | 77 | 76 | 180 | 86 | 58 | <b>66</b> | 51 | 50 | 61 | | 17 | 76 | 89 | 72 | 75 | 74 | 110 | 83 | 58 | 66 | 52 | 40 | 59 | | 18 | 75 | 88 | 77 | 75 | 72 | 85 | 82 | 60 | 69 | 542 | 38 | 56 | | 19 | 75 | 94 | 75 | 76 | 71 | 110 | 80 | 63 | 68 | 1430 | 38 | 54 | | 20 | 75 | 93 | 72 | 75 | 71 | 126 | 80 | 62 | 67 | 276 | 39 | 51 | | 21 | 76 | 84 | 71 | 83 | 70 | 111 | 77 | 60 | 66 | 96 | 41 | 51 | | 22 | 75 | 87 | 84 | 88 | 68 | 107 | 76 | 58 | 67 | 65 | 50 | 47 | | 23 | 76 | 101 | 79 | 90 | 64 | 115 | 76 | 58 | 65 | 55 | 57 | 43 | | 24 | 71 | 99 | 72 | 90 | 68 | 113 | 75 | 57 | 67 | 51 | 42 | 43 | | 25 | 70 | 98 | 68 | 89 | 70 | 107 | 73 | 54 | 77 | 49 | 38 | 45 | | 26<br>27<br>28<br>29<br>30<br>31 | 68<br>70<br>69<br>69<br>69 | 99<br>97<br>65<br>68<br>82 | 73<br>70<br>66<br>65<br>67<br>74 | 79<br>82<br>94<br>86<br>88<br>134 | 81<br>152<br>100<br> | 107<br>109<br>108<br>107<br>107<br>103 | 73<br>71<br>72<br>77<br>89 | 71<br>67<br>64<br>928<br>567<br>158 | 78<br>78<br>80<br>75<br>69 | 48<br>46<br>44<br>96<br>413<br>208 | 40<br>59<br>60<br>48<br>43<br>41 | 46<br>47<br>47<br>48<br>47 | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 2537<br>81.8<br>120<br>68<br>5030<br>.09<br>.10 | 2497<br>83.2<br>101<br>65<br>4950<br>.09 | 2263<br>73.0<br>91<br>53<br>4490<br>.08<br>.09 | 2933<br>94.6<br>400<br>53<br>5820<br>.11 | 2142<br>76.5<br>152<br>46<br>4250<br>.08 | 10316<br>333<br>3790<br>50<br>20460<br>.37<br>.43 | 2522<br>84.1<br>100<br>71<br>5000<br>.09<br>.10 | 3470<br>112<br>928<br>54<br>6880<br>.12<br>.14 | 2155<br>71.8<br>102<br>62<br>4270<br>.08<br>.09 | 4355<br>140<br>1430<br>43<br>8640<br>.16<br>.18 | 1445<br>46.6<br>89<br>37<br>2870<br>.05 | 4624<br>154<br>982<br>38<br>9170<br>.17 | CAL YR 1988 TOTAL 42549 MEAN 116 MAX 621 MIN 43 AC-FT 84400 CFSM .13 IN. 1.76 WTR YR 1989 TOTAL 41259 MEAN 113 MAX 3790 MIN 37 AC-FT 81840 CFSM .13 IN. 1.71 ## 06604200 WEST OKOBOJI LAKE AT LAKESIDE LABORATORY NEAR MILFORD, IA LOCATION.--Lat 43°22'43", long 95°10'52", in NE1/4 SW1/4 sec.23, T.99N., R.37W., Dickinson County, Hydrologic Unit 10230003, at pumping station of Lakeside Laboratory on west shore, 2.3 mi upstream from lake outlet and 3.8 mi northwest of Milford. DRAINAGE AREA, -- 125 mi<sup>2</sup>. PERIOD OF RECORD.--May 1933 to current year. Published as "Okoboji Lake at Arnold's Park" 1933-37 and as "Okoboji Lake at Lakeside Laboratory near Milford" 1937-66. GAGE.--Water-stage recorder. Datum of gage is 1,391.76 ft above NGVD, 94.51 ft above Iowa Lake Survey datum, and about 4.0 ft below crest of spillway. Prior to June 17, 1938, nonrecording gage at State Pier at Arnolds Park at same datum. REMARKS.--Lake formed by concrete dam with ungated spillway at elevation 1,395.8 ft above NGVD. Lake is used for conservation and recreation. Area of lake is approximately 3,900 acres. EXTREMES FOR PERIOD OF RECORD.--Maximum gage height, 6.28 ft June 22, 1984; minimum observed, 0.20 ft Sept. 20, 1959. EXTREMES FOR CURRENT YEAR.--Maximum gage height, 3.26 ft May 25; minimum, 2.42 ft Sept. 30. | | | | GAGE HE | GHT, FEET | | YEAR OCTOR | | TO SEPTEM | BER 1989 | | | | |----------------------------------|----------------------------------------------|--------------------------------------|----------------------------------------------|----------------------------------------------|----------------------|----------------------------------------------|--------------------------------------|----------------------------------------------|--------------------------------------|----------------------------------------------|----------------------------------------------|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 3.23 | 2.79 | 2.87 | 2.82 | 2.82 | 2.80 | 2.85 | 3.21 | 3.19 | 2.99 | 2.96 | 2.76 | | 2 | 3.22 | 2.79 | 2.87 | 2.82 | 2.81 | 2.80 | 2.86 | 3.21 | 3.17 | 2.98 | 2.95 | 2.75 | | 3 | 3.22 | 2.78 | 2.87 | 2.81 | 2.81 | 2.80 | 2.86 | 3.20 | 3.17 | 2.97 | 2.94 | 2.73 | | 4 | 3.20 | 2.80 | 2.86 | 2.81 | 2.81 | 2.80 | 2.86 | 3.21 | 3.16 | 2.96 | 2.92 | 2.81 | | 5 | 3.16 | 2.83 | 2.86 | 2.81 | 2.81 | 2.80 | 2.87 | 3.21 | 3.14 | 2.95 | 2.90 | 2.80 | | 6 | 3.13 | 2.82 | 2.86 | 2.81 | 2.81 | 2.80 | 2.96 | 3.18 | 3.12 | 2.94 | 2.89 | 2.78 | | 7 | 3.11 | 2.80 | 2.86 | 2.82 | 2.82 | 2.80 | 3.08 | 3.17 | 3.12 | 2.92 | 2.88 | 2.79 | | 8 | 3.11 | 2.79 | 2.85 | 2.82 | 2.81 | 2.80 | 3.11 | 3.17 | 3.14 | 2.89 | 2.85 | 2.80 | | 9 | 3.10 | 2.79 | 2.85 | 2.82 | 2.81 | 2.81 | 3.09 | 3.17 | 3.12 | 2.86 | 2.80 | 2.79 | | 10 | 3.09 | 2.78 | 2.85 | 2.81 | 2.81 | 2.82 | 3.08 | 3.16 | 3.10 | 2.85 | 2.78 | 2.77 | | 11 | 3.07 | 2.77 | 2.84 | 2.81 | 2.81 | 2.82 | 3.08 | 3.14 | 3.09 | 3.03 | 2.76 | 2.75 | | 12 | 3.05 | 2.80 | 2.85 | 2.81 | 2.81 | 2.82 | 3.07 | 3.14 | 3.08 | 3.06 | 2.73 | 2.73 | | 13 | 3.03 | 2.80 | 2.84 | 2.81 | 2.81 | 2.82 | 3.06 | 3.13 | 3.06 | 3.07 | 2.70 | 2.71 | | 14 | 3.02 | 2.81 | 2.84 | 2.81 | 2.81 | 2.82 | 3.06 | 3.12 | 3.05 | 3.06 | 2.68 | 2.70 | | 15 | 3.02 | 2.82 | 2.84 | 2.81 | 2.81 | 2.82 | 3.06 | 3.11 | 3.03 | 3.07 | 2.67 | 2.68 | | 16 | 3.02 | 2.84 | 2.84 | 2.81 | 2.81 | 2.82 | 3.06 | 3.11 | 3.02 | 3.08 | 2.84 | 2.66 | | 17 | 3.01 | 2.85 | 2.83 | 2.81 | 2.81 | 2.82 | 3.06 | 3.09 | 3.01 | 3.10 | 2.84 | 2.65 | | 18 | 2.99 | 2.85 | 2.83 | 2.80 | 2.81 | 2.83 | 3.04 | 3.11 | 3.03 | 3.11 | 2.83 | 2.64 | | 19 | 2.98 | 2.84 | 2.83 | 2.80 | 2.81 | 2.83 | 3.04 | 3.11 | 3.02 | 3.13 | 2.82 | 2.62 | | 20 | 2.97 | 2.84 | 2.83 | 2.80 | 2.81 | 2.83 | 3.03 | 3.10 | 2.99 | 3.11 | 2.79 | 2.62 | | 21 | 2.96 | 2.83 | 2.83 | 2.80 | 2.81 | 2.83 | 3.03 | 3.08 | 2.98 | 3.10 | 2.77 | 2.62 | | 22 | 2.95 | 2.82 | 2.83 | 2.80 | 2.81 | 2.83 | 3.04 | 3.07 | 3.01 | 3.04 | 2.77 | 2.62 | | 23 | 2.93 | 2.82 | 2.83 | 2.80 | 2.81 | 2.83 | 3.04 | 3.09 | 3.00 | 3.03 | 2.76 | 2.61 | | 24 | 2.91 | 2.82 | 2.82 | 2.79 | 2.80 | 2.83 | 3.07 | 3.24 | 2.99 | 3.01 | 2.75 | 2.57 | | 25 | 2.89 | 2.83 | 2.82 | 2.80 | 2.80 | 2.84 | 3.13 | 3.25 | 3.01 | 3.00 | 2.78 | 2.52 | | 26<br>27<br>28<br>29<br>30<br>31 | 2.88<br>2.85<br>2.84<br>2.83<br>2.81<br>2.80 | 2.86<br>2.84<br>2.85<br>2.87<br>2.87 | 2.83<br>2.82<br>2.82<br>2.82<br>2.82<br>2.82 | 2.81<br>2.81<br>2.81<br>2.82<br>2.82<br>2.82 | 2.80<br>2.80<br>2.80 | 2.84<br>2.84<br>2.85<br>2.85<br>2.85<br>2.85 | 3.17<br>3.20<br>3.23<br>3.23<br>3.22 | 3.23<br>3.22<br>3.21<br>3.21<br>3.21<br>3.20 | 3.04<br>3.05<br>3.03<br>3.02<br>3.00 | 2.99<br>2.98<br>2.96<br>2.95<br>2.94<br>2.94 | 2.77<br>2.76<br>2.77<br>2.79<br>2.80<br>2.79 | 2.49<br>2.47<br>2.44<br>2.44<br>2.43 | | MEAN | 3.01 | 2.82 | 2.84 | 2.81 | 2.81 | 2.82 | 3.05 | 3.16 | 3.06 | 3.00 | 2.81 | 2.66 | | MAX | 3.23 | 2.87 | 2.87 | 2.82 | 2.82 | 2.85 | 3.23 | 3.25 | 3.19 | 3.13 | 2.96 | 2.81 | | MIN | 2.80 | 2.77 | 2.82 | 2.79 | 2.80 | 2.80 | 2.85 | 3.07 | 2.98 | 2.85 | 2.67 | 2.43 | CAL YR 1988 MEAN 3.75 MAX 4.54 MIN 2.77 WTR YR 1989 MEAN 2.91 MAX 3.25 MIN 2.43 ## 06605000 OCHEYEDAN RIVER NEAR SPENCER, IA LOCATION.--Lat 43°07'44", long 95°12'37", in SW1/4SW1/4 sec.15, T.96N., R.37W., Clay County, Hydrologic Unit 10230003, on left bank 3 ft upstream from bridge on county highway M38, 3.4 mi west by southwest of Spencer, and at mile 4.1. DRAINAGE AREA. -- 426 mi<sup>2</sup>. PERIOD OF RECORD.--October 1977 to current year. Occasional low-flow measurements, water years 1957-61, 1964, 1966-68, 1970, 1971, 1974-77. GAGE. -- Water-stage recorder. Datum of gage is 1,311.66 ft above NGVD. REMARKS.--Estimated daily discharges: Nov. 28 to Mar. 25. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. AVERAGE DISCHARGE.--12 years, 233 ft3/s, 7.43 in/yr, 168,800 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 6,450 ft<sup>3</sup>/s June 21, 1983, gage height, 10.49 ft; no flow Jan. 24 to Mar. 9, 1979. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 8, 1953 reached a stage of 12.89 ft, discharge, 26,000 ft<sup>3</sup>/s on basis of contracted-opening measurement of peak flow. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 1,700 ft3/s and maximum (\*): | <b>.</b> . | | Discharge | Gage height | <b>-</b> . | <b></b> | Discharge | Gage height | |------------|------|------------|-------------|------------|---------|----------------------|-------------| | Date | Time | $(ft^3/s)$ | (ft) | Date | Time | (ft <sup>3</sup> /s) | (ft) | | Mar. 24 | 0615 | *903 | *6.15 | | | | | Minimum discharge, 8.3 ft3/s Mar. 1 | | | DISCHARGE | , CUBIC | FEET PER | SECOND, | WATER YEAR<br>EAN VALUES | OCTOBER | 1988 TO | SEPTEMBER | 1989 | | | |-------|----------|-----------|---------|----------|---------|--------------------------|---------|---------|------------|------|------|-------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 25 | 16 | 22 | 19 | 11 | 8.5 | 71 | 84 | 53 | 25 | 20 | 20 | | 2 | 22 | 15 | 35 | 18 | 10 | 9.0 | 59 | 77 | 52 | 24 | 21 | 19 | | 3 | | | | | | | | 71 | 51 | 22 | 21 | 25 | | ş | 20 | 16 | 36 | 19 | 9.8 | 9.6 | 53 | | | | | 34 | | 4 | 19 | 19 | 34 | 20 | 10 | 11 | 53 | 68 | 46 | 27 | 19 | | | 5 | 18 | 22 | 32 | 21 | 9.8 | 14 | 50 | 64 | 43 | 42 | 18 | 27 | | 6 | 18 | 15 | 32 | 19 | 9.6 | 17 | 49 | 59 | 40 | 31 | 17 | 25 | | 7 | 18 | 19 | 33 | 18 | 9.8 | 19 | 49 | 52 | 39 | 26 | 17 | 39 | | 8 | 18 | 16 | 29 | 18 | 10 | 22 | 52 | 50 | 39 | 24 | 16 | 32 | | 9 | 18 | 15 | 27 | 17 | 9.6 | 24 | 50 | 48 | 38 | 23 | 15 | 26 | | 10 | 18 | 15 | 26 | 16 | 9.8 | 3 <b>3</b> | 47 | 44 | 34 | 23 | 15 | 23 | | 11 | 16 | 15 | 26 | 16 | 10 | 160 | 49 | 41 | 33 | 29 | 16 | 20 | | 12 | 15 | 22 | 27 | 15 | 9.4 | 220 | 46 | 39 | 32 | 89 | 17 | 20 | | 13 | 16 | 21 | 28 | 15 | 8.6 | 120 | 49 | 38 | 31 | 96 | 17 | 18 | | 14 | 16 | 18 | 30 | 15 | 9.1 | 86 | 47 | 35 | 31 | 54 | 17 | 16 | | 15 | 17 | 19 | 29 | 14 | 9.0 | 70 | 44 | 34 | 31 | 43 | 14 | 16 | | 16 | 18 | 21 | 27 | 14 | 9.8 | 60 | 46 | 31 | 28 | 34 | 13 | 16 | | 17 | 18 | 22 | 28 | 14 | 9.2 | 56 | 46 | 29 | 26 | 32 | 11 | 14 | | 18 | 17 | 24 | 29 | 13 | 9.4 | 52 | 44 | 31 | 30 | 43 | 12 | 13 | | 19 | 16 | 24 | | | 9.8 | 47 | 44 | 30 | 25 | 46 | 12 | 13 | | 20 | 17 | | 28 | 13 | | | | 25 | 23 | 35 | 13 | 13 | | 20 | 17 | 21 | 27 | 13 | 10 | 49 | 45 | 25 | 23 | 33 | 13 | 13 | | 21 | 17 | 29 | 27 | 12 | 10 | 51 ` | 47 | 22 | 23 | 31 | 12 | 13 | | 22 | 16 | 34 | 28 | 13 | 9.8 | 51 | 47 | 22 | 28 | 28 | 13 | 13 | | 23 | 16 | 30 | 26 | 13 | 9.6 | 54 | 48 | 36 | 26 | 26 | 13 | 12 | | 24 | 15 | 25 | 27 | 12 | 10 | 70 | 140 | 594 | 24 | 24 | 11 | 12 | | 25 | 16 | 27 | 25 | 12 | 11 | 125 | 134 | 346 | 27 | 23 | 11 | 10 | | | | | 23 | 12 | 11 | | 134 | | | | _ | | | 26 | 15 | 28 | 22 | 12 | 9.8 | 97 | 86 | 160 | 35 | 22 | 16 | 10 | | 27 | 16 | 26 | 24 | 12 | 9.0 | 96 | 75 | 106 | <b>3</b> 9 | 21 | 15 | 10 | | 28 | 16 | 22 | 23 | 12 | 8.8 | 92 | 110 | 86 | 33 | 21 | 15 | 10 | | 29 | 16 | 23 | 22 | 11 | | 94 | 107 | 76 | 29 | 24 | 14 | 9.4 | | 30 | 14 | 24 | 20 | 12 | | 86 | 94 | 66 | 26 | 24 | 13 | 9.7 | | 31 | 17 | | 21 | 13 | | 77 | | 56 | | 22 | 19 | | | TOTAL | 534 | 643 | 850 | 461 | 271.7 | 1980.1 | 1881 | 2520 | 1015 | 1034 | 473 | 538.1 | | MEAN | 17.2 | | 27.4 | 14.9 | 9.70 | 63.9 | 62.7 | 81.3 | 33.8 | 33.4 | 15.3 | 17.9 | | MAX | 25 | 34 | 36 | 21 | 11 | 220 | 140 | 594 | 53 | 96 | 21 | 39 | | | 25<br>14 | 34<br>15 | 20 | 11 | | | 44 | 22 | 23 | 21 | 11 | 9.4 | | MIN | | | | | 8.6 | 8.5 | | | | 2050 | 938 | 1070 | | AC-FT | 1060 | | 1690 | 914 | 539 | 3930 | 3730 | 5000 | 2010 | | | | | CFSM | .04 | .05 | .06 | . 03 | .02 | .15 | .15 | . 19 | .08 | .08 | .04 | .04 | | IN. | . 05 | .06 | .07 | .04 | .02 | .17 | .16 | . 22 | .09 | .09 | .04 | .05 | CAL YR 1988 TOTAL 37707.3 MEAN 103 MAX 662 MIN 8.7 AC-FT 74790 CFSM .24 IN. 3.29 WTR YR 1989 TOTAL 12200.9 MEAN 33.4 MAX 594 MIN 8.5 AC-FT 24200 CFSM .08 IN. 1.07 ## 06605850 LITTLE SIOUX RIVER AT LINN GROVE, IA LOCATION.--Lat 42°53'24", long 95°14'30", in SW1/4 SW1/4 sec.5, T.93 N., R.37 W., Buena Vista County, Hydrologic Unit 10230003, on right bank at downstream side of bridge on State Highway 264, in Linn Grove, and at mile 123.7. DRAINAGE AREA. -- 1,548 mi2. PERIOD OF RECORD, -- October 1972 to current year. REVISED RECORDS. -- WDR IA-80-1: 1978-79. GAGE. -- Water-stage recorder. Datum of gage is 1,223.60 ft above NGVD. REMARKS.--Estimated daily discharges: Oct. 30, 31, Nov. 20, 26, 27, Dec. 25-29, Jan. 8-11, and Feb. 1 to Mar. 24. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain-gage and satellite data collection platform at station. AVERAGE DISCHARGE.--17 years, 692 $ft^3/s$ , 6.07 in/yr, 501,400 acre-ft/yr; median of yearly mean discharges, 680 $ft^3/s$ , 6.0 in/yr, 493,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 13,100 ft<sup>3</sup>/s June 17, 1984, gage height, 19.58 ft; maximum gage height, 19.58 ft June 17, 1984; minimum daily discharge, 0.70 ft<sup>3</sup>/s Feb. 4, 1977. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 1,500 ft3/s and maximum (\*): | Date<br>Mar. 13 | Time<br>0030 | Discharge<br>(ft <sup>3</sup> /s)<br>*920 | Gage height<br>(ft)<br>(a) *8.02 | Date | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height<br>(ft) | |-----------------|--------------|-------------------------------------------|----------------------------------|------|------|-----------------------------------|---------------------| | | | | | | | | | (a) Ice jam. Minimum discharge, 19 ft<sup>3</sup>/s Sept. 27, 28, 30. | | | DISCHARG | E, CUBIC | FEET PER | SECOND, | WATER YEAR<br>EAN VALUES | OCTOBER | 1988 TO | SEPTEMBER | 1989 | | | |-----------------------------------------------------|------------------------------------------|-----------------------------------------|-----------------------------------------|------------------------------------------------|-----------------------------------------|-------------------------------------------------|-----------------------------------------|--------------------------------------------------|-----------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 69 | 48 | 60 | 43 | 54 | 32 | 173 | 301 | 172 | 86 | 73 | 31 | | 2 | 64 | 49 | 65 | 43 | 42 | 35 | 163 | 280 | 158 | 82 | 67 | 30 | | 3 | 57 | 49 | 69 | 42 | 43 | 45 | 159 | 250 | 148 | 78 | 63 | 32 | | 4 | 58 | 53 | 69 | 42 | 50 | 62 | 156 | 230 | 135 | 74 | 61 | 52 | | 5 | 51 | 57 | 68 | 41 | 56 | 58 | 144 | 215 | 124 | 69 | 55 | 63 | | 6 | 45 | 60 | 68 | 39 | 58 | 56 | 132 | 193 | 111 | 66 | 52 | 70 | | 7 | 42 | 60 | 68 | 78 | 56 | 58 | 126 | 176 | 102 | 76 | 50 | 68 | | 8 | 40 | 57 | 67 | 90 | 50 | 60 | 126 | 165 | 100 | 72 | 47 | 69 | | 9 | 41 | 57 | 62 | 70 | 48 | 110 | 126 | 161 | 101 | 63 | 42 | 79 | | 10 | 40 | 59 | 60 | 60 | 49 | 300 | 122 | 151 | 98 | 59 | 41 | 72 | | 11 | 38 | 58 | 55 | 58 | 50 | 550 | 118 | 135 | 97 | 63 | 37 | 63 | | 12 | 37 | 59 | 53 | 50 | 49 | 800 | 117 | 142 | 99 | 75 | 36 | 55 | | 13 | 35 | 60 | 52 | 49 | 47 | 900 | 115 | 129 | 96 | 75 | 33 | 49 | | 14 | 34 | 66 | 52 | 37 | 46 | 760 | 113 | 124 | 90 | 115 | 33 | 46 | | 15 | 33 | 69 | 57 | 37 | 46 | 550 | 112 | 118 | 86 | 207 | 46 | 43 | | 16 | 34 | 77 | 52 | 37 | 43 | 400 | 110 | 114 | 82 | 238 | 55 | 39 | | 17 | 34 | 73 | 49 | 32 | 44 | 390 | 107 | 109 | 81 | 247 | 57 | 34 | | 18 | 36 | 68 | 49 | 32 | 39 | 290 | 106 | 109 | 81 | 236 | 44 | 31 | | 19 | 36 | 68 | 49 | 36 | 37 | 265 | 105 | 107 | 83 | 225 | 37 | 29 | | 20 | 36 | 66 | 56 | 39 | 38 | 260 | 105 | 107 | 80 | 195 | 33 | 28 | | 21 | 36 | 52 | 57 | 41 | 35 | 220 | 106 | 105 | 72 | 171 | 32 | 25 | | 22 | 37 | 65 | 60 | 47 | 36 | 180 | 106 | 100 | 80 | 166 | 32 | 24 | | 23 | 35 | 76 | 68 | 47 | 34 | 160 | 113 | 109 | 92 | 136 | 32 | 24 | | 24 | 35 | 87 | 74 | 47 | 33 | 190 | 95 | 164 | 88 | 119 | 29 | 23 | | 25 | 34 | 88 | 60 | 50 | 44 | 275 | 126 | 507 | 88 | 109 | 25 | 23 | | 26<br>27<br>28<br>29<br>30<br>31 | 34<br>32<br>33<br>35<br>38<br>43 | 84<br>76<br>55<br>59<br>60 | 62<br>54<br>60<br>56<br>50<br>44 | 62<br>50<br>49<br>53<br>55<br>65 | 43<br>38<br>34<br> | 401<br>358<br>312<br>286<br>240<br>197 | 300<br>250<br>239<br>278<br>307 | 720<br>484<br>336<br>266<br>220<br>190 | 97<br>104<br>110<br>106<br>94 | 99<br>90<br>82<br>85<br>84<br>82 | 30<br>31<br>37<br>35<br>35<br>33 | 21<br>20<br>20<br>21<br>20 | | TOTAL<br>MEAN<br>MAX<br>MIN<br>AC-FT<br>CFSM<br>IN. | 1252<br>40.4<br>.69<br>32<br>2480<br>.03 | 1915<br>63.8<br>88<br>48<br>3800<br>.04 | 1825<br>58.9<br>74<br>44<br>3620<br>.04 | 1521<br>49.1<br>90<br>32<br>3020<br>.03<br>.04 | 1242<br>44.4<br>58<br>33<br>2460<br>.03 | 8800<br>284<br>900<br>32<br>17450<br>.18<br>.21 | 4455<br>148<br>307<br>95<br>8840<br>.10 | 6517<br>210<br>720<br>100<br>12930<br>.14<br>.16 | 3055<br>102<br>172<br>72<br>6060<br>.07 | 3624<br>117<br>247<br>59<br>7190<br>.08<br>.09 | 1313<br>42.4<br>73<br>25<br>2600<br>.03<br>.03 | 1204<br>40.1<br>79<br>20<br>2390<br>.03<br>.03 | CAL YR 1988 TOTAL 108048 MEAN 295 MAX 1710 MIN 28 AC-FT 214300 CFSM .19 IN. 2.60 WTR YR 1989 TOTAL 36723 MEAN 101 MAX 900 MIN 20 AC-FT 72840 CFSM .06 IN. .88 ## 06606600 LITTLE SIOUX RIVER AT CORRECTIONVILLE. IA LOCATION.--Lat 42°28'20", long 95°47'49", in NE1/4 NW1/4 sec.1, T.88 N., R.43 W., Woodbury County, Hydrologic Unit 10230003 on right bank 50 ft upstream from bridge on State Highway 31, 0.3 mi upstream from Bacon Creek, 0.5 mi west of Correctionville, 0.8 mi downstream from Pierson Creek, and at mile 56.0. DRAINAGE AREA. -- 2.500 mi2. PERIOD OF RECORD. -- May 1918 to July 1925, October 1928 to July 1932, June 1936 to current year. Monthly discharge only for some periods, published in WSP 1310. REVISED RECORDS.--WSP 856: 1919. WSP 1240: 1924-25, 1931, 1932 (M), 1937, 1945 (M), 1947 (M), 1949 (M). WSP 1440: Drainage area. GAGE.--Water-stage encoder. Datum of gage is 1,096.49 ft above NGVD. May 28, 1918, to July 1, 1925 and Oct. 29, 1928 to July 15, 1929, nonrecording gage 0.2 mi downstream at datum 1.25 ft lower. July 16, 1929, to July 2, 1932, and June 15, 1936, to Nov. 7, 1938, nonrecording gage at present site and datum. REMARKS.--Estimated daily discharges: Nov. 28, Dec. 8-11, 14-17, Dec. 24 to Jan. 29, Feb. 1 to Mar. 11, and Mar. 15-21. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain-gage and satellite data collection platform at station. AVERAGE DISCHARGE.--62 years (water years 1919-24, 1929-31, 1937-89), 821 ft<sup>3</sup>/s, 4.46 in/yr, 594,800 acre-ft/yr; median of yearly mean discharges, 640 ft<sup>3</sup>/s, 3.5 in/yr, 464,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 29,800 ft<sup>3</sup>/s Apr. 7, 1965, gage height, 25.86 ft; minimum daily discharge, 2.6 ft<sup>3</sup>/s July 17, 25, 1936, caused by construction dam above gage; minimum daily discharge excluding regulation, 4.0 ft<sup>3</sup>/s Oct. 9, 12, 1956. EXTREMES OUTSIDE PERIOD OF RECORD. --Flood of June 23 or 24, 1891, reached a stage of 29.34 ft, present datum, from levels to floodmark by U.S. Soil Conservation Service (discharge not determined). EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 4,000 ft3/s and maximum (\*): | | | Discharge | Gage height | | Discharge | Gage height | |---------|------|----------------------|-------------|--------------|----------------------|-------------| | Date | Time | (ft <sup>3</sup> /s) | (ft) | Date Time | (ft <sup>3</sup> /s) | (ft) | | Mar. 10 | | ice jam | *11.67 | Mar. 12 0200 | *2,930 | 10.83 | | | | • | | | • | | Minimum discharge, 45 ft<sup>3</sup>/s Aug. 25. | | | DISCHA | RGE, CUBIC | FEET PE | R SECOND, | WATER YEAR<br>EAN VALUES | OCTOBER | 1988 TO | SEPTEMBER | 1989 | | | |-------------|------|--------|------------|---------|------------|--------------------------|---------|---------|-----------|-------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 235 | 123 | 166 | 123 | 240 | 142 | 480 | 530 | 432 | 174 | 138 | 60 | | | 237 | 122 | 172 | 112 | 120 | 131 | 440 | 535 | 383 | 161 | 128 | 54 | | 3 | 234 | 122 | 174 | 105 | 80 | 126 | 405 | 517 | 345 | 149 | 113 | 50 | | 2<br>3<br>4 | 219 | 130 | 155 | 110 | 8 <b>3</b> | 121 | 389 | 495 | 313 | 139 | 102 | 198 | | 5 | 202 | 140 | 170 | 150 | 90 | 115 | 378 | 470 | 289 | 130 | 100 | 234 | | 6 | 189 | 139 | 176 | 300 | 97 | 111 | 371 | 444 | 265 | 119 | 92 | 143 | | 7 | 179 | 136 | 169 | 250 | 113 | 110 | 358 | 418 | 245 | 131 | 85 | 179 | | 8 | 173 | 133 | 130 | 140 | 117 | 120 | 353 | 396 | 237 | 120 | 82 | 483 | | 9 | 167 | 137 | 105 | 117 | 115 | 170 | 352 | 371 | 214 | 108 | 78 | 321 | | 10 | 161 | 134 | 92 | 112 | 119 | 650 | 342 | 351 | 199 | 106 | 72 | 213 | | 11 | 152 | 127 | 88 | 115 | 122 | 1800 | 334 | 337 | 190 | 97 | 66 | 171 | | 12 | 147 | 140 | 124 | 116 | 127 | 2250 | 324 | 322 | 189 | 91 | 61 | 152 | | 13 | 144 | 150 | 142 | 118 | 130 | 1460 | 310 | 304 | 183 | 100 | 59 | 134 | | 14 | 144 | 149 | 138 | 122 | 127 | 1400 | 303 | 297 | 183 | 97 | 60 | 123 | | 15 | 143 | 151 | 98 | 125 | 123 | 860 | 297 | 285 | 169 | 106 | 57 | 116 | | 16 | 141 | 162 | 105 | 118 | 118 | 500 | 291 | 272 | 164 | 115 | 57 | 107 | | 17 | 143 | 160 | 109 | 116 | 113 | 290 | 287 | 260 | 159 | 175 | 51 | 101 | | 18 | 142 | 151 | 115 | 117 | 110 | 260 | 282 | 255 | 164 | 293 | 53 | 96 | | 19 | 141 | 176 | 117 | 119 | 106 | 400 | 279 | 262 | 163 | 283 | 66 | 87 | | 20 | 142 | 175 | 152 | 122 | 109 | 330 | 276 | 257 | 151 | 292 | 68 | 80 | | 21 | 143 | 124 | 164 | 128 | 110 | 440 | 274 | 247 | 141 | 289 | 65 | 73 | | 22 | 142 | 142 | 166 | 136 | 107 | 494 | 269 | 239 | 144 | 251 | 57 | 67 | | 23 | 139 | 175 | 208 | 141 | 102 | 523 | 263 | 234 | 148 | 218 | 50 | 60 | | 24 | 135 | 185 | 200 | 144 | 105 | 509 | 265 | 283 | 151 | 193 | 47 | 55 | | 25 | 130 | 189 | 130 | 140 | 115 | 525 | 318 | 1440 | 162 | 176 | 46 | 53 | | 26 | 129 | 197 | 132 | 130 | 135 | 540 | 534 | 1020 | 175 | 161 | 71 | 51 | | 27 | 128 | 196 | 129 | 130 | 158 | 578 | 368 | 877 | 173 | 149 | 99 | 50 | | 28 | 124 | 120 | 120 | 137 | 152 | 677 | 497 | 919 | 175 | 139 | 91 | 52 | | 29 | 122 | 154 | 112 | 148 | | 640 | 547 | 733 | 188 | 145 | 82 | 52 | | 30 | 120 | 149 | 115 | 180 | | 588 | 523 | 580 | 182 | 180 | 72 | 52 | | 31 | 122 | | 120 | 306 | | 532 | | 491 | | 156 | 65 | | | TOTAL | 4869 | 4488 | 4293 | 4427 | 3343 | | 10709 | 14441 | 6276 | 5043 | 2333 | 3667 | | MEAN | 157 | 150 | 138 | 143 | 119 | 561 | 357 | 466 | 209 | 163 | 75.3 | 122 | | MAX | 237 | 197 | 208 | 306 | 240 | 2250 | 547 | 1440 | 432 | 293 | 138 | 483 | | MIN | 120 | 120 | 88 | 105 | 80 | 110 | 263 | 234 | 141 | 91 | 46 | 50 | | AC-FT | 9660 | 8900 | 8520 | 8780 | 6630 | | 21240 | 28640 | 12450 | 10000 | 4630 | 7270 | | CFSM | . 06 | .06 | .06 | .06 | .05 | . 22 | . 14 | . 19 | .08 | . 07 | .03 | .05 | | IN. | .07 | . 07 | .06 | .07 | . 05 | . 26 | .16 | .21 | .09 | .08 | . 03 | .05 | | | | | | | | | | | | | | | CAL YR 1988 TOTAL 196898 MEAN 538 MAX 2070 MIN 63 AC-FT 390500 CFSM .22 IN. 2.93 WTR YR 1989 TOTAL 81281 MEAN 223 MAX 2250 MIN 46 AC-FT 161200 CFSM .09 IN. 1.21 ## 06607200 MAPLE RIVER AT MAPLETON, IA LOCATION.--Lat 42°09'25", long 95°48'35", in SE1/4 SE1/4 sec.23, T.85 N., R.43 W., Monona County, Hydrologic Unit 10230005, on right bank at downstream side of bridge on State Highway 175, 1.0 mi downstream from Simmons Creek, 1.1 mi southwest of intersection of State Highways 175 and 141 in Mspleton, 2.1 mi upstream from McCleery Creek, and 16.0 mi upstream from mouth. DRAINAGE AREA. -- 669 mi2. PERIOD OF RECORD. -- October 1941 to current year. REVISED RECORDS.--WSP 1310: 1942 (M), 1946 (M), 1948 (M). WSP 1440: Drainage area. GAGE.--Water-stage encoder. Datum of gage is 1,085.86 ft above NGVD. See WSP 1730 for history of changes prior to Sept. 20, 1956. REMARKS.--Estimated daily discharges: Nov. 28, 29, Dec. 2-4, 8-21, Dec. 23 to Jan. 21, Jan. 26-28, Feb. 1 to Mar. 10, and Mar. 18, 19. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain-gage and satellite data collection platform at station. AVERAGE DISCHARGE.--48 years, 266 ft $^3$ /s, 5.40 in/yr, 192,700 acre-ft/yr; median of yearly mean discharges, 240 ft $^3$ /s, 4.9 in/yr, 174,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 20,800 ft<sup>3</sup>/s Sept. 12, 1978, gage height, 16.74 ft; maximum gage height, 22.1 ft June 12, 1950; no flow Sept. 21, 22, 1945 caused by temporary dam above gage; minimum daily discharge excluding regulation, 2.5 ft<sup>3</sup>/s Feb. 17-20, 1959. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 4,000 ft3/s and maximum (\*): | | | Discharge | Gage height | Discharge | Gage height | |--------|------|----------------|-------------|---------------------------------|-------------| | Date | Time | (ft³/s) | (ft) | Date Time (ft <sup>3</sup> /s) | (ft) | | May 29 | 0245 | <b>*</b> 5,470 | *8.20 | No other peak greater than base | discharge. | Minimum discharge, 33 ft3/s, Sept. 2. | | | DISCHARGE | , CUBIC | FEET PER | | WATER YEAR<br>EAN VALUES | OCTOBER | 1988 TO | SEPTEMBER | 1989 | | | |------------------|------|-----------|------------|----------|------|--------------------------|---------|--------------|-----------|------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 199 | 100 | 120 | 110 | 250 | 110 | 147 | 115 | 154 | 86 | 64 | 37 | | 5 | 164 | 100 | 100 | 86 | 120 | 100 | 144 | 111 | 139 | 84 | 58 | 35 | | 1<br>2<br>3<br>4 | 142 | 100 | 115 | 96 | 66 | 105 | 141 | 108 | 157 | 82 | 53 | 34 | | ŭ | 130 | 102 | 100 | 115 | 70 | 92 | 137 | 106 | 150 | 81 | 52 | 49 | | 3 | 125 | 101 | 111 | 140 | 80 | 86 | 135 | 107 | 118 | 78 | 50 | 159 | | 3 | 123 | 101 | 111 | 140 | 80 | 80 | 133 | 107 | 110 | , 0 | 50 | 133 | | 6 | 119 | 100 | 120 | 800 | 90 | 82 | 136 | 102 | 113 | 76 | 49 | 109 | | 7 | 116 | 98 | 116 | 300 | 110 | 90 | 136 | 99 | 109 | 77 | 47 | 97 | | 8 | 115 | 97 | 100 | 120 | 90 | 120 | 140 | 97 | 121 | 78 | 46 | 236 | | 9 | 114 | 98 | 92 | 140 | 86 | 500 | 136 | 95 | 116 | 74 | 43 | 233 | | 10 | 111 | 97 | 86 | 130 | 105 | 1500 | 131 | 93 | 108 | 71 | 41 | 215 | | | | | | | | | | | | | | | | 11 | 107 | 96 | 82 | 135 | 125 | 1220 | 128 | 90 | 106 | 69 | 40 | 144 | | 12 | 105 | 111 | 130 | 140 | 135 | 892 | 126 | 88 | 117 | 68 | 39 | 115 | | 13 | 104 | 115 | 170 | 145 | 130 | 433 | 124 | 86 | 104 | 67 | 39 | 103 | | 14 | 103 | 107 | 140 | 170 | 120 | 327 | 120 | 85 | 103 | 66 | 39 | 95 | | 15 | 103 | 105 | 90 | 152 | 110 | 275 | 118 | 84 | 101 | 71 | 42 | 89 | | 16 | 102 | 109 | 100 | 140 | 100 | 252 | 116 | 83 | 99 | 69 | 44 | 84 | | 17 | 102 | 104 | 120 | 136 | | | 114 | 80 | 98 | 69 | 40 | 81 | | 18 | 102 | | | | 94 | 213 | | | | | | 76 | | | 102 | 107 | 150 | 146 | 88 | 185 | 114 | 81 | 101 | 187 | 38 | | | 19 | 104 | 120 | 170 | 170 | 86 | 200 | 112 | 86 | 98 | 73 | 39 | 72 | | . 20 | 103 | 117 | 300 | 180 | 95 | 207 | 112 | 88 | 94 | 60 | 38 | 68 | | 21 | 102 | 112 | 270 | 195 | 90 | 171 | 111 | 83 | 91 | 53 | 39 | 64 | | 22 | 101 | 113 | 221 | 212 | 85 | 182 | 110 | 80 | 125 | 49 | 43 | 61 | | 23 | 101 | 127 | 180 | 189 | 80 | 180 | 107 | 79 | 113 | 48 | 37 | 57 | | 24 | 100 | 127 | 130 | 139 | 95 | 178 | 106 | 337 | 101 | 47 | 3.5 | 57 | | 25 | 99 | 138 | 92 | 119 | 140 | 168 | 107 | 583 | 118 | 44 | 35 | 55 | | | | | | | | | | | | | | | | 26 | 98 | 147 | 100 | 100 | 240 | 163 | 104 | 421 | 105 | 44 | 46 | 54 | | 27 | 99 | 140 | 96 | 105 | 210 | 163 | 102 | 202 | 101 | 43 | 64 | 52 | | 28 | 98 | 120 | 9 <b>2</b> | 115 | 140 | 164 | 112 | 161 | 95 | 42 | 57 | 51 | | 29 | 98 | 130 | 90 | 129 | | 162 | 125 | 1050 | 91 | 169 | 49 | 49 | | 30 | 98 | 150 | 100 | 222 | | 164 | 119 | 216 | 88 | 155 | 43 | 48 | | 31 | 99 | | 140 | 553 | | 153 | | 171 | | 78 | 40 | | | TOTAL | 3463 | 3388 | 4023 | 5629 | 3230 | 8837 | 3670 | 5267 | 3334 | 2358 | 1389 | 2679 | | MEAN | 112 | 113 | 130 | 182 | 115 | 285 | 122 | 170 | 111 | 76.1 | 44.8 | 89.3 | | MAX | 199 | 150 | 300 | 800 | 250 | 1500 | 147 | 1050 | 157 | 187 | 64 | 236 | | MIN | | 96 | | | | | | 79 | 88 | 42 | 35 | 34 | | MIN<br>AC-FT | 98 | | 82 | 86 | 66 | 82 | 102 | 10450 | | 4680 | 2760 | 5310 | | | 6870 | | 7980 | 11170 | 6410 | 17530 | 7280 | | 6610 | | | | | CFSM | .17 | . 17 | .19 | . 27 | . 17 | .43 | .18 | .25 | .17 | .11 | .07 | .13 | | IN. | .19 | . 19 | .22 | .31 | .18 | .49 | .20 | . <b>2</b> 9 | .19 | .13 | .08 | .15 | CAL YR 1988 TOTAL 73865 MEAN 202 MAX 2350 MIN 80 AC-FT 146500 CFSM .30 IN. 4.11 WTR YR 1989 TOTAL 47267 MEAN 129 MAX 1500 MIN 34 AC-FT 93750 CFSM .19 IN. 2.63 ## 06607500 LITTLE SIOUX RIVER NEAR TURIN, IA LOCATION.--Lat 41°57'52", long 95°58'21", in NW1/4 NE1/4 sec.33, T.83 N., R.44 W., Monona County, Hydrologic Unit 10230003, on left bank on downstream side of bridge on county highway E54, 1.0 mi east of gaging station on Monona-Harrison ditch near Turin, 2.5 mi downstream from Maple River, 3.8 mi south of Turin, 6.2 mi northeast of Blencoe, and at mile 13.5. DRAINAGE AREA.--3,526 mi<sup>2</sup>. Prior to Jan. 15, 1958, 4,426 mi<sup>2</sup>, combined area above this station and Monona-Harrison ditch station 1.0 mi west. PERIOD OF RECORD.--January 1958 to current year. April 1939 to May 1942 at site 4.7 mi downstream, published as "near Blencoe" June 1942 to January 1958 at site 1,200 ft east on old river channel; records not equivalent owing to diversion into Monona-Harrison ditch through equalizer ditch 1.5 mi upstream. GAGE.--Water-stage encoder. Datum of gage is 1,019.85 ft above NGVD (U.S. Army Corps of Engineers bench mark). Prior to July 15, 1958, nonrecording gages near present site at different datums. July 15 to Sept. 3, 1958, nonrecording gage at present site and datum. REMARKS.--Estimated daily discharges: Dec. 10 to Mar. 18, Mar. 22-29, May 19-25, and June 15-20. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain-gage and satellite data collection platform at station. AVERAGE DISCHARGE. --31 years (water years 1959-89), 1,390 ft3/s, 5.35 in/yr, 1,007,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 31,200 ft<sup>3</sup>/s June 21, 1983, gage height, 26.54 ft; maximum gage height, 27.44 ft Feb. 19, 1971, backwater from ice; minimum daily discharge, 17 ft<sup>3</sup>/s Jan. 18-20, Jan. 28 to Feb. 1, 1977. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 5,500 ft3/s and maximum (\*): | | | Discharge | Gage height | | | Discharge | Gage height | |---------|------|----------------------|-------------|------|------|----------------------|-------------| | Date | Time | (ft <sup>3</sup> /s) | (ft) | Date | Time | (ft <sup>3</sup> /s) | (ft) | | Mar. 12 | 1930 | *4.500 | (a) *20.05 | | | | | (a) Ice jam Minimum discharge, 88 $\mathrm{ft^3/s}$ Aug. 18, 19. | | | DISCHARGE | , CUBIC | FEET PER | | WATER YEAR<br>EAN VALUES | OCTOBER | 1988 TO | SEPTEMBER | 1989 | | | |-------------|-------|-----------|---------|----------|-------|--------------------------|---------|---------|-----------|-------|------|-------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 514 | 252 | 391 | 310 | 900 | 350 | 794 | 714 | 728 | 309 | 318 | 109 | | | 473 | 262 | 424 | 320 | 580 | 320 | 715 | 702 | 645 | 293 | 273 | 100 | | 2<br>3<br>4 | 439 | 262 | 447 | 300 | 290 | 300 | 648 | 709 | 607 | 273 | 247 | 99 | | , | 428 | 265 | 406 | 280 | 190 | 280 | 584 | 696 | 565 | 253 | 223 | 144 | | 5 | | | | | | | | | 498 | 236 | 209 | 306 | | 3 | 408 | 264 | 372 | 350 | 210 | 260 | 559 | 650 | 490 | 230 | 209 | 300 | | 6 | 384 | 258 | 423 | 600 | 230 | 250 | 539 | 615 | 456 | 217 | 196 | 484 | | 7 | 366 | 275 | 427 | 880 | 240 | 240 | 539 | 581 | 429 | 199 | 183 | 425 | | 8 | 352 | 270 | 315 | 600 | 250 | 250 | 525 | 559 | 447 | 218 | 168 | 878 | | ğ | 334 | 278 | 262 | 400 | 250 | 500 | 519 | 517 | 431 | 222 | 156 | 1140 | | 10 | 323 | 277 | 235 | 310 | 250 | 1100 | 514 | 491 | 386 | 199 | 143 | 821 | | 10 | 323 | 2// | 233 | 310 | 230 | 1100 | 214 | 451 | 300 | 199 | 140 | 021 | | 11 | 303 | 280 | 220 | 300 | 260 | 1500 | 504 | 454 | 378 | 184 | 126 | 546 | | 12 | 292 | 318 | 250 | 310 | 270 | 3000 | 490 | 432 | 404 | 177 | 115 | 426 | | 13 | 289 | 346 | 280 | 310 | 280 | 4500 | 475 | 406 | 382 | 165 | 109 | 369 | | 14 | 283 | 338 | 320 | 320 | 280 | 3300 | 469 | 388 | 381 | 163 | 116 | 325 | | 15 | 276 | 338 | 280 | 330 | 270 | 3000 | 448 | 371 | 377 | 192 | 106 | 289 | | | 2,0 | 000 | 200 | 550 | 2/0 | 5000 | 440 | 3,1 | 3,,, | 102 | 100 | 200 | | 16 | 271 | 354 | 250 | 340 | 260 | 2000 | 458 | 360 | 350 | 201 | 111 | 265 | | 17 | 264 | 352 | 240 | 340 | 250 | 1300 | 434 | 350 | 340 | 202 | 104 | 242 | | 18 | 259 | 354 | 260 | 330 | 240 | 960 | 433 | 350 | 350 | 505 | 95 | 223 | | 19 | 266 | 367 | 300 | 320 | 230 | 863 | 430 | 360 | 340 | 490 | 97 | 198 | | 20 | 277 | 400 | 360 | 320 | 230 | 1020 | 436 | 350 | 330 | 430 | 105 | 180 | | | | ,,,, | | 020 | | | | | | | | | | 21 | 278 | 386 | 380 | 330 | 240 | 1030 | 421 | 330 | 347 | 430 | 116 | 165 | | 22 | 274 | 358 | 430 | 350 | 240 | 918 | 413 | 325 | 351 | 418 | 121 | 148 | | 23 | 264 | 381 | 480 | 370 | 240 | 993 | 414 | 320 | 357 | 384 | 112 | 132 | | 24 | 259 | 418 | 470 | 390 | 230 | 924 | 406 | 400 | 323 | 345 | 96 | 130 | | 25 | 261 | 449 | 350 | 400 | 230 | 898 | 391 | 850 | 378 | 315 | 92 | 132 | | | | | | | | | | | | | | | | 26 | 253 | 481 | 300 | 390 | 260 | 901 | 435 | 1980 | 373 | 289 | 107 | 122 | | 27 | 261 | 474 | 310 | 370 | 320 | 921 | 637 | 1390 | 340 | 266 | 177 | 121 | | 28 | 239 | 274 | 310 | 360 | 370 | 972 | 528 | 1270 | 319 | 244 | 191 | 125 | | 29 | 245 | 344 | 300 | 370 | | 1030 | 674 | 2340 | 312 | 514 | 168 | 124 | | 30 | 249 | 455 | 280 | 420 | | 960 | 748 | 1160 | 315 | 639 | 140 | 121 | | 31 | 253 | | 290 | 600 | | 869 | | 848 | | 382 | 129 | | | | | | | | | - | | | | | | | | TOTAL | 9637 | 10130 1 | 0362 | 11920 | 8090 | 35709 | 15580 | 21268 | 12239 | 9354 | 4649 | 8889 | | MEAN | 311 | 338 | 334 | 385 | 289 | 1152 | 519 | 686 | 408 | 302 | 150 | 296 | | MAX | 514 | 481 | 480 | 880 | 900 | 4500 | 794 | 2340 | 728 | 639 | 318 | 1140 | | MIN | 239 | 252 | 220 | 280 | 190 | 240 | 391 | 320 | 312 | 163 | 92 | 99 | | AC-FT | 19110 | | 0550 | 23640 | 16050 | | 30900 | 42190 | 24280 | 18550 | 9220 | 17630 | | CFSM | .09 | .10 | .09 | .11 | .08 | .33 | .15 | .19 | .12 | .09 | .04 | .08 | | IN. | .10 | .10 | .11 | .13 | .09 | .38 | .16 | .22 | .13 | .10 | .05 | .09 | | 114. | . 10 | .11 | . 11 | . 13 | .09 | . 30 | . 10 | . 44 | . 10 | . 10 | .03 | .03 | | | | | | | | | | | | | | | CAL YR 1988 TOTAL 296930 MEAN 811 MAX 3000 MIN 150 AC-FT 589000 CFSM .23 IN. 3.13 WTR YR 1989 TOTAL 157827 MEAN 432 MAX 4500 MIN 92 AC-FT 313000 CFSM .12 IN. 1.67 ## SOLDIER RIVER BASIN ## 06608500 SOLDIER RIVER AT PISGAH, IA LOCATION.--Lat 41°49'50", long 95°55'54", in NW1/4 NE1/4 sec.14, T.81 N., R.44 W., Harrison County, Hydrologic Unit 10230001, on right bank at upstream side of bridge on county highway F20, at west edge of Pisgah, 0.4 mi downstream from Cobb Creek, 0.5 mi upstream from Mogger Ditch, and 13.1 mi upstream from mouth. DRAINAGE AREA. -- 407 mi2. PERIOD OF RECORD. -- March 1940 to current year. REVISED RECORDS. -- WSP 956: 1940 (M). WSP 1240: 1940, 1941 (M), 1947. WSP 1440: Drainage area. GAGE.--Water-stage encoder. Datum of gage is 1,036.53 ft above NGVD. Prior to Oct. 11, 1954, nonrecording gage at same site and datum with supplementary water-stage recorder operating above 8.2 ft gage height Mar. 2, 1946 to Sept. 24, 1953. Prior to Feb. 1954, on left bank at downstream side of bridge. Prior to June 21, 1989, at site 100 ft upstream at same datum. REMARKS.--Estimated daily discharges: Nov. 28, 19, and Dec. 9 to Mar. 9. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain-gage and satellite data collection platform at station. AVERAGE DISCHARGE. -- 49 years, 134 ft3/s, 4.47 in/yr, 97,080 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 22,500 ft<sup>3</sup>/s June 12, 1950, gage height, 28.17 ft; minimum daily discharge, 2.0 ft<sup>3</sup>/s Jan. 2-10, 1945. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 5,000 ft3/s and maximum (\*): | | | Discharge | Gage height | | | Discharge | Gage height | |---------|------|------------|-------------|------|------|----------------------|-------------| | Date | Time | $(ft^3/s)$ | (ft) | Date | Time | (ft <sup>3</sup> /s) | (ft) | | Sept. 8 | 0900 | *4.110 | *12.65 | | | | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 Minimum discharge, 14 ft<sup>3</sup>/s July 13, 14, 27, and 28. | | | DISCHA | GE, CUBIC | . FEET FEE | K SECOND,<br>MI | EAN VALUES | r october | ( 1900 10 | SEFIEMBE | 1909 | | | |------------------|------|--------|-----------|------------|-----------------|------------|-----------|------------|----------|------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 85 | 54 | 64 | 60 | 200 | 62 | 79 | 56 | 64 | 30 | 47 | 24 | | 2 | 66 | 54 | 63 | 48 | 52 | 52 | 79 | 55 | 55 | 28 | 37 | 21 | | 3 | 60 | 56 | 62 | 52 | 35 | 59 | 77 | 54 | 74 | 28 | 35 | 23 | | 1<br>2<br>3<br>4 | 58 | 59 | 58 | 56 | 36 | 50 | 76 | 57 | 56 | 27 | 32 | 109 | | 5 | 55 | 56 | 59 | 90 | 39 | 45 | 75 | 5 <i>7</i> | 47 | 24 | 36 | 58 | | | | | | | | | | | | | | | | 6 | 60 | 55 | 61 | 135 | 42 | 40 | 75 | 54 | 44 | 22 | 33 | 41 | | 7 | 59 | 54 | 61 | 100 | 53 | 43 | 74 | 53 | 41 | 21 | 29 | 569 | | 8 | 60 | 54 | 56 | 56 | 46 | 75 | 77 | 52 | 153 | 22 | 27 | 1660 | | 9 | 59 | 55 | 49 | 70 | 43 | 200 | 71 | 50 | 89 | 21 | 26 | 465 | | 10 | 58 | 54 | 44 | 60 | 57 | 793 | 68 | 46 | 56 | 18 | 24 | 138 | | 11 | 56 | 53 | 42 | 62 | 66 | 373 | 67 | 44 | 51 | 17 | 23 | 84 | | 12 | 52 | 73 | 74 | 63 | 72 | 192 | 66 | 44 | 97 | 16 | 22 | 65 | | 13 | 55 | 81 | 110 | 64 | 74 | 132 | 66 | 43 | 66 | 15 | 22 | 57 | | 14 | 56 | 65 | 76 | 79 | 70 | 121 | 65 | 42 | 45 | 17 | 23 | 53 | | 15 | 55 | 63 | 48 | 70 | 65 | 113 | 65 | 41 | 43 | 23 | 23 | 50 | | 13 | ,, | 03 | 40 | 70 | 0.5 | 113 | 0.5 | 71 | 40 | 20 | 20 | 50 | | 16 | 54 | 76 | 58 | 60 | 60 | 106 | 67 | 41 | 42 | 27 | 22 | 46 | | 17 | 53 | 75 | 86 | 56 | 56 | 98 | 66 | 40 | 39 | 25 | 21 | 42 | | 18 | 54 | 73 | 110 | 59 | 48 | 96 | 65 | 41 | 44 | 36 | 19 | 39 | | 19 | 54 | 76 | 100 | 64 | 44 | 103 | 66 | 45 | 43 | 53 | 25 | 36 | | 20 | 56 | 70 | 92 | 62 | 56 | 97 | 63 | 44 | 36 | 30 | 23 | 34 | | 21 | 57 | 64 | 76 | 66 | 48 | 86 | 62 | 42 | 31 | 23 | 23 | 31 | | 21 | | | 76 | | | | | | | 22 | 21 | 29 | | 22 | 55 | 66 | 92 | 76 | 41 | 91 | 61 | 40 | 291 | | | | | 23 | 54 | 68 | 80 | 74 | 39 | 89 | 59 | 40 | 125 | 21 | 20 | 28 | | 24 | 53 | 69 | 72 | 70 | 70 | 87 | 59 | 40 | 56 | 20 | 18 | 29 | | 25 | 55 | 70 | 64 | 65 | 110 | 86 | 57 | 61 | 124 | 19 | 20 | 31 | | 26 | 53 | 77 | 71 | 60 | 210 | 84 | 54 | 45 | 67 | 17 | 82 | 30 | | 27 | 56 | 78 | 62 | 65 | 180 | 88 | 54 | 39 | 47 | 16 | 135 | 29 | | 28 | 52 | 56 | 60 | 76 | 100 | 90 | 65 | 49 | 39 | 15 | 67 | 29 | | 29 | 54 | 68 | 58 | 110 | | 86 | 66 | 763 | 34 | 766 | 41 | 28 | | 30 | 54 | 73 | 58 | 230 | | 84 | 60 | 151 | 31 | 200 | 31 | 28 | | 31 | 57 | | 70 | 450 | | 81 | | 75 | | 72 | 26 | | | TOTAL | 1766 | 1015 | 0106 | 0700 | 0010 | 2000 | 2004 | 2304 | 2030 | 1691 | 1033 | 3906 | | TOTAL | 1765 | 1945 | 2136 | 2708 | 2012 | 3802 | 2004 | | | 54.5 | 33.3 | 130 | | MEAN | 56.9 | 64.8 | 68.9 | 87.4 | 71.9 | 123 | 66.8 | 74.3 | 67.7 | | 33.3 | | | MAX | 85 | 81 | 110 | 450 | 210 | 793 | 79 | 763 | 291 | 766 | 135 | 1660 | | MIN | 52 | 53 | 42 | 48 | 35 | 40 | 54 | 39 | 31 | 15 | 18 | 21 | | AC-FT | 3500 | 3860 | 4240 | 5370 | 3990 | 7540 | 3970 | 4570 | 4030 | 3350 | 2050 | 7750 | | CFSM | . 14 | . 16 | . 17 | .21 | . 18 | .30 | . 16 | . 18 | . 17 | . 13 | .08 | .32 | | IN. | .16 | . 18 | .20 | . 25 | . 18 | .35 | . 18 | .21 | . 19 | . 15 | .09 | .36 | | | | | | | | | | | | | | | CAL YR 1988 TOTAL 35251 MEAN 96.3 MAX 769 MIN 35 AC-FT 69920 CFSM .24 IN. 3.22 WTR YR 1989 TOTAL 27336 MEAN 74.9 MAX 1660 MIN 15 AC-FT 54220 CFSM .18 IN. 2.50 # BOYER RIVER BASIN 197 # 06609500 BOYER RIVER AT LOGAN, IA LOCATION.--Lat 41°38'33", long 95°46'57", in SE1/4 NW1/4 sec.19, T.79 N., R.42 W., Harrison County, Hydrologic Unit 10230007, on left bank 9 ft downstream from Chicago Central and Pacific Railroad bridge at Logan, 0.4 mi downstream from Elk Grove Creek, 10.5 mi upstream from Willow Creek, and 15.8 mi upstream from mouth. DRAINAGE AREA. -- 871 mi<sup>2</sup>. PERIOD OF RECORD.--May 1918 to July 1925, November 1937 to current year. Monthly discharge only for some periods, published in WSP 1310. REVISED RECORDS.--WSP 956: 1938-39. WSP 1240: 1918-19, 1920 (M), 1921, 1922 (M), 1924-25, 1938 (M), 1945. WSP 1440: Drainage area. GAGE.--Water-stage encoder. Datum of gage is 1,009.38 ft above NGVD (Chicago and Northwestern Railway Company bench mark). See WSP 1918 for history of changes prior to Oct. 18, 1960. REMARKS.--Estimated daily discharges: Nov. 27-28, Dec. 1, Dec. 7 to Jan. 30, and Feb. 1 to Mar. 9. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain-gage and satellite data collection platform at station. AVERAGE DISCHARGE.--57 years (water years 1919-24, 1939-89), 330 $ft^3/s$ , 5.14 in/yr, 239,100 acre-ft/yr; median of yearly mean discharges, 280 $ft^3/s$ , 4.4 in/yr, 203,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 25,000 ft<sup>3</sup>/s Feb. 19, 1971, gage height, 22.65 ft, from floodmark; maximum gage height, 25.22 ft Mar. 1, 1965, backwater from ice; minimum daily discharge, 1.5 ft<sup>3</sup>/s July 16, 1938. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 6,000 ft3/s and maximum (\*): | | | Discharge | Gage height | | | Discharge | Gage hei <b>g</b> ht | |---------|------|----------------------|-------------|------------|-------------|----------------|----------------------| | Date | Time | (ft <sup>3</sup> /s) | (ft) | Date | Time | $(ft^3/s)$ | (ft) | | Sept. 8 | 0930 | *11,000 | *15.75 | No other p | eak greater | than base disc | harge. | Minimum discharge, 15 ft3/s Sept. 3. | | | DISCHARGE | , CUBIC | FEET PER | SECOND, | WATER YEAR<br>EAN VALUES | OCTOBER | 1988 TO | SEPTEMBER | 1989 | | | |-----------------------------------------------------|------------------------------------------------|-----------------------------------------|------------------------------------------------|-------------------------------------------------|------------------------------------------------|----------------------------------------------------|------------------------------------------------|--------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-----------------------------------------|---------------------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 252 | 98 | 130 | 94 | 350 | 190 | 138 | 95 | 195 | 115 | 94 | 24 | | 2 | 200 | 98 | 163 | 82 | 150 | 170 | 134 | 90 | 177 | 108 | 69 | 18 | | 3 | 162 | 103 | 149 | 86 | 60 | 160 | 129 | 86 | 398 | 104 | 60 | 18 | | 4 | 136 | 101 | 135 | 96 | 62 | 140 | 122 | 89 | 306 | 100 | 51 | 387 | | 5 | 126 | 99 | 122 | 130 | 68 | 125 | 124 | 90 | 177 | 102 | 44 | 240 | | 6 | 120 | 99 | 129 | 300 | 70 | 115 | 118 | 85 | 141 | 97 | 47 | 119 | | 7 | 117 | 100 | 135 | 200 | 90 | 130 | 116 | 81 | 127 | 91 | 57 | 797 | | 8 | 115 | 92 | 120 | 125 | 78 | 300 | 124 | 80 | 489 | 84 | 44 | 5600 | | 9 | 112 | 99 | 100 | 130 | 74 | 1000 | 124 | 75 | 315 | 87 | 38 | 2290 | | 10 | 111 | 98 | 80 | 120 | 85 | 2460 | 114 | 74 | 174 | 83 | 31 | 813 | | 11 | 105 | 97 | 72 | 125 | 100 | 1450 | 110 | 70 | 166 | 80 | 33 | 422 | | 12 | 101 | 123 | 105 | 120 | 115 | 740 | 110 | 70 | 216 | 81 | 30 | 275 | | 13 | 101 | 156 | 160 | 125 | 120 | 432 | 107 | 69 | 198 | 77 | 24 | 202 | | 14 | 102 | 133 | 170 | 140 | 118 | 326 | 108 | 68 | 138 | 74 | 25 | 165 | | 15 | 103 | 122 | 80 | 130 | 115 | 274 | 99 | 67 | 121 | 83 | 57 | 141 | | 16 | 97 | 157 | 90 | 120 | 110 | 228 | 98 | 65 | 114 | 97 | 83 | 120 | | 17 | 100 | 172 | 110 | 120 | 105 | 213 | 100 | 64 | 107 | 96 | 40 | 111 | | 18 | 97 | 140 | 130 | 125 | 100 | 146 | 105 | 69 | 111 | 182 | 27 | 97 | | 19 | 97 | 156 | 128 | 130 | 96 | 202 | 100 | 76 | 108 | 112 | 39 | 86 | | 20 | 99 | 160 | 115 | 140 | 110 | 222 | 94 | 96 | 99 | 103 | 34 | 79 | | 21 | 103 | 139 | 110 | 150 | 100 | 190 | 93 | 81 | 89 | 91 | 24 | 74 | | 22 | 102 | 117 | 120 | 170 | 96 | 164 | 89 | 71 | 133 | 84 | 26 | 70 | | 23 | 101 | 152 | 110 | 160 | 90 | 177 | 84 | 66 | 264 | 82 | 23 | 63 | | 24 | 96 | 156 | 100 | 145 | 120 | 176 | 82 | 1340 | 182 | 80 | 19 | 66 | | 25 | 97 | 151 | 90 | 140 | 180 | 167 | 85 | 1660 | 325 | 77 | 21 | 66 | | 26<br>27<br>28<br>29<br>30<br>31 | 96<br>99<br>94<br>91<br>93<br>99 | 178<br>170<br>120<br>137<br>154 | 92<br>90<br>86<br>86<br>94<br>110 | 130<br>140<br>200<br>400<br>800<br>703 | 280<br>400<br>250<br> | 160<br>161<br>162<br>153<br>151<br>156 | 83<br>78<br>104<br>120<br>107 | 471<br>273<br>241<br>1160<br>488<br>240 | 271<br>224<br>178<br>144<br>124 | 75<br>71<br>65<br>1000<br>470<br>176 | 65<br>92<br>79<br>50<br>34<br>27 | 65<br>63<br>59<br>58<br>58 | | TOTAL<br>MEAN<br>MAX<br>MIN<br>AC-FT<br>CFSM<br>IN. | 3524<br>114<br>252<br>91<br>6990<br>.13<br>.15 | 3877<br>129<br>178<br>92<br>7690<br>.15 | 3511<br>113<br>170<br>72<br>6960<br>.13<br>.15 | 5776<br>186<br>800<br>82<br>11460<br>.21<br>.25 | 3692<br>132<br>400<br>60<br>7320<br>.15<br>.16 | 10840<br>350<br>2460<br>115<br>21500<br>.40<br>.46 | 3199<br>107<br>138<br>78<br>6350<br>.12<br>.14 | 7650<br>247<br>1660<br>64<br>15170<br>.28<br>.33 | 5811<br>194<br>489<br>89<br>11530<br>.22<br>.25 | 4227<br>136<br>1000<br>65<br>8380<br>.16<br>.18 | 1387<br>44.7<br>94<br>19<br>2750<br>.05 | 12646<br>422<br>5600<br>18<br>25080<br>.48<br>.54 | CAL YR 1988 TOTAL 33521 MEAN 91.6 MAX 752 MIN 17 AC-FT 66490 CFSM .11 IN. 1.43 WTR YR 1989 TOTAL 66140 MEAN 181 MAX 5600 MIN 18 AC-FT 131200 CFSM .21 IN. 2.82 AC-FT 2163000 #### MISSOURI RIVER MAIN STEM # 06610000 MISSOURI RIVER AT OMAHA, NE LOCATION.--Lat 41°15'32", long 95°55'20", in SE1/4 NW1/4 sec.23, T.15 N., R.13 E., Douglas County, Hydrologic Unit 10230006, on right bank on left side of concrete floodwall, at foot of Douglas Street, 275 ft downstream from Interstate 480 Highway bridge in Omaha, and at mile 615.9. DRAINAGE AREA. -- 322,800 mi<sup>2</sup>, approximately. The 3,959 mi<sup>2</sup> in Great Divide basin are not included. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- September 1928 to current year. April 1872 to December 1899 (gage heights only) in reports of the Missouri River Commission and since January 1875, (gage heights only) in reports of the U.S. Weather Bureau. REVISED RECORDS. -- WSP 761: Drainage area. GAGE.--Water-stage encoder. Datum of gage is 948.24 ft above NGVD. See WSP 1730 for history of changes prior to Sept. 30, 1936. Oct. 1, 1936 to Sept. 30, 1982 at datum 10.00 ft higher. REMARKS.--Estimated daily discharges: Nov. 18-21, Dec. 30 to Jan. 5, Feb. 5, and May 26. Records good except those for estimated daily discharges, which are poor. U.S. Army Corps of Engineers rain-gage and satellite data collection platform and U.S. National Weather Service gage-height telemeter at station. AVERAGE DISCHARGE. -- 61 years, 30,850 ft3/s, 22,350,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 396,000 ft<sup>3</sup>/s Apr. 18, 1952, gage height, 40.20 ft, present datum; minimum, about 2,200 ft<sup>3</sup>/s Jan. 6, 1937; minimum gage height, 6.85 ft, present datum, Feb. 5, 1989, result of freezeup. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 54,100 ft<sup>3</sup>/s Sept. 8, gage height, 21.19 ft; minimum daily discharge, 6,500 ft<sup>3</sup>/s Feb. 5; minimum gage height, 6.85 ft Feb. 5, result of freeseup. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 MEAN VALUES DAY OCT NOV DEC JUN JUL AUG SEP JAN FEB APR MAY MAR 16300 31900 13 15 15600 22 24 33700 31800 ---TOTAL 1090400 989200 1059500 1006000 MEAN MAX MTN CAL YR 1988 TOTAL 10993300 MEAN 30040 MAX 42200 MIN 12900 AC-FT 21810000 WTR YR 1989 TOTAL 9958550 MEAN 27280 MAX 44500 MIN 6500 AC-FT 19750000 # 06610000 MISSOURI RIVER AT OMAHA, NE--Continued WATER-QUALITY RECORDS LOCATION.--Water quality samples were collected from Interstate 80 highway bridge 2.0 mi downstream from gaging station. Samples for particle-size distribution were collected from boat cross-section 3.6 mi downstream from gaging station. PERIOD OF RECORD.--Water years 1969-76, 1978 to current year. Daily sediment loads for April 1939 to September 1971 are in reports of U.S. Army Corps of Engineers. PERIOD OF DAILY RECORD. -CHEMICAL ANALYSES: July 1969 to June 1972. SPECIFIC CONDUCTANCE: October 1972 to September 1976, January 1978 to September 1981. WATER TEMPERATURES: October 1971 to September 1976, January 1978 to September 1981. SUSPENDED-SEDIMENT DISCHARGE: October 1971 to September 1976. DTC- EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 950 microsiemens Dec. 4,5, 1980; minimum daily, 335 microsiemens Mar. 22, 1978. WATER TEMPERATURES: Maximum daily, 32.0°C July 24, 1972; minimum daily, 0.0°C on many days during winter period. SEDIMENT CONCENTRATIONS: Maximum daily mean, 8,180 mg/L May 19, 1974; minimum daily mean, 165 mg/L Sept. 13, 1976. SEDIMENT LOADS: Maximum daily, 1,060,000 tons May 19, 1974; minimum daily, 3,990 tons Jan. 14, 1975. # WATER-QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 DIC- | DATE | TIME | CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | DATE | TIME | CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | |----------------|--------------|---------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------|----------|--------------|---------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------| | OCT 1988 | | | | | MAY 1989 | | | | | | 06 | 1015 | 31500 | 13.0 | 755 | 11 | 1200 | 33200 | 15.0 | 775 | | 14 | 1115 | 34800 | 13.0 | 750 | 15 | 1100 | 34300 | 18.0 | 760 | | 17 | 1200 | 37300 | 14.0 | 750 | 19 | 1115 | 34600 | 18.0 | 750 | | 20 | 1115 | 36100 | 13.0 | 750 | 22 | 1125 | 34900 | 20.0 | 780 | | 24 | 1135 | 36600 | 12.0 | 760 | 30 | 1230 | 41100 | 21.0 | 760 | | 27<br>31 | 1045<br>0830 | 36700<br>37600 | 12.0<br>7.5 | 750<br>740 | JUN | 1200 | 33800 | 19.0 | 770 | | NOV | 0030 | 37600 | 7.3 | 740 | 02<br>05 | 1100 | 33100 | 20.5 | 740 | | 03 | 1215 | 34400 | 8.0 | 755 | 08 | 1200 | 33000 | 21.0 | 750 | | 08 | 1000 | 35900 | 7.0 | 755 | 14 | 0945 | 32600 | 20.5 | 740 | | 15 | 1145 | 24200 | 8.0 | 800 | 19 | 1115 | 34700 | 22.0 | 775 | | 23 | 1115 | 16800 | 5.0 | 850 | 22 | 1330 | 32000 | 22.0 | 765 | | 30 | 1305 | 15900 | 2.0 | 810 | 26 | 1130 | 34200 | 22.0 | 760 | | DEC | | | | | JUL | | | | | | 14 | 1115 | 14700 | 1.0 | 800 | 03 | 1200 | 34200 | 26.5 | 755 | | JAN 1989<br>05 | 1500 | 15900 | 1.0 | 810 | 07 | 1100<br>1130 | 33400<br>33000 | 26.0<br>26.0 | 680<br>680 | | 23 | 1130 | 15400 | 1.5 | 800 | 10<br>17 | 1100 | 36700 | 24.0 | 720 | | FEB | 1130 | 13400 | 1.5 | 800 | 20 | 1200 | 37200 | 24.0 | 730 | | 13 | 1315 | 20100 | 0.5 | 705 | 31 | 1130 | 38900 | 26.0 | 775 | | 27 | 1500 | 17700 | 1.5 | 760 | AUG | | | | | | MAR | | | | | 03 | 1100 | 33600 | 26.0 | 775 | | 08 | 1100 | 16300 | 1.5 | 775 | 07 | 1130 | 35300 | 26.0 | 760 | | 27 | 1330 | 17600 | 11.0 | 760 | 10 | 1200 | 34400 | 27.0 | 790 | | APR | | | | | 14 | 1200 | 33000 | 27.0 | 780 | | 10 | 1340 | 32100 | 7.0 | 700 | 17 | 1200 | 33800 | 27.0 | 780 | | 13 | 1100<br>1230 | 33300<br>33200 | 8.0 | 740<br>740 | 21<br>24 | 1240<br>1130 | 34300<br>34100 | 25.0<br>24.0 | 810<br>780 | | 17<br>20 | 1200 | 33200<br>33500 | 11.0<br>10.5 | 750 | 24<br>28 | 1215 | 34700 | 24.5 | 800 | | 24 | 1130 | 34300 | 16.0 | 750 | SEP | 1213 | 34700 | 24.3 | 000 | | 27 | 1230 | 34300 | 19.0 | 750 | 06 | 1030 | 33100 | 23.0 | 710 | | MAY | | | | | 13 | 1240 | 27700 | 15.0 | 840 | | 03 | 0900 | 32600 | 14.0 | 740 | 18 | 1405 | 29400 | 21.0 | 800 | | 08 | 1230 | 33900 | 13.0 | 760 | 25 | 1300 | 30700 | 15.0 | 760 | # 06610000 MISSOURI RIVER AT OMAHA, NE--Continued WATER-QUALITY RECORDS PARTICLE-SIZE DISTRIBUTION OF SUSPENDED SEDIMENT. WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | | PARTICLE-S | IZE DISTR | IBUTION OF | SUSPENDE | D SEDIMENT | , WATER | YEAR OCTO | BER 1988 | TO SEPTEM | BER 1989 | | |-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------| | DATE | TIME | SAMPLE<br>LOC-<br>ATION,<br>CROSS<br>SECTION<br>(FT FM<br>L BANK)<br>(00009) | DEPTH<br>AT<br>SAMPLE<br>LOC-<br>ATION,<br>TOTAL<br>(FEET)<br>(81903) | SAM-<br>PLING<br>DEPTH<br>(FEET)<br>(00003) | STREAM<br>VELOC-<br>ITY,<br>POINT<br>(FPS)<br>(81904) | SEDI-<br>MENT,<br>SUS-<br>PENDED<br>(MG/L)<br>(80154) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>7 FINER<br>THAN.<br>.004 MM<br>(70338) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>Z FINER<br>THAN<br>.062 MM<br>(70342) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>Z FINER<br>THAN<br>.125 MM<br>(70343) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>7 FINER<br>THAN<br>.250 MM<br>(70344) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>7 FINER<br>THAN<br>.500 MM<br>(70345) | | OCT 066 066 066 066 066 066 066 066 066 066 066 066 066 066 | WATER 1010 1013 1015 1020 1025 1030 1045 11050 1110 1113 1115 1125 1130 1135 1145 1150 1203 1223 1223 1223 1223 1235 1238 1240 | TEMPERATU<br>150<br>150<br>150<br>150<br>300<br>300<br>300<br>300<br>300<br>425<br>425<br>425<br>425<br>425<br>425<br>520<br>520<br>520<br>520<br>520<br>605<br>605<br>605<br>605<br>605 | 13.0° 10.2' | C (0845-<br>2.100<br>7.350<br>9.20-<br>2.80<br>6.100<br>7.80<br>11.00<br>7.80<br>14.7<br>13.00<br>14.7<br>15.6<br>14.7<br>15.8<br>16.6<br>14.7<br>15.8<br>16.7<br>18.8 | DI<br>32.96<br>22.763<br>22.42<br>3.612<br>33.750<br>33.750<br>33.750<br>33.288<br>33.28<br>33.618<br>24.37<br>4.597<br>33.618<br>22.63<br>22.63<br>22.63 | SCHARGE, 1809 263 244 299 2322 363 509 6517 3310 258 217 353 402 2552 1451 156 266 3660 146 | <br><br><br> | 1±3/s. 420 319 225 235 330 284 137 136 466 404 299 217 76 52 2 54 433 257 | 56<br>49<br>429<br>34<br>350<br>47<br>365<br>47<br>365<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47 | 98<br>91<br>849<br>65<br>88<br>99<br>98<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99 | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 | | | PARTICLE-S | IZF DISTRI | BUTTON OF | SUSPENDE | п сепімент | WATED | VEAD OCTO | RFD 1088 | TO SEPTEM | RFP 1080 | | | DATE | TIME | SAMPLE<br>LOC-<br>ATION,<br>CROSS<br>SECTION<br>(FT FM<br>L BANK)<br>(00009) | DEPTH<br>AT<br>SAMPLE<br>LOC-<br>ATION,<br>TOTAL<br>(FEET)<br>(81903) | SAM-<br>PLING<br>DEPTH<br>(FEET)<br>(00003) | STREAM<br>VELOC-<br>ITY,<br>POINT<br>(FPS) | SEDI-<br>MENT,<br>SUS-<br>PENDED<br>(MG/L)<br>(80154) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>7 FINER<br>THAN<br>.004 MM<br>(70338) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>Z FINER<br>THAN<br>.062 MM<br>(70342) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>7 FINER<br>THAN<br>.125 MM<br>(70343) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>Z FINER<br>THAN<br>.250 MM<br>(70344) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>Z FINER<br>THAN<br>.500 MM<br>(70345) | | MAY<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03 | WATER<br>1010<br>1014<br>10122<br>1026<br>1030<br>1040<br>1043<br>1046<br>1049<br>1052<br>1055 | TEMPERATU<br>130<br>130<br>130<br>130<br>130<br>275<br>275<br>275<br>275<br>275<br>275<br>275<br>275<br>275 | TRE, 14.0° 12.2° | C (1010-<br>2.80<br>6.10<br>8.70<br>10.2<br>11.0<br>-<br>3.00<br>6.40<br>9.10<br>10.7<br>11.5<br>12.0<br>3.60 | 1245); DI:<br>3.28<br>3.39<br>2.96<br>2.63<br>2.53<br><br>3.72<br>3.72<br>3.22<br>3.39<br>3.07<br>4.32 | SCHARGE,<br>171<br>165<br>197<br>275<br>385<br>161<br>288<br>366<br>329<br>402<br>395<br>476 | 32,600 f | t <sup>3</sup> /s. 60 60 48 36 29 56 40 39 40 27 25 24 | 73<br>71<br>61<br>45<br>37<br>65<br>52<br>52<br>40<br>36<br>51 | 98<br>97<br>95<br>74<br>78<br>96<br>97<br>96<br>98<br>88<br>94<br>88 | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 | # 06610000 MISSOURI RIVER AT OMAHA, NE--Continued # WATER-QUALITY RECORDS PARTICLE-SIZE DISTRIBUTION OF SUSPENDED SEDIMENT, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | | | | | | | | | | IO SEPIEM | | | |-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------| | DATE | TIME | SAMPLE<br>LOC-<br>ATION,<br>CROSS<br>SECTION<br>(FT FM<br>L BANK)<br>(00009) | DEPTH<br>AT<br>SAMPLE<br>LOC-<br>ATION,<br>TOTAL<br>(FEET)<br>(81903) | SAM-<br>PLING<br>DEPTH<br>(FEET)<br>(00003) | STREAM<br>VELOC-<br>ITY<br>POINT<br>(FPS)<br>(81904) | SEDI-<br>MENT,<br>SUS-<br>PENDED<br>(MG/L)<br>(80154) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>7 FINER<br>THAN<br>.004 MM<br>(70338) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>7 FINER<br>THAN<br>.062 MM<br>(70342) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>7 FINER<br>THAN<br>.125 MM<br>(70343) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>7 FINER<br>THAN<br>.250 MM<br>(70344) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>7 FINER<br>THAN<br>.500 MM<br>(70345) | | JUN 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 | WATER<br>0945<br>0948<br>0951<br>0954<br>0959<br>1000<br>1010<br>1013<br>1016<br>1019<br>1025<br>1032<br>1032<br>1046<br>11058<br>11046<br>1115<br>1125<br>1128<br>1131<br>1131<br>1134<br>1137<br>1140<br>1145<br>1209<br>1213<br>1221<br>1225<br>1230 | TEMPERATU 150 150 150 150 150 150 280 280 280 280 280 280 435 435 435 525 525 525 525 525 610 610 610 610 610 610 | 12.0 | * C (0945<br>2.40<br>5.20<br>7.40<br>8.70<br>9.40<br>2.80<br>6.60<br>10.0<br>9.20<br>13.1<br>16.6<br>9.20<br>15.3<br>16.7<br>17.0<br>4.30<br>9.30<br>13.3<br>15.5<br>16.7<br>17.5 | -1230); :133.286<br>3.286<br>3.077<br>2.42 | DISCHARGE 168 164 193 256 261 187 203 269 304 425 359 301 470 248 2243 336 434 581 636 193 196 193 177 143 | , 32,600 | ft <sup>3</sup> /s. 65 74 57 45 41 63 61 49 43 11 32 44 16 41 58 55 37 77 77 77 77 73 83 | 76<br>85<br>65<br>54<br>50<br>74<br>62<br>74<br>44<br>45<br>75<br>42<br>44<br>44<br>53<br>75<br>70<br>55<br>70<br>55<br>70<br>55<br>70<br>55<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70 | 95<br>100<br>95<br>95<br>97<br>97<br>97<br>99<br>94<br>95<br><br><br>97<br>99<br>99<br>99<br>99<br>100<br>99<br>100<br>97<br>97 | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 | | | | | | | | | | | | | | | | PARTICLE-S: | IZE DISTRI | BUTION OF | SUSPENDE | D SEDIMEN | T, WATER | YEAR OCTO | BER 1988 | TO SEPTEM | BER 1989 | | | DATE | PARTICLE-S | SAMPLE LOC- ATION, CROSS SECTION (FT FM L BANK) (00009) | DEPTH<br>AT<br>SAMPLE<br>LOC-<br>ATION,<br>TOTAL<br>(FEET)<br>(81903) | SAM-<br>PLING<br>DEPTH<br>(FEET)<br>(00003) | STREAM<br>VELOC-<br>ITY,<br>POINT<br>(FPS)<br>(81904) | SEDI-<br>MENT,<br>SUS-<br>PENDED<br>(MG/L)<br>(80154) | YEAR OCTO<br>SED.<br>SUSP.<br>FALL<br>DIAM.<br>Z FINER<br>THAN<br>.004 MM<br>(70338) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>7 FINER<br>THAN<br>.062 MM<br>(70342) | SEPTEM<br>SED.<br>SUSP.<br>FALL<br>DIAM.<br>Z FINER<br>THAN<br>.125 MM<br>(70343) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>7 FINER<br>THAN<br>.250 MM<br>(70344) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>Z FINER<br>THAN<br>.500 MM<br>(70345) | # 06610000 MISSOURI RIVER AT OMAHA, NE--Continued WATER-QUALITY RECORDS PARTICLE-SIZE DISTRIBUTION OF SUSPENDED SEDIMENT, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE<br>SEP | TIME | SAMPLE<br>LOC-<br>ATION,<br>CROSS<br>SECTION<br>(FT FM<br>L BANK)<br>(00009) | DEPTH<br>AT<br>SAMPLE<br>LOC-<br>ATION,<br>TOTAL<br>(FEET)<br>(81903) | SAM-<br>PLING<br>DEPTH<br>(FEET)<br>(00003) | STREAM<br>VELOC-<br>ITY,<br>POINT<br>(FPS)<br>(81904) | SEDI-<br>MENT,<br>SUS-<br>PENDED<br>(MG/L)<br>(80154) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>Z FINER<br>THAN<br>.004 MM<br>(70338) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>Z FINER<br>THAN<br>.062 MM<br>(70342) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>Z FINER<br>THAN<br>.125 MM<br>(70343) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>7 FINER<br>THAN<br>.250 MM<br>(70344) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>7 FINER<br>THAN<br>.500 MM<br>(70345) | |------------------|-----------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------| | 06<br>06 | WATER<br>1020<br>1024 | 150<br>150 | JRE, 23.0°<br>11.2 | C (1020-<br>2.60 | 1235); D<br>3.46 | ISCHARGE,<br>692 | 28,900 f | t <sup>3</sup> /s.<br>94<br>94 | 97<br>96 | 99<br>99 | 100<br>100 | | 06<br>06 | 1028 | 150 | | 5.60<br>8.00 | 3.24<br>2.98 | 683<br>779 | | 85 | 96<br>88 | 98 | 100 | | 06 | 1032 | 150 | | 9.30 | 2.42 | 752 | | 87 | 90 | 99 | 100 | | 06 | 1036 | 150 | | 10.1 | 2.37 | 828 | | 82 | 85 | 99 | 100 | | 0 <b>6</b><br>06 | 1040<br>1050 | 150 | 1, 0 | 11.2 | 3.00 | 724 | | 91 | 94 | 100<br>100 | | | 06 | 1054 | 290<br>290 | 14.0 | 3.20<br>7.00 | 4.15<br>3.94 | 668<br>683 | | 94<br>91 | 97<br>94 | 99 | 100 | | 06 | 1058 | 290 | | 10.0 | 3.07 | 789 | | 80 | 85 | 99 | 100 | | 06 | 1102 | 290 | | 11.7 | 2.85 | 867 | | 73 | 79 | 98 | 100 | | 06 | 1106 | 290 | | 12.6 | 2.63 | 921 | | 72 | 78 | 99 | 100 | | 06<br>06 | 1108<br>1110 | 290<br>290 | | 13.2 | 2.20 | 1020<br>745 | | 64<br>85 | 71<br>89 | 98<br>99 | 100<br>100 | | 06 | 1118 | 440 | 15.5 | 3.60 | 4.37 | /43 | | | | | 100 | | 06 | 1120 | 440 | | 7.70 | 3.94 | | | | | | | | 06 | 1122 | 440 | | 11.0 | 3.72 | | | | | | | | 06<br>0 <b>6</b> | 1124<br>1126 | 440 | | 12.8 | 3.50 | | | | | | | | 06 | 1128 | 440<br>440 | | 13.9<br>14.5 | 3.50<br>3.18 | | | | | | | | 06 | 1131 | 440 | | 14.5 | 3.10 | 709 | | 83 | 88 | 100 | | | 06<br>06 | 1135 | 440 | | | | 761 | 36 | 75 | | | | | 06 | 1145 | 535 | 18.0 | 4.20 | 4.70 | 626 | | 92 | 97 | 100 | | | 06<br>06 | 1148<br>1151 | 535<br>535 | | 9.00<br>12.9 | 4.37<br>4.15 | 628<br>776 | | 91<br>76 | 97<br>83 | 100<br>99 | 100 | | 06 | 1154 | 535<br>535 | | 15.0 | 4.15 | 747 | | 79<br>79 | 86 | 100 | 100 | | 06 | 1157 | 535 | | 16.2 | 3.94 | 829 | | 72 | 79 | 98 | 100 | | 06 | 1200 | 535 | | 17.0 | 3.50 | 997 | | 61 | 70 | 98 | 100 | | 06 | 1203 | 535 | | | | 666 | | 86 | 91 | 100 | | | 06<br>06 | 1215<br>1218 | 630<br>630 | 18.0 | 4.20<br>9.00 | 3.94<br>3.94 | 545<br>568 | | 99<br>97 | 100<br>99 | 100 | | | 06 | 1221 | 630 | | 12.9 | 3.72 | 567 | | 97 | 100 | 100 | | | 06 | 1224 | 630 | | 15.0 | 3.72 | 579 | | 98 | 99 | 100 | | | 06 | 1227 | 630 | | 16.2 | 3,28 | 562 | | 97 | 99 | 100 | | | 06<br>06 | 1229<br>1231 | 630<br>630 | | 17.0 | 2.85 | 572 | | 97<br>98 | 99<br>100 | 100 | | | · · · · · | 1231 | 630 | | | | 554 | | 96 | 100 | | | PARTICLE-SIZE DISTRIBUTION OF SURFACE BED MATERIAL, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | TIME | NUMBER OF SAM- PLING POINTS (COUNT) (00063) | BED<br>MAT.<br>SIEVE<br>DIAM.<br>7 FINER<br>THAN<br>.062 MM<br>(80164) | BED<br>MAT.<br>SIEVE<br>DIAM.<br>7 FINER<br>THAN<br>.125 MM<br>(80165) | BED<br>MAT.<br>SIEVE<br>DIAM.<br>7 FINER<br>THAN<br>.250 MM<br>(80166) | BED<br>MAT.<br>SIEVE<br>DIAM.<br>7 FINER<br>THAN<br>.500 MM<br>(80167) | BED<br>MAT.<br>SIEVE<br>DIAM.<br>Z FINER<br>THAN<br>1.00 MM<br>(80168) | BED<br>MAT.<br>SIEVE<br>DIAM.<br>Z FINER<br>THAN<br>2.00 MM<br>(80169) | |-----------|------|---------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------| | OCT | | | | | | | | | | 06<br>MAY | 1143 | 5 | 0 | 3 | 18 | 98 | 100 | | | 03 | 1315 | 5 | | 0 | 34 | 85 | 98 | 100 | | JUN<br>14 | 1300 | 5 | 0 | 1 | 28 | 99 | 100 | | | JULີ້<br> | 1300 | 4 | 0 | 1 | 29 | 96 | 99 | 100 | | SEP<br>06 | 1300 | 5 | 1 | 1 | 28 | 98 | 100 | | # 06807000 MISSOURI RIVER AT NEBRASKA CITY. NE LOCATION.--Lat 40°40'55", long 95°50'48", in NW1/4 NE1/4 sec.9, T.8 N., R.14 E., Otoe County, Hydrologic Unit 10240001, on right bank 2.0 mi upstream from Highway 2 Bridge at Nebraska City, and at mile 562.6. DRAINAGE AREA .--410,000 mi2, approximately. The 3,959 mi2 in Great Divide basin are not included. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- August 1929 to current year. Gage-height records coll-to December 1899 are contained in reports of Missouri River Commission. Gage-height records collected in this vicinity from August 1878 REVISED RECORDS.--WSP 761: Drainage area GAGE.--Water-stage encoder. Datum of gage is 905.36 ft above NGVD, supplementary adjustment of 1954. See WSP 1918 or 1919 for history of changes prior to Apr. 1, 1963. 4ARKS.--Estimated daily discharges: Feb. 21, 22, July 14-16, and Sept. 10, 11. Records good except those for estimated daily discharges, which are poor. Flow regulated by upstream main-stem reservoirs. U.S. Army Corps of Engineers rain-gage and satellite data collection platform at station. REMARKS. -- Estimated daily discharges: AVERAGE DISCHARGE. -- 60 years, 37,000 ft3/s, 26,810,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 414,000 ft<sup>3</sup>/s Apr. 19, 1952; maximum gage height, 27.66 ft Apr. 18, 1952; minimum discharge, 1,600 ft<sup>3</sup>/s Dec. 31, 1946 (discharge measurement); minimum gage height observed, -0.28 ft Dec. 24, 1960, result of freezeup. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 87,300 ft<sup>3</sup>/s Sept. 9, discharge, 8,010 ft<sup>3</sup>/s Feb. 6, gage height, 0.92 ft, result of freezup. 87,300 ft<sup>3</sup>/s Sept. 9, gage height, 18.00 ft; minimum daily DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 MEAN VALUES DAY NOV OCT DEC JIIN. JIII. AIIG SEP .TAN FER MAR APR MAY 37700 19700 2.0 2.5 2.8 ---TOTAL 1168200 MEAN MAX MIN AC-FT 2317000 CAL YR 1988 WTR YR 1989 TOTAL 12321100 MEAN 33660 TOTAL 11204170 MEAN 30700 MAX 48100 MIN 15300 AC-FT 24440000 MAX 81600 MIN 8010 AC-FT 22220000 # 06807000 MISSOURI RIVER AT NEBRASKA CITY, NE--Continued WATER-QUALITY RECORDS LOCATION. -- Samples for particle size distribution were collected from boat cross-section 0.7 mi upstream from gage. PERIOD OF RECORD.--May 1951 to current year. Daily sediment loads August 1957 to September 1971 in reports of U.S. Army Corps of Engineers. PERIOD OF DAILY RECORD. --SPECIFIC CONDUCTANCE: May 1951 to September 1976. WATER TEMPERATURES: May 1951 to September 1976. SEDIMENT DISCHARGE: October 1971 to September 1976. EXTREMES FOR PERIOD OF DAILY RECORD. -SPECIFIC CONDUCTANCE: Maximum daily, 994 microsiemens Dec. 17, 1962; minimum daily, 273 microsiemens June 17, 1964. WATER TEMPERATURES: Maximum daily, 31°C July 26, 1977; minimum, 0.0°C on many days during winter periods. SEDIMENT CONCENTRATIONS: Maximum daily mean, 8,220 mg/L May 19, 1974; minimum daily mean, 137 mg/L Jan. 14, 1975. SEDIMENT LOADS: Maximum daily, 1,590,000 tons May 19, 1974; minimum daily, 4,050 tons Jan. 17, 1972. WATER-QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | OCT 1988 03 1045 37400 16.0 710 09 1440 35100 15.0 750 11 0850 37100 13.0 700 12 1415 33800 16.5 762 13 1250 37300 13.0 730 16 1500 34500 20.0 780 27 1245 37800 9.0 780 26 1300 38200 20.0 740 NOV 02 1220 38400 8.0 755 01 1400 33100 19.0 750 09 1330 40700 7.5 660 09 1345 36200 23.0 770 17 1215 25600 6.0 710 13 1435 36200 23.0 770 17 1215 25600 6.0 710 13 1435 36200 22.0 748 20 1145 20300 4.5 730 20 1115 32100 22.0 780 20 1245 19100 2.0 780 23 0930 35000 22.0 745 DEC 07 0945 20500 1.5 790 JUL 15 1310 17500 1.0 790 00 1330 38200 22.0 770 17 1315 18600 0.0 790 06 1330 38200 22.0 770 JAN 1989 05 1200 17800 0.0 850 17. 1230 34600 22.0 760 31 1715 23700 2.5 760 AUG FEB 13 1715 23700 2.5 760 AUG FEB 13 1715 23700 2.5 760 AUG 1.3 1300 35300 8.0 730 SEP 12 0900 34100 24.0 740 APR 03 1300 34300 9.0 670 23 1200 36700 26.0 770 17 1300 35300 8.0 730 SEP 18 1400 35300 10.0 690 29 0900 34100 23.0 775 12 1300 35300 8.0 730 SEP 18 1400 35300 20.0 775 18 1400 35000 10.5 750 01 0830 38000 22.5 760 07 1300 35300 8.0 730 SEP 18 1400 35300 10.0 690 29 0900 34100 23.0 775 12 1300 35300 10.0 690 29 0900 34100 23.0 775 12 1300 35300 10.0 690 29 0900 34100 23.0 775 12 1300 35300 10.0 690 29 0900 34100 23.0 775 12 1300 35300 10.0 690 29 0900 34100 23.0 775 12 1300 35300 10.0 690 29 0900 34100 23.0 775 12 1300 35300 10.0 690 29 0900 34100 23.0 775 12 1300 35300 10.0 690 29 0900 34100 23.0 775 12 1300 35300 10.0 690 29 0900 34100 23.0 775 12 1300 35300 10.0 690 29 0900 34100 23.0 775 12 1300 35300 10.0 690 29 0900 34100 23.0 775 12 1300 35300 10.0 690 29 0900 34100 23.0 775 12 1300 35300 10.0 690 29 0900 34100 23.0 775 12 1300 35300 10.0 690 29 0900 34100 23.0 775 12 1300 35300 10.0 690 29 0900 34100 23.0 775 12 1300 35300 10.0 690 29 0900 34100 23.0 775 12 1300 35300 10.0 690 29 0900 34100 23.0 775 | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | <b>DATE</b> | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------|-----------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------|-------------|------|-----------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------| | 03 1045 37400 16.0 710 09. 1440 35100 15.0 750 11 0850 37100 13.0 730 16 1415 33800 16.5 762 13 1250 37300 13.0 730 16 1500 34500 18.0 762 19 1320 38900 13.0 740 23 1245 36000 20.0 780 26 1300 38200 20.0 740 NOV JUN 002 1220 38400 8.0 755 01 1400 33100 19.0 750 09 1330 40700 7.5 660 09 1331 1435 36200 23.0 770 17 1215 25600 6.0 710 13 1435 35200 20.0 745 22 1145 20300 4.5 730 20 1115 32100 22.0 780 30 1245 19100 2.0 780 23 0930 35000 21.0 775 DEC 28 1500 36400 22.0 770 15 1310 17500 1.0 790 06 1330 38200 27.5 760 20 1415 18600 0.0 790 06 1330 38200 27.5 760 12 1310 17500 1.0 790 06 1330 34300 26.0 760 JAN 1989 12 0900 31900 25.0 690 05 1200 17800 0.0 850 17 1230 34600 25.0 690 05 1200 17800 0.0 850 17 1230 34600 25.0 690 05 1200 17800 0.0 850 17 1230 34600 25.0 690 05 1200 17800 0.0 850 17 1230 34600 25.0 690 05 1200 17800 0.0 850 17 1230 34600 25.0 690 05 1200 17800 0.0 850 17 1230 34600 25.0 690 05 1200 17800 0.0 850 17 1230 34600 25.0 690 05 1200 17800 0.0 850 17 1230 34600 25.0 690 05 1200 17800 0.0 850 17 1230 34600 25.0 690 05 1200 17800 0.0 850 17 1230 34600 25.0 690 05 1200 17800 0.0 850 17 1230 34600 25.0 690 07 1330 35000 1.5 760 AUG FEB 01 02 03 03 03 03 00 00 0.0 740 04 1200 35000 27.0 780 133 1715 23700 2.5 760 AUG FEB 01 02 03 03 03 03 03 03 03 03 03 03 03 03 03 | OCT 1088 | | | | | MAV 1000 | | | | | | 11 0850 37100 13.0 700 12. 1415 33800 16.5 762 13 1250 37300 13.0 740 23 1245 36000 20.0 780 27 1245 37800 9.0 780 26 1300 38200 20.0 780 NOV 02 1220 38400 8.0 755 01 1400 33100 19.0 750 09 1330 40700 7.5 660 09 1345 36200 23.0 770 17 1215 25600 6.0 710 13 1435 36200 20.0 748 22 1145 20300 4.5 730 20 1115 32100 22.0 780 30 1245 19100 2.0 780 23 0930 35000 21.0 775 DEC 07 0945 20500 1.5 790 JUL 15 1310 17500 1.0 790 03 1330 38200 27.5 760 20 1415 18600 0.0 790 06 1330 38200 27.5 760 JAN 1989 05 1200 17800 0.0 850 17. 1230 34600 25.0 690 05 1201 17800 0.0 850 17. 1230 34600 25.0 690 05 1215 23700 2.5 760 AUG FEB 13 1515 23600 0.0 740 04 1200 35000 27.0 780 28 1300 34300 9.0 670 25 1315 33400 26.0 770 15 1310 17500 1.0 790 05 1315 35400 26.0 780 31 1715 23700 2.5 760 AUG FEB 13 1515 23600 0.0 740 04 1200 35000 27.0 780 07 0900 22000 2.0 730 25 1315 33400 26.0 770 15 1300 35300 10.0 690 29 0900 34100 24.0 740 27 1300 35300 10.0 690 29 0900 34100 23.0 775 12 1300 35300 8.0 730 SEP 18 1400 35000 10.5 750 01 0830 30900 22.5 760 28 1320 35300 26.0 770 29 1100 36500 10.5 750 01 0830 30900 22.5 760 28 1320 35300 20 18.0 760 07 1300 35300 10.0 690 29 0900 34100 23.0 775 12 1300 35300 10.0 690 29 0900 34100 23.0 775 12 1300 35300 10.5 750 01 0830 30900 22.5 760 28 1320 35300 10.0 690 29 0900 34100 23.0 775 12 1300 35300 10.5 750 01 0830 30900 22.5 760 28 1320 40500 20.0 740 15 1600 34700 18.0 640 28 1320 40500 20.0 740 15 1600 34700 18.0 640 28 1320 40500 20.0 740 15 1600 34700 18.0 640 28 1320 40500 20.0 740 15 1600 34700 18.0 640 28 1320 40500 20.0 740 15 1600 34700 18.0 640 28 1320 40500 20.0 740 15 1600 34700 18.0 640 28 1320 40500 20.0 740 15 1600 34700 18.0 640 28 1320 40500 20.0 740 15 1600 34700 18.0 640 28 1320 40500 10.5 755 10.0 1430 33500 20.0 775 | 03 | 1045 | 37400 | 16.0 | 710 | MAI 1909 | 1440 | 35100 | 15.0 | 750 | | 13 | 11 | | | | | 12 | | | | | | 19 1320 38900 13.0 740 23 1245 36000 20.0 780 27 1245 37800 9.0 780 26 1300 38200 20.0 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 7 | | | | | | 16 | | | | | | 27 1245 37800 9.0 780 26 1300 38200 20.0 740 NOV 02 1220 38400 8.0 755 01 1400 33100 19.0 750 09 1330 40700 7.5 660 09 1345 36200 23.0 775 17 1215 25500 6.0 710 13 1435 35200 20.0 745 22 1145 20300 4.5 730 20 1115 32100 22.0 780 30 1245 19100 2.0 780 23 0930 35000 21.0 775 28 1500 36400 22.0 770 07 0945 20500 1.5 790 JIL | 19 | | | | | | | | | 780 | | 02 1220 38400 8.0 755 01 1400 33100 19.0 750 09 1330 40700 7.5 660 09 1345 36200 23.0 770 17 1215 25500 6.0 710 13 1435 35200 20.0 745 22 1145 20300 4.5 730 20 1115 32100 22.0 780 23 0930 35000 21.0 775 DEC 28 1500 36400 22.0 770 15 1310 17500 1.0 790 JUL 15 1310 17500 1.0 790 03 1330 38200 27.5 760 20 1415 18600 0.0 790 06 1300 34300 26.0 760 20 1415 18600 0.0 850 17 1230 34600 25.0 690 05 1200 17800 0.0 850 17 1230 34600 25.0 690 17 1315 18800 1.5 840 21 0930 40100 24.0 740 27 0990 22000 2.0 730 25 1315 35400 26.0 780 31 1715 23700 2.5 760 AUG FEB 13 1515 23600 0.0 740 04 1200 36700 26.0 770 29 1100 28100 12.0 700 15 1200 31700 25.0 820 APR 18 1200 31700 25.0 820 770 15 1300 35200 10.0 690 29 090 34000 23.0 775 12 1300 35300 8.0 730 SEP 18 1400 35000 10.5 750 01 0830 30900 22.5 760 MAY 22 1300 35300 10.5 750 01 0830 30900 22.5 760 MAY 22 1300 355000 10.5 750 01 0830 30900 22.5 760 MAY 22 1300 355000 10.5 750 01 0830 30900 22.5 760 MAY 22 1300 355000 10.5 750 01 0830 30900 22.5 760 MAY 22 1300 355000 10.5 750 01 0830 30900 22.5 760 MAY 22 1300 355000 10.5 750 01 0830 30900 22.5 760 MAY 22 1300 355000 10.5 750 01 0830 30900 22.5 760 MAY 22 1300 355000 10.5 750 01 0830 30900 22.5 760 MAY 22 1300 36500 10.5 750 01 0830 30900 22.5 760 MAY 22 1300 36500 10.5 750 01 0830 30900 22.5 760 MAY 22 1300 36500 10.5 750 01 0830 30900 22.5 760 MAY 22 1300 36500 10.5 750 01 0830 30900 22.5 760 MAY 22 1300 36500 10.5 750 01 0830 30900 22.5 760 MAY 22 1300 36500 10.5 750 01 0830 30900 22.5 760 MAY 22 1300 36500 10.5 750 01 0830 30900 22.5 760 MAY 22 1300 36500 10.5 7550 01 0830 30900 22.5 760 MAY 22 1300 36500 10.5 7550 01 0830 30900 22.5 760 MAY 22 1300 36500 10.5 7550 01 0830 30900 22.5 760 MAY 22 1300 36500 10.5 7550 01 0830 30900 22.5 760 MAY 22 1300 36500 10.5 7550 01 0830 30900 22.5 760 MAY 22 1300 3 | 27 | 1245 | 37800 | 9.0 | 780 | | 1300 | 38200 | 20.0 | 740 | | 09 1330 40700 7.5 660 09 1345 36200 23.0 770 17 1215 25600 6.0 710 13 1435 35200 20.0 745 22 1145 20300 4.5 730 20 1115 32100 22.0 780 30 1245 19100 2.0 780 23 0930 35000 21.0 775 DEC | NOA | | | | | | | | | | | 17 | 02 | | | 8.0 | | 01 | | | | | | 22 1145 20300 | 09 | 1330 | | | | 09 | 1345 | | | | | 30 | 27 | | | | | 13 | | | | | | DEC 07 0945 20500 1.5 790 JUL 15 1310 17500 1.0 790 03 1330 38200 27.5 760 20 1415 18600 0.0 790 06 1300 34300 26.0 760 JAN 1989 05 1200 17800 0.0 850 17 1230 34600 25.0 690 05 1315 18800 1.5 840 21 0930 40100 24.0 740 27 0900 22000 2.0 730 25 1315 35400 26.0 780 31 1715 23700 2.5 760 AUG FEB 13 1515 23600 0.0 740 04 1200 36700 26.0 770 13 1515 23600 0.0 740 04 1200 35000 27.0 780 APR 09 1100 28100 12.0 700 15 1200 31800 25.0 820 APR 03 1300 34300 9.0 670 23 1200 31800 25.0 820 07 1300 35200 10.0 690 29 0900 34100 23.0 775 12 1300 35200 10.0 690 29 0900 34100 23.0 775 12 1300 35000 10.5 750 01 0830 30900 22.5 760 28 1320 40500 20.0 740 12 1130 38700 18.0 600 28 1320 40500 20.0 740 12 1130 38700 18.0 660 AMY 02 1100 36500 15.0 735 25 1430 33500 18.0 760 AMY 02 1100 36500 15.0 735 25 1430 33500 18.0 760 AMY 02 1100 36500 15.0 735 25 1430 32700 16.0 800 | 30 | | | | | 20 | | | | | | 07 0945 20500 1.5 790 JUL 15 1310 17500 1.0 790 03 1330 38200 27.5 760 20 1415 18600 0.0 790 06 1300 34300 26.0 760 JAN 1989 05 1200 17800 0.0 850 17 1230 34600 25.0 810 17 1315 18800 1.5 840 21 0930 40100 24.0 740 27 0900 22000 2.0 730 25 1315 35400 26.0 780 31 1715 23700 2.5 760 AUG FEB 13 1515 23600 0.0 740 04 1200 35000 27.0 780 MAR 29 1100 28100 12.0 700 15 1200 31800 25.0 820 APR 03 1300 34300 9.0 670 23 1300 31700 26.0 770 03 1300 35200 10.0 690 29 0900 34100 23.0 775 12 1300 35300 8.0 730 SEP 18 1400 35000 10.5 750 01 0830 30900 22.5 760 MAY 29 1100 36500 19.0 740 12 1130 38700 18.0 640 28 1320 40500 20.0 740 12 1130 38700 18.0 640 MAY 20 1430 33500 18.0 760 MAY 20 1430 33500 18.0 760 MAY 20 1430 33500 18.0 760 MAY 20 1430 33500 16.0 680 | DEC | 1243 | 19100 | 2.0 | 700 | 28 | | | | | | 15 1310 17500 1.0 790 03 1330 38200 27.5 760 20 1415 18600 0.0 790 06 1300 34300 26.0 760 JAN 1989 12 09900 31900 25.0 690 05 1200 17800 0.0 850 17 1233 34600 25.0 810 17 1315 18800 1.5 840 21 0930 40100 24.0 740 27 0900 22000 2.0 730 25 1315 35400 26.0 780 31 1715 23700 2.5 760 AUG FEB 13 1515 23600 0.0 740 04 1200 36700 26.0 770 131 1515 23600 0.0 740 04 1200 35000 27.0 780 MAR 09 1130 33300 26.0 770 29 1100 28100 12.0 700 15 1200 31800 25.0 820 APR 1300 34300 9.0 670 23 1200 31700 26.0 770 03 1300 35200 10.0 690 29 0900 34100 23.0 775 12 1300 35300 8.0 730 SEP 18 1400 35000 10.5 750 01 0830 30900 22.5 760 MAY 20 1320 40500 20.0 740 12 1130 38700 18.0 640 28 1320 40500 20.0 740 12 1130 38700 18.0 640 28 1320 40500 20.0 740 15 1610 34700 18.0 760 MAY 20 1430 33500 22.0 775 12 1100 36500 15.0 735 25 1430 32700 16.0 800 | 07 | 0945 | 20500 | 1.5 | 790 | | 2500 | 00.00 | | *** | | JAN 1989 05 1200 17800 0.0 850 17 1230 34600 25.0 810 17 1315 18800 1.5 840 21 0930 40100 24.0 740 27 0900 22000 2.0 730 25 1315 35400 26.0 780 31 1715 23700 2.5 760 AUG FEB 13 1515 23600 0.0 740 04 1200 35000 27.0 780 MAR 29 1100 28100 12.0 700 15 1200 31800 25.0 820 APR 03 1300 34300 9.0 670 23 1200 31700 26.0 770 03 1300 35200 10.0 690 29 0900 34100 23.0 775 12 1300 35300 8.0 730 SEP 18 1400 35000 10.5 750 01 0830 30900 22.5 760 28 1320 40500 20.0 740 12 1130 38700 18.0 640 28 1320 40500 20.0 740 15 1610 34700 18.0 760 MAY 02 1100 36500 15.0 735 25 1430 33500 22.0 755 | 15 | 1310 | 17500 | | | | 1330 | 38200 | 27.5 | | | 05 1200 17800 0.0 850 17 1230 34600 25.0 810 17 1315 18800 1.5 840 21 0930 40100 24.0 740 27 0900 22000 2.0 730 25 1315 35400 26.0 780 31 1715 23700 2.5 760 AUG 770 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 780 | 20 | 1415 | 18600 | 0.0 | 790 | 06 <i>.</i> | | | | | | 17 1315 18800 1.5 840 21 0930 40100 24.0 740 27 0900 22000 2.0 730 25 1315 35400 26.0 780 31 1715 23700 2.5 760 AUG FEB 01 1515 23600 0.0 740 04 1200 35000 27.0 780 MAR 09 1130 33300 26.0 770 29 1100 28100 12.0 700 15 1200 31800 25.0 820 APR 18 1200 31700 26.0 770 20 1300 35200 10.0 690 29 0900 34100 23.0 775 12 1300 35300 8.0 730 SEP 18 1400 35000 10.5 750 01 0830 30900 22.5 760 28 1430 35100 18.0 640 28 1320 40500 20.0 740 15 1610 34700 18.0 640 28 1320 40500 20.0 740 15 1610 34700 18.0 760 MAY 20 1430 33500 15.0 760 MAY | | | | | | 12 | | | | | | 27 0900 22000 2.0 730 25 1315 35400 26.0 780 31 1715 23700 2.5 760 AUG FEB | | | | | | 17 | | | | | | 31 1715 23700 2.5 760 AUG FEB 13 1515 23600 0.0 740 04 1200 35000 27.0 780 MAR 29 1100 28100 12.0 700 15 1200 31800 25.0 820 APR 03 1300 34300 9.0 670 23 1200 31700 26.0 770 03 1300 35200 10.0 690 29 0900 34100 23.0 760 07. 1300 35200 10.0 690 29 0900 34100 23.0 775 12 1300 35300 8.0 730 SEP 18 1400 35000 10.5 750 01 0830 30900 22.5 760 25 1050 35100 19.0 740 12 1130 38700 18.0 640 28 1320 40500 20.0 740 15 1610 34700 18.0 760 MAY 02 1100 36500 15.0 735 25 1430 33500 22.0 775 | 17 | | | | | 21 | | | | | | FEB 13 1515 23600 0.0 740 04 1200 36700 26.0 770 MAR 09 1130 33300 26.0 770 1130 33300 26.0 770 1130 33300 26.0 770 1130 33300 26.0 770 1130 33300 26.0 770 1130 33300 26.0 770 1130 3500 1130 34300 9.0 670 23 1230 31700 26.0 770 18 1200 31700 26.0 770 18 1200 31700 26.0 770 18 1200 31700 26.0 770 18 1200 31700 26.0 760 18 1200 31700 26.0 760 18 1200 35300 8.0 730 SEP 18 1400 35000 10.5 750 01 0830 30900 22.5 760 25 1050 35100 19.0 740 12 1130 38700 18.0 640 28 1320 40500 20.0 740 15 1610 34700 18.0 760 MAY 20 1100 36500 15.0 735 25 1430 33500 22.0 755 | 31 | | | 2.0 | | | 1313 | 33400 | 20.0 | 760 | | MAR | FEB | 1,13 | 23700 | 2,5 | 700 | | 1200 | 36700 | 26.0 | 770 | | MAR APR 1100 28100 12.0 700 15 1200 31800 25.0 820 APR 03 1300 34300 9.0 670 23 1200 31700 26.0 770 07 1300 35200 10.0 690 29 0900 34100 23.0 775 12 1300 35300 8.0 730 SEP 18 1400 35000 10.5 750 01 0830 30900 22.5 760 25 1050 35100 19.0 740 12 1130 38700 18.0 640 28 1320 40500 20.0 740 15 1610 34700 18.0 760 MAY 02 1100 36500 15.0 735 25 1430 33500 22.0 775 | 13 | 1515 | 23600 | 0.0 | 740 | 04 | | | | | | APR 03 1300 34300 9.0 670 23 1230 31700 26.0 770 07 1300 35200 10.0 690 29 0900 34100 23.0 765 12 1300 35300 8.0 730 SEP 18 1400 35000 10.5 750 01 0830 30900 22.5 760 25 1050 35100 19.0 740 12 1130 38700 18.0 640 28 1320 40500 20.0 740 15 1610 34700 18.0 760 MAY 02 1100 36500 15.0 735 25 1430 32700 16.0 800 | MAR | | | | | 09 | 1130 | 33300 | | | | 03 1300 34300 9.0 670 23 1230 35700 26.0 760 07 1300 35200 10.0 690 29 0900 34100 23.0 775 12 1300 35300 8.0 730 SEP 18 1400 35000 10.5 750 01 0830 30900 22.5 760 25 1050 35100 19.0 740 12 1130 38700 18.0 640 28 1320 40500 20.0 740 15 1610 34700 18.0 760 MAY 20 1430 33500 22.0 775 02 1100 36500 15.0 735 25 1430 32700 16.0 800 | 29 | 1100 | 28100 | 12.0 | 700 | 15 | | | | | | 07 1300 35200 10.0 690 29 0900 34100 23.0 775 12 1300 35300 8.0 730 SEP 18 1400 35000 10.5 750 01 0830 30900 22.5 760 25 1050 35100 19.0 740 12 1130 38700 18.0 640 28 1320 40500 20.0 740 15 1610 34700 18.0 760 MAY 20 1430 33500 22.0 775 02 1100 36500 15.0 735 25 1430 32700 16.0 800 | | | | | | 18 | 1200 | | | | | 12 1300 35300 8.0 730 SEP 18 1400 35000 10.5 750 01 0830 30900 22.5 760 25 1050 35100 19.0 740 12 1130 38700 18.0 640 28 1320 40500 20.0 740 15 1610 34700 18.0 760 MAY 20 1430 33500 22.0 775 02 1100 36500 15.0 735 25 1430 32700 16.0 800 | | | | | | 23 | | | | | | 18 1400 35000 10.5 750 01 0830 30900 22.5 760 25 1050 35100 19.0 740 12 1130 38700 18.0 640 28 1320 40500 20.0 740 15 1610 34700 18.0 760 MAY 20 1430 33500 22.0 775 02 1100 36500 15.0 735 25 1430 32700 16.0 800 | | | | | | | 0900 | 34100 | 23.0 | //5 | | 25 1050 35100 19.0 740 12 1130 38700 18.0 640 28 1320 40500 20.0 740 15 1610 34700 18.0 760 MAY 20 1430 33500 22.0 775 02 1430 36500 15.0 735 25 1430 32700 16.0 800 | 12 | | | | | | 0030 | 30000 | 22.5 | 760 | | 28 1320 40500 20.0 740 15 1610 34700 18.0 760<br>MAY 20 1430 33500 22.0 775<br>02 1100 36500 15.0 735 25 1430 32700 16.0 800 | | | | | | 01 | | | | | | MAY 20 1430 33500 22.0 775 02 1430 36500 15.0 735 25 1430 32700 16.0 800 | 23 | | | | | 12 | | | | | | 02 1100 36500 15.0 735 25 1430 32700 16.0 800 | MAŸ | 1320 | 40200 | 20.0 | 740 | | | | | | | 29 1030 32800 17.0 800 | | 1100 | 36500 | 15.0 | 735 | | | | | | | | | | | 22.0 | | 29 | | | | | # 06807000 MISSOURI RIVER AT NEBRASKA CITY, NE--Continued WATER-QUALITY RECORDS PARTICLE-SIZE DISTRIBUTION OF SUSPENDED SEDIMENT, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | TIME | SAMPLE<br>LOC-<br>ATION,<br>CROSS<br>SECTION<br>(FT FM<br>L BANK)<br>(00009) | DEPTH<br>AT<br>SAMPLE<br>LOC-<br>ATION,<br>TOTAL<br>(FEET)<br>(81903) | SAM-<br>PLING<br>DEPTH<br>(FEET)<br>(00003) | STREAM<br>VELOC-<br>ITY,<br>POINT<br>(FPS)<br>(81904) | SEDI-<br>MENT,<br>SUS-<br>PENDED<br>(MG/L)<br>(80154) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>Z FINER<br>THAN<br>.004 MM<br>(70338) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>Z FINER<br>THAN<br>.062 MM<br>(70342) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>Z FINER<br>THAN<br>.125 MM<br>(70343) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>Z FINER<br>THAN<br>.250 MM<br>(70344) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>Z FINER<br>THAN<br>.500 MM<br>(70345) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>Z FINER<br>THAN<br>1.00 MM<br>(70346) | |------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------| | OCT 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 | WATER<br>1040<br>1043<br>1045<br>1055<br>1100<br>1115<br>1118<br>1125<br>1135<br>1135<br>1145<br>1159<br>1200<br>1223<br>1223<br>1223<br>1223<br>1233<br>1235<br>1230<br>1235<br>1230<br>1235<br>1230<br>1235<br>1230<br>1235<br>1230<br>1235<br>1230<br>1235<br>1230<br>1235<br>1230<br>1235<br>1230<br>1235<br>1230<br>1235<br>1235<br>1236<br>1236<br>1236<br>1236<br>1236<br>1236<br>1236<br>1236 | TEMPERATU 555.0 555.0 555.0 555.0 555.0 165 165 165 1655 1655 1655 1655 1655 1 | 12.4 | C (1040-<br>3.80<br>8.30<br>11.9<br>13.8<br>14.9<br>15.6<br>2.80<br>6.10<br>8.70<br>10.7<br>11.0<br>3.00<br>6.40<br>9.10<br>11.5<br>12.0<br>3.10<br>6.60<br>9.40<br>11.0<br>11.0<br>11.0<br>11.0<br>11.0<br>11.0<br>11.0<br>1 | 1320); 24<br>4.59<br>4.37<br>3.507<br>2.53<br>6.00<br>5.45<br>4.91<br>6.32<br>4.26<br>4.15<br>4.26<br>4.37<br>4.04<br>4.15<br>3.72<br>2.63<br>2.53<br>2.53<br>2.53<br>2.53 | ISCHARGE, 169 178 201 225 256 183 393 599 656 478 715 607 220 282 349 488 2179 169 183 182 189 190 174 | 8 | 80<br>72<br>73<br>62<br>57<br>47<br>69<br>53<br>36<br>25<br>20<br>28<br>25<br>20<br>28<br>25<br>27<br>44<br>44<br>34<br>34<br>35<br>91<br>91<br>91<br>93 | 93<br>83<br>73<br>760<br>856<br>652<br>338<br>44 | 100<br>100<br>100<br>98<br>97<br>94<br>100<br>100<br>99<br>98<br>99<br>98<br>99<br>97<br>97<br>97<br>97<br>97<br>91<br>100<br>100<br>100<br>100 | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 | | | DATE | TIME | SAMPLE<br>LOC-<br>ATION,<br>CROSS<br>SECTION<br>(FT FM<br>L BANK)<br>(00009) | DEPTH<br>AT<br>SAMPLE<br>LOC-<br>ATION,<br>TOTAL<br>(FEET)<br>(81903) | SAM-<br>PLING<br>DEPTH<br>(FEET)<br>(00003) | STREAM<br>VELOC-<br>ITY,<br>POINT<br>(FPS)<br>(81904) | SEDI-<br>MENT,<br>SUS-<br>PENDED<br>(MG/L)<br>(80154) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>7 FINER<br>THAN<br>.004 MM<br>(70338) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>Z FINER<br>THAN<br>.062 MM<br>(70342) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>7 FINER<br>THAN<br>.125 MM<br>(70343) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>Z FINER<br>THAN<br>.250 MM<br>(70344) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>7 FINER<br>THAN<br>.500 MM<br>(70345) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>7 FINER<br>THAN<br>1.00 MM<br>(70346) | | MAY 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 | WATER<br>1045<br>1050<br>11050<br>11105<br>11115<br>1133<br>11342<br>1145<br>11500<br>1206<br>1212<br>1212<br>1220<br>1230<br>1243<br>1246<br>1255<br>1310<br>1316<br>1319<br>1325<br>1328 | TEMPERATU 50.0 50.0 50.0 50.0 50.0 150.0 150 150 150 150 240 240 240 240 240 240 240 370 370 370 370 370 370 370 370 495 495 495 | 13.5<br> | * C (1045<br>280<br>8.70<br>12.4<br>14.5<br>15.7<br>16.4<br>3.80<br>8.30<br>8.30<br>13.8<br>14.9<br>13.6<br>6.60<br>9.40<br>11.0<br>11.9<br>12.4<br>3.50<br>7.50<br>7.50<br>10.7<br>12.5<br>13.5<br>14.1 | -1330; 28<br>3.729<br>3.729<br>3.188<br>2.63<br>5.350<br>4.268<br>3.18<br>5.355<br>4.268<br>3.18<br>5.355<br>4.268<br>3.18<br> | ISCHARGE, | 36,500 f | 213/s. 76 622 55 49 43 33 62 47 44 27 20 35 83 14 63 57 51 41 39 33 83 83 87 72 69 78 | 91<br>73<br>662<br>553<br>74<br>64<br>546<br>42<br>330<br>50<br><br><br>77<br>65<br>65<br>52<br>45<br>95<br>96<br>84<br>79<br>89 | 100<br>97<br>96<br>94<br>89<br>78<br>99<br>98<br>97<br>97<br>97<br>97<br>97<br>98<br>95<br>88<br>78<br>99<br>99<br>99<br>99<br>98<br>95<br>86<br>88<br>78<br>99 | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 | | # 06807000 MISSOURI RIVER AT NEBRASKA CITY, NE--Continued WATER-QUALITY RECORDS PARTICLE-SIZE DISTRIBUTION OF SUSPENDED SEDIMENT, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | | PARTICLE-SIZE | DISTRIBUTION | OF SUSPENDE | SEDIMENT, | WATER YEAR | OCTOBER 1988 | TO SEPTEMB | ER 1989 | | |------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | DATE | SAMPLE LOC- ATION CROSS SECTIO TIME (FT FM L BANK (00009 | AT , SAMPLE LOC- N ATION, TOTAL ) (FEET) | SAM- VEI<br>PLING IT<br>DEPTH POI<br>(FEET) (FI | REAM SEDI<br>LOC- MENT<br>Y, SUS-<br>INT PENDI<br>PS) (MG/1<br>904) (8015 | DIAM. FINER THAN DOWN | SUSP. S<br>FALL F<br>DIAM. D<br>% FINER % F<br>THAN T<br>.062 MM .12 | USP. SUFALL FA | IAN THA<br>MM .500 | SP. SUSP. LL FALL AM. DIAM. NER 7 FINER AN THAN MM 1.00 MM | | JUN 13 | WATER TEMPERA 1020 50.0 1032 50.0 1038 50.0 1044 50.0 1050 50.0 1115 155 1118 155 1121 155 1124 155 1127 155 1130 155 1135 270 1158 270 1158 270 1158 270 1212 270 1212 270 1212 270 1212 270 1212 270 1212 270 1212 270 1212 380 1245 380 1245 380 1245 380 1245 380 1245 380 1245 380 1255 380 1245 380 1255 380 1245 380 1255 380 1245 380 1255 380 1255 380 1255 380 1255 380 1255 380 1255 380 1255 380 1255 380 1255 380 1255 380 1255 380 1255 380 1255 380 1255 380 1255 380 1255 380 1255 380 1255 380 1255 380 1255 380 1255 380 1255 380 1255 380 1255 380 1255 380 1255 380 1255 380 1255 380 1255 380 1255 380 1255 380 1255 380 1255 380 1255 380 | | 14.2<br>15.3<br>16.0<br>7.30<br>10.4<br>12.2<br>13.1<br>13.7<br>7.20<br>10.3<br>12.0<br>13.6<br>13.6<br>7.00<br>11.7<br>12.2<br>13.1<br>13.7<br>7.20<br>10.3<br>12.0<br>13.6<br>13.6<br>13.6<br>13.6<br>14.6<br>15.6<br>16.6<br>17.0<br>18.1<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6 | 3.28 1.5<br>3.07 2.63 4.1<br>5.56 2.1<br>5.56 2.1<br>5.56 2.1<br>5.50 5.0<br>5.50 5.0<br>5.50 5.0<br>5.50 5.0<br>5.50 5.0<br>5.50 5.0<br>5.50 5.0<br>6.50 5.0<br>6.50 6.1<br>6.50 6.1<br>6 | 35, 200 s 516 516 517 518 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 519 | 88 88 83 79 74 64 30 83 651 43 315 222 47 35 51 82 71 652 53 41 73 991 992 991 857 891 | 922344314425397-1213223878754 | 98<br>96<br>99<br>99<br>98<br>99<br>98<br>99<br>93<br>91<br>93<br>97<br><br><br><br>98<br>83<br>97<br>100<br>100<br>100<br>100<br>100<br>100 | 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 | | DATE | LO<br>A'<br>SE<br>SE<br>TIME (F<br>L ] | MPLE DEPTH OC- AT IION, SAMPLE ROSS LOC- CITION ATION, I FM TOTAL BANK) (FEET) 0009) (81903 | SAM-<br>PLING<br>DEPTH<br>(FEET) | VELOC- NITY, SPOINT (FPS) | SEDI - SUS<br>SEDI - FAI<br>MENT , DI/<br>SUS - % FII<br>PENDED TH/<br>(MG/L) .004<br>30154) (7033 | SP. SUSP.<br>LL FALL<br>AM. DIAM.<br>NER % FINER<br>AN THAN<br>MM .062 MM | THAN<br>.125 MM | THAN . 250 MM . | SED.<br>SUSP.<br>FALL<br>DIAM.<br>FINER<br>THAN<br>.500 MM<br>(70345) | | JUL 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 | 1048 1: 1052 1: 1056 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1: 1105 1 | PERATURE, 26 35 35 35 35 35 35 35 35 35 35 35 35 35 | - 12.1<br>- 14.2<br>- 15.3<br>- 16.0<br>- 3.10<br>- 6.70<br>- 11.2<br>- 12.1<br>- 12.6<br>- 9.30<br>- 10.8<br>- 11.7<br>- 12.2<br>- 3.000<br>- 9.30<br>- 10.8<br>- 11.7<br>- 12.2<br>- 3.000<br>- 10.8<br>- 11.7<br>- 12.2<br>- 3.000<br>- 10.8<br>- 11.7<br>- 12.2<br>- 12.1<br>- 13.00<br>- 10.8<br>- 11.7<br>- 12.2<br>- 10.8<br>- 11.7<br>- 12.2<br>- 12.1<br>- 13.00<br>- 10.8<br>- 11.7<br>- 12.2<br>- 13.00<br>- 10.8<br>- 11.7<br>- 12.2<br>- 15.0<br>- 10.8<br>- 11.7<br>- 12.2<br>- 15.0<br>- 10.8<br>- 11.7<br>- 12.2<br>- 15.0<br>- 10.8<br>- 11.7<br>- 12.2<br>- 15.0<br>- 12.1<br>- 15.3 | -1335);7 4.37;37 3.81;37 3.828 2.68 5.456 4.546 4.546 4.529 4.007 3.63 4.877 3.238 3.18 3.460 3.289 2.653 | SCHARGE, 35, 144 149 150 164 171 205 159 219 212 404 441 398 274 198 198 399 514 232 7324 3311 394 337 261 152 173 141 169 167 168 | 400 ft <sup>3</sup> /s | 9899549838755645-87665299998749 | 100<br>100<br>100<br>100<br>100<br>100<br>93<br>100<br>100<br>99<br>98<br>99<br>100<br> | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 | # 06807000 MISSOURI RIVER AT NEBRASKA CITY, NE--Continued WATER-QUALITY RECORDS PARTICLE-SIZE DISTRIBUTION OF SUSPENDED SEDIMENT, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | TIME | SAMPLE<br>LOC-<br>ATION,<br>CROSS<br>SECTION<br>(FT FM<br>L BANK)<br>(00009) | DEPTH<br>AT<br>SAMPLE<br>LOC-<br>ATION,<br>TOTAL<br>(FEET)<br>(81903) | SAM-<br>PLING<br>DEPTH<br>(FEET)<br>(00003) | STREAM<br>VELOC-<br>ITY,<br>POINT<br>(FPS)<br>(81904) | SEDI-<br>MENT,<br>SUS-<br>PENDED<br>(MG/L)<br>(80154) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>Z FINER<br>THAN<br>.004 MM<br>(70338) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>Z FINER<br>THAN<br>.062 MM<br>(70342) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>Z FINER<br>THAN<br>.125 MM<br>(70343) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>Z FINER<br>THAN<br>.250 MM<br>(70344) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>Z FINER<br>THAN<br>.500 MM<br>(70345) | |----------|--------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------| | SEP | | | | | | | | | | | | | 12 | WATER | TEMPERATU | RE, 18.0° | C (1115 | -1355): | DISCHARGE | . 38,700 | ft <sup>3</sup> /s. | | | | | 12 | 1115 | 150 | 18.0 | 4.20 | 4.91 | 397 | · · | 91 | 97 | 100 | | | 12 | 1119 | 150 | | 4.20<br>9.00 | 4.91 | 438 | | 86 | 96 | 100 | | | 12 | 1123 | 150 | | 12.9 | 4.70 | 493 | | 80 | 88 | 97 | 100 | | 12 | 1127 | 150 | | 15.0 | 3.94 | 475 | | 80 | 88 | 99 | 100 | | 12 | 1131 | 150 | | 16.2 | 3.50 | 511 | | 74 | 82 | 96 | 100 | | 12 | 1135 | 150 | | 17.0 | 3.28 | 625 | | 63 | 73 | 93 | 100 | | 12 | 1140 | 150 | | | | 444 | | 84 | 92 | 98 | 100 | | 12 | 1150 | 240 | 16.4 | 3.80 | 4.91 | 581 | | 70 | 79 | 98 | 100 | | 12 | 1154 | 240 | | 8.20 | 4.59 | 686 | | 62 | 73 | 98 | 100 | | 12<br>12 | 1158<br>1202 | 240 | | 11.7<br>13.7 | 4.37 | 659 | | 63<br>56 | 74<br>68 | 98<br>95 | 100 | | 12 | 1202 | 240<br>240 | | 14.8 | 3.83 | 751<br>787 | | 54 | 64 | 95 | 100<br>100 | | 12 | 1210 | 240 | | 15.4 | 3.83 | 807 | | 51 | 61 | 94 | 100 | | 12 | 1215 | 240 | | 13.4 | 3.63 | 636 | | 63 | 74 | 97 | 100 | | 12 | 1219 | 360 | | 7.20 | 5.24 | 230 | | | | | 100 | | 12 | 1220 | 360 | | 7.20 | 3.24 | 882 | 26 | 52 | | | | | 12 | 1225 | 360 | 14.4 | 3.30 | 5.45 | | | | | | | | 12 | 1234 | 360 | ***** | 10.3 | 4.91 | | | | | | | | 12 | 1238 | 360 | | 12.0 | 4.48 | | | | | | | | 12. | 1242 | 360 | | 13.0 | 4.04 | | | | | | | | 12 | 1248 | 360 | | 13.6 | 3,72 | | | | | | | | 12 | 1250 | 360 | | | | 682 | | 64 | 71 | 95 | 100 | | 12 | 1300 | 470 | 13.6 | 3.10 | 5.02 | 574 | | 81 | 85 | 100 | | | 12 | 1303 | 470 | | 6.80 | 4.48 | 590 | | 77 | 82 | 100 | | | 12 | 1306 | 470 | | 9.70 | 4.15 | 778 | | 60 | 66 | 99 | 100 | | 12 | 1309 | 470 | | 11.3 | 4.04 | 887 | | 53 | 58 | 96 | 100 | | 12 | 1312 | 470 | | 12.2<br>12.8 | 2.96 | 1110 | | 44 | 49 | 92 | 100 | | 12 | 1315 | 470 | | | 2.85 | 717 | | 66 | 72 | 98 | 100 | | 12<br>12 | 1320 | 470 | 1, 0 | | | 822 | | 55 | 60 | 97 | 100 | | 12 | 1330 | 600 | 14.2 | 3.30 | 4.15 | 471 | | 94<br>92 | 98 | 99 | 100<br>100 | | 12<br>12 | 1334<br>1338 | 600<br>600 | | 7.10 | 3.83<br>3.61 | 511<br>488 | | 92<br>94 | 96<br>98 | 99<br>100 | 100 | | 12 | 1342 | 600 | | 10.1<br>11.3 | 3.09 | 488<br>494 | | 93 | 97 | 100 | | | 12 | 1342 | 600 | | 12.8 | 2.74 | 493 | | 93<br>91 | 97<br>95 | 100 | | | 12 | 1350 | 600 | | 13.4 | 2.74 | 493<br>517 | | 88 | 92 | 99 | 100 | | 12 | 1355 | 600 | | 13.4 | 2.03 | 475 | | 93 | 97 | 99 | 100 | | | 1000 | 000 | | | | 7,3 | | 33 | 3, | 33 | | PARTICLE-SIZE DISTRIBUTION OF SURFACE BED MATERIAL, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DAT | ΓE | TIME | NUMBER<br>OF<br>SAM-<br>PLING<br>POINTS<br>(COUNT)<br>(00063) | BED<br>MAT.<br>SIEVE<br>DIAM.<br>Z FINER<br>THAN<br>.062 MM<br>(80164) | BED<br>MAT.<br>SIEVE<br>DIAM.<br>Z FINER<br>THAN<br>.125 MM<br>(80165) | BED<br>MAT.<br>SIEVE<br>DIAM.<br>Z FINER<br>THAN<br>.250 MM<br>(80166) | BED<br>MAT.<br>SIEVE<br>DIAM.<br>Z FINER<br>THAN<br>.500 MM<br>(80167) | BED<br>MAT.<br>SIEVE<br>DIAM.<br>Z FINER<br>THAN<br>1.00 MM<br>(80168) | BED<br>MAT.<br>SIEVE<br>DIAM.<br>7 FINER<br>THAN<br>2.00 MM<br>(80169) | BED<br>MAT.<br>SIEVE<br>DIAM.<br>Z FINER<br>THAN<br>4.00 MM<br>(80170) | BED<br>MAT.<br>SIEVE<br>DIAM.<br>Z FINER<br>THAN<br>8.00 MM<br>(80171) | |------------------|----|------|---------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------| | OCT<br>03 | | 1215 | 5 | 0 | 2 | 27 | 55 | 73 | 89 | 97 | 100 | | MAY | | 1213 | , | Ū | 2 | 2, | 55 | , , | 00 | 0, | 100 | | 02<br>JUN | | 1400 | 5 | 0 | 1 | 21 | 57 | 77 | 89 | 97 | 100 | | 13 | | 1400 | 5 | | 0 | 24 | 54 | 78 | 92 | 98 | 100 | | JUL<br>25<br>SEP | | 1400 | 5 | | 0 | 14 | 46 | 68 | 86 | 96 | 100 | | 12 | | 1425 | 5 | | 0 | 12 | 45 | 72 | 88 | 97 | 100 | | | | | | | | | | | | | | # 06807410 WEST NISHNABOTNA RIVER AT HANCOCK, IA LOCATION.--Lat 41°23'24", long 95°22'17", in NW1/4 NE1/4 sec.18, T.76 N., R.39 W., Pottawattamie County, Hydrologic Unit 10240002, on right bank at upstream side of bridge on county highway G30, 0.6 mi west of Hancock school, 3.0 mi downstream from Jim Creek, 59.6 mi upstream from confluence with East Nishnabotna River, and at mile 75.1 mi upstream from mouth of Nishnabotna River. DRAINAGE AREA. -- 609 mi2. PERIOD OF RECORD. -- October 1959 to current year. GAGE.--Water-stage encoder. Datum of gage is 1,085.83 ft above NGVD. Prior to Sept. 15, 1980, on downstream end of right pier at same datum. REMARKS.--Estimated daily discharges: Nov. 28 to Jan. 29, Feb. 2 to Mar. 9, 19-21, and May 28. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain-gage and satellite data collection platform at station. AVERAGE DISCHARGE.--30 years, 295 $ft^3/s$ , 6.58 in/yr, 213,700 acre-ft/yr; median of yearly mean discharges, 240 $ft^3/s$ , 5.4 in/yr, 174,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 26,400 ft<sup>3</sup>/s Sept. 13, 1972, gage height, 22.12 ft; minimum daily discharge, 2.2 ft<sup>3</sup>/s Feb. 8, 9, 1971. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 4,000 ft3/s and maximum (\*): | | | Discharge | Gage height | | | Discharge | Gage height | |---------|------|----------------------|-------------|---------|------|----------------------|-------------| | Date | Time | (ft <sup>3</sup> /s) | (ft) | Date | Time | (ft <sup>3</sup> /s) | (ft) | | June 26 | 1600 | 5,270 | 9.95 | Sept. 8 | 2315 | *17,600 | *19.44 | Minimum daily discharge, 30 ft3/s Feb.5. | | | DISCHARG | E, CUBIC | FEET PER | SECOND, | WATER YEAR<br>EAN VALUES | OCTOBER | 1988 TO | SEPTEMBER | 1989 | | | |-------|------------|----------|----------|------------|---------|--------------------------|------------|---------|------------|------|------|-------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 132 | 52 | 54 | 60 | 208 | 57 | 73 | 54 | 91 | 204 | 112 | 55 | | 2 | 99 | 52 | 58 | 47 | 80 | 57 | 73<br>72 | 53 | 72 | 226 | 84 | 50 | | 3 | 86 | 53 | 64 | 43 | 45 | 58 | 71 | 51 | 715 | 163 | 76 | 47 | | 4 | 76 | 54 | 54 | | | 66 | 67 | 49 | 345 | 142 | 71 | 1150 | | | | | | 47 | 40 | | | | | | | | | 5 | 72 | 51 | 46 | 50 | 30 | 60 | 66 | 48 | 107 | 130 | 66 | 455 | | 6 | <b>6</b> 9 | 50 | 60 | 52 | 38 | 58 | 65 | 46 | 78 | 122 | 58 | 205 | | 7 | 68 | 51 | 54 | 6 <b>5</b> | 45 | 80 | 64 | 46 | 160 | 116 | 59 | 515 | | 8 | 66 | 50 | 45 | 56 | 60 | 150 | 64 | 45 | 567 | 111 | 55 | 11700 | | 9 | 64 | 50 | 33 | 50 | 47 | 1500 | 63 | 43 | 174 | 107 | 53 | 5830 | | 10 | 62 | 50 | 43 | 55 | 40 | 1990 | 60 | 42 | 87 | 100 | 50 | 1320 | | 11 | 59 | 51 | 38 | 64 | 45 | 661 | 60 | 42 | 74 | 94 | 45 | 851 | | 12 | 57 | 63 | 36 | 60 | 50 | 327 | 60 | 42 | <b>6</b> 9 | 93 | 44 | 654 | | 13 | 58 | 72 | 42 | 52 | 60 | 205 | 59 | 40 | 79 | 89 | 44 | 557 | | 14 | 57 | 67 | 50 | 42 | 53 | 156 | 58 | 39 | 58 | 87 | 43 | 473 | | 15 | 56 | 63 | 40 | 44 | 50 | 129 | 57 | 39 | 52 | 90 | 89 | 413 | | 16 | 56 | 73 | 34 | 45 | 45 | 119 | 58 | 39 | 49 | 93 | 65 | 372 | | 17 | 53 | 78 | 37 | 47 | 44 | 103 | 58 | 38 | 46 | 90 | 53 | 338 | | 18 | 52 | 73 | 42 | 50 | 45 | 82 | 60 | 46 | 51 | 471 | 48 | 307 | | 19 | 52 | 74 | 50 | 54 | 48 | 70 | 61 | 91 | 49 | 153 | 52 | 282 | | 20 | 54 | 74 | 56 | 56 | 50 | 80 | 58 | 96 | 43 | 103 | 56 | 262 | | | | | | | | | | | | | | | | 21 | 55 | 65 | 45 | 43 | 54 | 86 | 56 | 54 | 39 | 79 | 50 | 250 | | 22 | 54 | 64 | 40 | 45 | 58 | 93 | <b>5</b> 5 | 45 | 1040 | 74 | 48 | 237 | | 23 | 51 | 72 | 60 | 50 | 50 | 90 | 54 | 42 | 722 | 72 | 77 | 218 | | 24 | 49 | 70 | 50 | 54 | 40 | 88 | 53 | 40 | 198 | 70 | 65 | 210 | | 25 | 49 | 70 | 45 | 58 | 53 | 83 | 51 | 62 | 1560 | 68 | 49 | 209 | | 26 | 49 | 73 | 40 | 55 | 80 | 82 | 49 | 51 | 2520 | 58 | 65 | 201 | | 27 | 49 | 70 | 50 | 50 | 64 | 83 | 48 | 40 | 960 | 56 | 603 | 195 | | 28 | 48 | 45 | 45 | 60 | 58 | 84 | 57 | 39 | 405 | 54 | 153 | 191 | | 29 | 48 | 60 | 47 | 78 | | 79 | 71 | 812 | 294 | 333 | 94 | 188 | | 30 | 48 | 68 | 52 | 987 | | 77 | 58 | 564 | 238 | 888 | 73 | 183 | | 31 | 50 | | 58 | 369 | | 76 | | 139 | | 168 | 62 | | | TOTAL | 1898 | 1858 | 1468 | 2888 | 1580 | 6929 | 1806 | 2877 | 10942 | 4704 | 2562 | 27918 | | MEAN | 61.2 | 61.9 | 47.4 | 93.2 | 56.4 | 224 | 60.2 | 92.8 | 365 | 152 | 82.6 | 931 | | MAX | 132 | 78 | 64 | 987 | 208 | 1990 | 73 | 812 | 2520 | 888 | 603 | 11700 | | MIN | 48 | 45 | 33 | 42 | 30 | 1990<br>57 | 73<br>48 | 38 | 39 | 54 | 43 | 47 | | AC-FT | 3760 | 3690 | 2910 | 5730 | 3130 | 13740 | 3580 | 5710 | 21700 | 9330 | 5080 | 55380 | | CFSM | .10 | | | | | .37 | | .15 | .60 | ,25 | .14 | 1.53 | | | | . 10 | .08 | .15 | .09 | | .10 | | | | . 14 | 1.71 | | IN. | . 12 | .11 | .09 | . 18 | .10 | . 42 | . 11 | .18 | . 67 | . 29 | . 10 | 1./1 | CAL YR 1988 TOTAL 46113 MEAN 126 MAX 1120 MIN 33 AC-FT 91470 CFSM .21 IN. 2.82 WTR YR 1989 TOTAL 67430 MEAN 185 MAX 11700 MIN 30 AC-FT 133700 CFSM .30 IN. 4.12 # 06808500 WEST NISHNABOTNA RIVER AT RANDOLPH, IA LOCATION.--Lat 40°52'23", long 95°34'48", in NE1/4 NE1/4 sec.17, T.70 N., R.41 W., Fremont County, Hydrologic Unit 10240002, on right bank at upstream side of bridge on State Highway 184, 0.3 mi downstream from Deer Creek, 0.5 mi west of Randolph, and 16.0 mi upstream from confluence with East Nishnabotna River, and at mile 31.5 upstream from mouth of Nishnabotna River. DRAINAGE AREA, -- 1.326 mi<sup>2</sup>. PERIOD OF RECORD. -- June 1948 to current year. REVISED RECORDS.--WSP 1440: Drainage area. WDR IA-74-1: 1973 (M). WDR IA-76-1: 1975 (P). GAGE.--Water-stage recorder. Datum of gage is 932.99 ft above NGVD, unadjusted. Prior to Aug. 26, 1955, non-recording gage with supplementary water-stage recorder operating above 8.4 ft June 30, 1949 to Aug. 25, 1955 at same site and datum. REMARKS.--Estimated daily discharges: Nov. 28, 29, Dec. 1, 2, 4, 5, Dec. 7 to Jan. 29, Feb. 2 to Mar. 9, Mar. 19, 20, and Aug. 3, 6, 12, 13, 22-26. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. National Weather Service Limited Automatic Remote Collector at station. AVERAGE DISCHARGE.--41 years, $589 \text{ ft}^3/\text{s}$ , 6.03 in/yr, 426,700 acre-ft/yr; median of yearly mean discharges, $500 \text{ ft}^3/\text{s}$ , 5.1 in/yr, 362,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 40,800 ft<sup>3</sup>/s May 26, 1987, gage height, 24.50 ft, from rating curve extended above 35,800 ft<sup>3</sup>/s; maximum gage height, 24.8 ft Mar. 5, 1949, from graph based on gage readings, backwater from ice; minimum daily discharge, 10 ft<sup>3</sup>/s Dec. 17-21, 1955. EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood in June 1947 reached a stage of about 24 ft, discharge not determined, from information by local residents. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 6,500 ft3/s and maximum (\*): | Date Tin<br>June 25 09 | s) (ft) | t<br>Date<br>Sept. S | Time<br>0100 | Discharge<br>(ft <sup>3</sup> /s)<br>*21,300 | Gage height<br>(ft)<br>*22.92 | |------------------------|---------|----------------------|--------------|----------------------------------------------|-------------------------------| | | | | | | | Minimum daily discharge, 46 ft<sup>3</sup>/s Feb. 5. | | | DISCHARGE | , CUBIC | FEET PER | SECOND, | WATER YEAR<br>EAN VALUES | OCTOBER | 1988 TO | SEPTEMBER | 1989 | | | |-------------|------------|------------|---------|-------------|---------|--------------------------|---------|-------------|-----------|-------|-------|---------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 439 | 106 | 136 | 118 | 446 | 115 | 160 | 139 | 233 | 343 | 381 | 161 | | 2 | 225 | 109 | 132 | 96 | 170 | 115 | 157 | 126 | 165 | 325 | 219 | 139 | | 2<br>3<br>4 | 169 | 111 | 146 | 85 | 90 | 119 | 153 | 122 | 200 | 304 | 166 | 157 | | | 145 | 113 | 140 | 95 | 60 | 132 | 148 | 117 | 985 | 249 | 153 | 1400 | | 5 | 133 | 113 | 135 | 100 | 46 | 121 | 144 | 113 | 468 | 222 | 139 | 2380 | | 6 | 128 | 113 | 142 | 110 | 54 | 118 | 141 | 111 | 210 | 206 | 126 | 619 | | 7 | 124 | 113 | 138 | 130 | 66 | 125 | 142 | 106 | 158 | 197 | 120 | 465 | | 8<br>9 | 118 | 112 | 122 | 110 | 75 | 145 | 143 | 100 | 2100 | 185 | 115 | 10200 | | 19 | 116 | 113 | 66 | 100 | 60 | 500 | 138 | 97 | 809 | 174 | 109 | 16200 | | 10 | 114 | 113 | 82 | 110 | 56 | 4550 | 133 | 93 | 334 | 165 | 108 | 4260 | | 11 | 109 | 113 | 78 | 130 | 61 | 1720 | 132 | 88 | 213 | 163 | 101 | 2160 | | 12 | 107 | 131 | 74 | 115 | 66 | 841 | 128 | 86 | 179 | 164 | 92 | 1610 | | 13 | 105 | 139 | 96 | 100 | 74 | 506 | 126 | 84 | 222 | 158 | 86 | 1310 | | 14 | 103 | 138 | 90 | 90 | 70 | 347 | 124 | 83 | 171 | 148 | 80 | 1100<br>955 | | 15 | 102 | 160 | 80 | 92 | 64 | 282 | 119 | 79 | 158 | 217 | 83 | 900 | | 16 | 102 | 212 | 69 | 95 | 58 | 243 | 117 | 86 | 137 | 204 | 120 | 854 | | 17 | 99 | 182 | 78 | 100 | 60 | 222 | 116 | 87 | 137 | 169 | 113 | 781 | | 18 | 96 | 170 | 90 | 105 | 63 | 191 | 122 | 99 | 131 | 422 | 89 | 718 | | 19 | 96 | 163 | 100 | 109 | 64 | 173 | 127 | 138 | 123 | 701 | 92 | 665 | | 20 | 106 | 160 | 110 | 110 | 68 | 181 | 128 | 169 | 130 | 288 | 93 | 612 | | 21 | 106 | 154 | 95 | 97 | 72 | 186 | 120 | 171 | 124 | 199 | 111 | 571 | | 22 | 106 | 154 | 84 | 87 | 75 | 175 | 116 | 131 | 852 | 168 | 160 | 525 | | 23 | 106 | 145 | 115 | 97 | 66 | 168 | 113 | 106 | 1950 | 149 | 95 | 484 | | 24 | 103 | 149 | 105 | 110 | 60 | 165 | 112 | 97 | 1030 | 146 | 90 | 451 | | 25 | 99 | 148 | 96 | 115 | 80 | 155 | 108 | 93 | 4380 | 136 | 126 | 434 | | 26 | 98 | 156 | 85 | 110 | 150 | 152 | 105 | 90 | 2610 | 129 | 118 | 426 | | 27 | 99 | 159 | 98 | 10 <b>0</b> | 130 | 150 | 109 | 117 | 2830 | 124 | 483 | 408 | | 28 | 101 | 132 | 88 | 113 | 120 | 143 | 509 | 95 | 997 | 115 | 837 | 387 | | 29 | 103 | 138 | 94 | 150 | | 139 | 140 | 131 | 534 | 109 | 399 | 373 | | 30 | 105 | 139 | 100 | 440 | | 143 | 130 | 888 | 394 | 497 | 270 | 359 | | 31 | 106 | | 113 | 990 | | 153 | | 57 <b>5</b> | | 1290 | 204 | | | TOTAL | 3868 | | 3177 | 4509 | 2524 | 12475 | 4260 | 4617 | 22964 | 8066 | 5478 | 51164<br>1705 | | MEAN | 125 | 139 | 102 | 145 | 90.1 | 402 | 142 | 149 | 765 | 260 | 177 | 1705 | | MAX | 439 | 212 | 146 | 990 | 446 | 4550 | 509 | 888 | 4380 | 1290 | 837 | 16200 | | MIN | 96 | 106 | 66 | 85 | 46 | 115 | 105 | 79 | 123 | 109 | 80 | 139 | | AC-FT | 7670 | | 6300 | 8940 | 5010 | 24740 | 8450 | 9160 | 45550 | 16000 | 10870 | 101500 | | CFSM | .09 | . 10 | .08 | .11 | .07 | .30 | .11 | . 11 | . 58 | . 20 | . 13 | 1.29 | | IN. | .09<br>.11 | .10<br>.12 | .09 | . 13 | .07 | .35 | . 12 | . 13 | . 64 | . 23 | . 15 | 1.44 | | | | | | | | | | | | | | | CAL YR 1988 TOTAL 99589 MEAN 272 MAX 1460 MIN 66 AC-FT 197500 CFSM .21 IN. 2.79 WTR YR 1989 TOTAL 127260 MEAN 349 MAX 16200 MIN 46 AC-FT 252400 CFSM .26 IN. 3.57 # 06809210 EAST NISHNABOTNA RIVER NEAR ATLANTIC, IA LOCATION.--Lat 41°20'46", long 95°04'36", in NW1/4 NW1/4 sec.35, T.76 N., R.37 W., Cass County, Hydrologic Unit 10240003, on left bank at downstream side of bridge on county highway, 1.6 mi upstream from Turkey Creek, 5.2 mi southwest of junction of U.S. Highway 6 and State Highway 83 in Atlantic, 69.1 mi upstream from confluence with West Nishnabotna River, and at mile 84.6 upstream from mouth of Nishnabotna River. DRAINAGE AREA. -- 436 mi<sup>2</sup>. PERIOD OF RECORD .-- October 1960 to current year. GAGE.--Water-stage encoder. Datum of gage is 1,105.83 ft above NGVD. Prior to Oct. 1, 1970, at site 2.2 mi upstream at datum 5.00 ft higher. REMARKS.--Estimated daily discharges: Nov. 22, 23, Nov. 26 to Jan. 30, Feb. 2 to Mar. 9, Mar. 19, 20, May 30, 31, June 2-4,12, and July 27,28. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain-gage and satellite data collection platform at station. AVERAGE DISCHARGE.-29 years, 223 $ft^3/s$ , 6.95 in/yr, 161,600 acre-ft/yr; median of yearly mean discharges, 220 $ft^3/s$ , 6.9 in/yr, 159,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 26,700 ft<sup>3</sup>/s Sept. 12, 1972, gage height, 22.81 ft; minimum daily discharge, 2.5 ft<sup>3</sup>/s July 10, 1977. EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood of July 2, 1958 reached a stage of 22.49 ft, from floodmark, discharge, 34,200 ft 3/s. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 3,000 ft3/s and maximum (\*): | | | Discharge | Gage height | | Discharge | Gage height | |---------|------|----------------------|-------------|--------------------|-------------------|-------------| | Date | Time | (ft <sup>3</sup> /s) | (ft) | Date Time | $(ft^3/s)$ | (ft) | | Sept. 8 | 1645 | *18,800 | *17.95 | No other peak abov | e base discharge. | | DISCHARGE CURIC FEET PED SECOND WATER VEAR OCTORER 1988 TO SEPTEMBER 1989 Minimum discharge, 12 ft3/s June 21, 22. | DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 1 64 25 30 27 154 25 36 37 33 131 106 22 2 44 26 27 22 50 24 35 36 31 116 82 19 3 38 26 35 19 25 25 34 33 31 1101 69 20 4 34 34 30 32 20 20 20 30 31 34 29 89 66 29 5 33 29 29 22 15 27 32 30 60 78 57 386 6 31 1 29 35 25 19 25 30 31 34 29 89 66 29 6 31 29 35 25 19 25 30 30 45 67 56 132 7 28 31 30 30 30 22 30 30 34 26 38 62 48 133 8 29 29 29 22 15 27 30 30 30 45 67 56 132 8 29 29 26 25 25 60 32 24 308 58 40 13100 9 31 28 18 22 22 1100 31 24 164 51 33 3500 10 27 27 27 22 25 18 1050 28 22 84 44 26 1270 11 25 30 21 29 20 451 29 20 451 29 20 69 44 24 665 1270 11 25 30 21 29 20 20 451 29 20 69 44 24 64 51 133 3500 10 27 27 19 26 20 451 29 20 69 44 4 24 695 112 29 24 48 12 12 29 12 100 27 20 43 32 22 30 34 26 12 12 12 14 164 151 23 25 19 12 14 164 151 23 25 19 12 14 164 151 23 25 19 12 28 18 1050 28 22 84 44 26 695 112 12 14 164 151 23 25 19 28 20 451 29 20 69 44 24 26 695 112 12 24 47 19 26 23 238 28 21 52 47 23 485 13 22 48 82 13 22 70 18 20 21 96 27 20 43 32 22 5 340 15 22 70 18 20 21 96 27 20 43 32 22 5 340 15 22 70 18 20 21 96 27 20 43 32 22 5 340 15 22 70 18 20 21 96 27 20 43 32 22 5 340 15 22 70 18 20 21 96 27 20 43 32 22 5 340 16 21 11 11 17 22 20 10 10 25 21 32 33 18 24 21 26 11 11 17 22 20 10 10 25 21 32 33 18 24 21 26 11 11 11 17 22 20 10 10 25 21 32 33 18 22 25 340 21 180 20 26 49 25 26 22 26 6 22 56 29 29 13 80 21 180 21 180 21 180 21 26 27 24 35 17 22 20 17 20 23 32 19 22 22 24 24 24 24 24 22 24 24 25 18 63 25 21 172 42 129 137 25 22 24 25 18 63 25 21 172 42 129 137 25 22 24 25 18 63 25 21 172 42 129 137 25 23 24 25 18 63 25 21 172 42 129 137 25 23 30 24 35 22 33 350 44 38 65 34 27 122 40 45 48 68 88 88 88 88 88 88 88 88 88 88 88 88 | | | DISCHARGE | , CUBIC | FEET PER | SECOND, | WATER YEAR<br>EAN VALUES | OCTOBER | 1988 TO | SEPTEMBER | 1989 | | | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|-----------|---------|----------|---------|--------------------------|---------|---------|------------|--------|------|-------| | 1 64 25 30 27 154 25 36 37 33 131 106 22 2 44 26 27 22 50 24 35 36 31 1116 82 19 3 38 26 35 19 25 25 34 33 31 101 69 20 4 34 34 30 32 20 20 30 31 34 29 89 66 299 5 33 29 29 22 15 27 32 30 60 78 57 396 6 31 29 35 25 19 25 30 30 45 67 56 132 7 28 31 30 30 22 30 34 26 38 62 48 133 8 29 29 29 26 25 25 60 32 24 308 58 40 13100 9 31 28 18 22 22 1100 31 24 164 51 33 5090 10 27 27 22 25 18 1050 28 22 84 44 26 1270 11 25 30 21 29 20 451 20 22 1100 31 24 164 51 33 5090 10 27 27 22 25 18 1050 28 22 84 44 26 1270 11 25 30 21 29 20 451 29 20 451 20 20 451 20 20 451 20 20 451 20 20 451 20 20 451 20 20 20 35 47 26 296 16 21 146 15 21 20 21 96 27 20 35 47 26 296 16 21 146 15 21 20 91 26 27 20 35 47 26 296 16 21 146 15 21 20 91 26 27 20 35 47 26 296 16 21 146 15 21 20 91 26 27 20 35 47 26 296 16 21 146 15 21 20 91 26 27 20 35 47 26 296 16 21 146 15 21 20 91 26 27 20 35 47 26 296 16 21 146 15 21 20 91 26 27 20 35 47 26 296 16 21 146 15 21 20 91 26 27 20 35 47 26 296 16 21 146 15 21 20 91 26 27 20 35 47 26 296 16 21 146 15 21 20 91 26 27 20 35 47 26 296 16 21 16 15 22 20 70 18 20 55 31 26 27 20 35 47 26 296 16 21 16 15 22 20 70 21 86 27 20 35 47 26 296 16 21 16 15 22 20 70 22 46 22 36 29 29 13 80 21 180 20 26 49 25 26 22 36 29 29 13 80 21 180 21 26 31 49 25 36 22 38 36 29 29 13 80 21 180 21 26 31 49 25 36 22 36 29 29 13 80 21 180 21 26 31 40 21 26 24 60 27 22 407 47 47 134 26 23 40 21 26 24 60 27 22 407 47 47 134 26 23 40 19 25 36 22 28 30 23 23 25 25 28 1040 30 64 128 28 23 23 40 21 26 24 25 18 63 25 21 172 42 129 137 25 23 40 21 26 24 25 18 63 25 21 172 42 129 137 25 23 40 21 26 27 20 64 26 22 342 45 48 142 26 23 40 19 25 36 27 22 46 6 6 6 77 22 407 47 47 134 26 23 40 19 25 35 50 300 48 60 30 48 60 30 48 60 30 48 80 MAX 64 146 35 30 30 154 1100 31.3 39.1 166 90.3 48.8 88 MAX 64 146 35 30 30 154 1100 31.3 39.1 166 90.3 8 21 111 1.92 CFSH 1680 2610 1440 2620 1550 8630 1860 2400 9880 5550 3000 48880 | DAY | ОСТ | NOV | DEC | TAN | | | APD | MAV | TIIN | .71117 | AUG | SEP | | 2 44 26 27 22 150 24 35 36 31 116 82 19 3 38 26 35 19 25 25 34 33 31 101 69 20 4 34 34 30 32 20 20 30 31 34 29 89 66 299 5 33 29 29 22 15 27 32 30 60 78 57 396 6 31 29 35 25 19 25 30 30 45 67 56 132 7 28 31 30 30 32 22 30 34 26 38 62 48 153 8 29 29 26 25 25 60 32 24 308 58 40 13100 9 31 28 18 22 22 1100 31 24 164 51 33 5090 10 27 27 22 25 18 105 28 22 84 44 26 6127 11 25 30 21 29 20 451 29 20 451 29 20 66 44 24 665 12 24 47 19 26 23 238 28 21 52 47 23 485 13 22 48 21 23 25 154 28 22 28 21 20 27 20 43 32 25 340 14 21 45 25 19 23 120 27 20 43 32 25 340 15 22 70 18 20 21 96 27 20 35 47 26 29 16 21 146 15 21 20 91 26 27 20 43 32 25 340 15 22 70 18 20 21 96 27 20 35 47 26 29 16 21 146 15 21 20 91 26 27 20 35 47 26 29 16 21 146 15 21 20 91 26 27 20 35 47 26 29 16 21 146 15 21 20 91 26 27 20 35 47 26 29 16 21 146 15 21 20 91 26 27 20 35 47 26 29 16 21 146 15 21 20 91 26 27 20 35 47 26 29 16 21 146 15 21 20 91 26 27 20 35 47 26 29 16 21 146 15 21 20 91 26 27 20 35 47 26 29 16 21 146 15 21 20 91 26 27 20 35 47 26 29 16 21 146 15 21 20 91 26 27 20 35 47 26 29 16 21 146 15 21 20 91 26 27 20 35 47 26 29 16 21 146 15 21 20 91 26 27 20 35 47 26 29 16 21 146 15 21 20 91 26 27 20 35 47 26 29 16 21 146 15 21 20 91 26 27 20 35 47 26 29 16 21 146 15 21 20 91 26 27 20 35 47 26 29 18 22 55 22 24 21 45 37 27 16 151 23 198 20 26 49 25 26 22 36 29 29 13 80 21 180 21 26 41 21 20 22 46 26 28 13 55 18 165 22 24 36 18 19 23 66 27 24 453 45 16 153 23 25 43 30 23 22 28 50 23 21 758 29 152 123 19 22 55 26 22 24 60 27 22 40 453 45 16 153 23 25 43 30 23 22 28 50 23 21 758 29 152 123 19 29 23 30 21 30 21 30 48 65 24 1040 30 66 129 27 24 30 23 32 22 28 50 23 21 172 42 129 137 28 23 30 23 19 25 26 53 47 31 255 29 152 130 30 26 35 23 350 41 38 50 47 11 166 90 3 48.8 838 MAX 64 146 35 350 154 1100 65 342 1040 667 152 13100 MIN 20 23 15 19 15 24 23 19 13 29 16 19 06 27 16 180 2610 1440 2620 1550 8630 1860 2400 9880 5550 300 49880 07 10 10 10 10 10 10 10 10 10 10 10 10 10 | 2111 | 901 | | DEC | UZZ | r bb | LETT | AL K | 1211 | | 502 | 2100 | 001 | | 3 38 26 35 19 25 25 34 33 31 101 69 20 4 34 34 30 32 20 20 30 31 34 32 29 89 66 299 5 33 29 29 22 15 27 32 30 60 78 57 396 6 31 29 35 25 19 25 30 30 45 67 56 132 7 28 31 30 30 30 22 30 34 26 38 62 48 153 8 29 29 26 25 25 60 32 24 308 58 40 13100 9 31 28 18 22 22 1100 31 24 164 51 33 5090 10 27 27 22 25 18 1050 28 22 84 44 26 1270 11 25 30 21 29 20 451 29 20 66 44 26 1270 11 25 30 21 29 20 451 29 20 66 44 24 695 13 22 24 7 23 485 13 22 48 21 23 238 28 22 78 40 21 400 15 22 70 18 20 21 96 27 20 35 47 26 296 16 21 14 5 25 19 23 120 27 20 43 32 25 340 15 22 70 18 20 21 96 27 20 35 47 26 296 16 21 11 11 17 22 20 70 26 11 32 33 18 241 18 20 76 19 23 20 76 21 11 11 17 22 20 70 26 21 32 33 18 241 18 20 76 19 23 20 26 49 25 52 22 24 21 45 37 27 16 151 23 198 20 26 49 25 52 22 24 21 25 26 22 56 29 29 13 80 21 180 20 21 180 20 26 49 25 52 22 24 21 20 27 24 453 32 25 18 20 26 29 29 13 80 21 180 20 26 49 25 26 22 26 22 56 29 29 13 80 21 180 22 24 24 30 23 24 24 21 45 37 27 16 151 23 188 20 26 49 25 26 22 26 22 26 22 26 22 26 22 36 22 34 45 36 151 23 188 20 26 49 25 26 22 26 22 36 22 36 22 34 45 36 18 16 15 23 28 36 18 16 27 24 453 45 16 153 23 28 23 25 24 30 25 24 36 18 19 23 20 27 22 407 47 47 47 180 20 20 26 49 25 26 22 26 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 36 22 3 | | | | | | | | | | | | | 22 | | 5 33 29 29 22 15 27 32 30 60 78 57 396 6 31 29 35 25 19 25 30 34 26 38 62 48 153 8 29 29 26 25 25 60 32 24 308 58 40 13100 9 31 28 18 22 22 1100 31 24 164 51 33 5090 10 27 27 22 25 18 1050 28 22 84 44 26 1270 11 25 30 21 29 20 451 29 20 69 44 24 695 13 22 48 21 23 238 28 21 52 47 23 485 13 22 48 | 2 | | | | | | | | 36 | | | 82 | | | 5 33 29 29 22 15 27 32 30 60 78 57 396 6 31 29 35 25 19 25 30 34 26 38 62 48 153 8 29 29 26 25 25 60 32 24 308 58 40 13100 9 31 28 18 22 22 1100 31 24 164 51 33 5090 10 27 27 22 25 18 1050 28 22 84 44 26 1270 11 25 30 21 29 20 451 29 20 69 44 24 695 13 22 48 21 23 238 28 21 52 47 23 485 13 22 48 | 3 | | | | | | | | | | 101 | | | | 6 31 29 35 25 19 25 30 30 45 67 56 132 7 28 31 30 30 32 23 30 34 26 38 62 48 133 8 29 29 28 26 25 25 60 32 24 308 58 40 13100 9 31 28 18 22 22 1100 31 24 164 51 33 5090 10 27 27 27 22 25 18 1050 28 22 84 44 26 695 11 25 30 21 29 20 451 29 20 69 44 24 665 1270 11 25 30 21 29 20 451 29 20 69 44 24 665 13 22 48 21 52 47 23 485 13 22 48 21 23 25 134 28 22 78 40 21 400 14 21 45 25 19 23 120 27 20 43 32 25 340 15 22 70 18 20 21 96 27 20 35 47 26 286 16 21 146 15 21 20 91 26 19 33 43 21 266 17 21 111 17 22 20 70 26 21 32 33 18 241 18 20 76 19 23 20 55 31 26 27 20 35 47 26 286 16 21 146 15 21 20 91 26 19 33 43 21 266 17 21 111 17 22 20 70 26 21 32 33 18 241 18 20 76 19 23 20 55 31 26 27 23 31 26 27 24 317 220 19 22 55 22 24 21 45 37 27 16 151 23 198 20 26 49 25 26 22 56 29 29 13 80 21 180 21 26 41 21 20 22 46 22 56 29 29 13 80 21 180 21 26 41 21 20 22 46 22 36 29 29 13 80 21 180 21 26 41 21 20 22 46 22 36 29 29 13 80 21 180 21 26 41 21 20 22 46 22 36 29 29 13 80 21 180 21 26 41 21 20 22 46 22 36 29 29 13 80 21 180 21 26 41 21 20 22 46 22 36 29 29 13 80 21 180 21 26 41 21 20 22 46 22 36 29 29 13 80 21 180 21 26 41 21 20 22 46 22 36 29 29 13 80 21 180 21 26 41 21 20 22 46 22 36 29 29 13 80 21 180 21 26 41 21 20 22 46 22 36 29 29 13 80 21 180 21 26 41 21 20 22 46 22 36 29 29 13 80 21 180 21 26 41 21 20 22 46 22 36 29 29 13 80 21 180 21 26 41 21 20 22 46 22 36 29 29 13 80 21 180 21 26 41 21 20 22 46 80 27 24 453 45 46 1653 23 25 43 27 22 20 64 26 22 342 45 48 142 24 22 24 22 24 25 18 63 25 21 172 42 129 137 25 23 40 21 26 24 60 27 22 407 47 47 134 26 23 30 23 22 28 50 23 28 10 40 30 64 129 27 24 30 23 22 28 50 23 28 10 40 30 64 129 28 23 30 21 30 23 22 28 50 23 28 1040 30 64 129 28 23 30 21 30 23 22 28 50 23 28 1040 82 53 114 30 26 35 23 350 41 38 105 142 667 33 110 31 26 25 286 40 47 170 27 TOTALL 848 1317 77 1320 781 4350 940 1212 4983 2798 1512 25148 MAX 64 146 35 350 154 1100 65 342 1040 667 152 13100 MIN 20 23 15 19 15 24 23 29 19 33 29 16 19 AC-FT 1680 2610 1440 2620 1550 8630 1860 2400 9880 | 4 | | | | 20 | 20 | | 31 | | | 89 | | | | 7 28 31 30 30 22 30 34 26 38 62 48 153 8 29 29 29 26 25 25 60 32 24 104 51 33 13100 9 31 28 18 22 22 1100 31 24 164 51 33 5090 10 27 27 27 22 25 18 1050 28 22 84 44 26 1270 11 25 30 21 29 20 451 29 20 69 44 24 24 695 12 24 47 19 26 23 238 28 21 52 47 23 485 13 22 48 21 23 25 154 28 22 78 40 21 400 14 21 45 25 19 23 120 27 20 43 32 25 340 15 22 70 18 20 21 96 27 20 35 47 26 286 16 21 146 15 21 20 91 26 27 20 35 47 26 286 16 21 146 15 21 20 91 26 21 32 33 43 21 266 17 21 111 17 22 20 70 26 21 32 33 18 241 18 20 76 19 23 20 55 31 26 27 20 35 47 26 286 16 21 46 15 21 20 91 26 21 32 33 18 241 18 20 76 19 23 20 55 31 26 27 20 35 47 26 286 20 26 49 25 26 22 36 22 36 29 29 13 80 21 180 21 26 41 21 20 22 46 26 28 13 55 18 23 18 241 22 24 36 18 19 23 20 55 31 26 27 243 17 220 21 26 49 25 26 22 36 22 36 29 29 13 80 21 180 21 26 41 21 20 22 46 26 28 13 55 18 165 22 24 24 24 25 18 63 25 21 20 22 46 26 28 13 55 18 165 23 25 43 27 22 20 64 26 22 342 45 48 142 24 22 24 24 24 25 18 63 25 21 172 24 21 29 137 25 23 40 21 26 24 60 27 22 407 47 47 134 26 23 40 19 25 26 24 60 27 24 453 45 48 142 24 22 42 24 25 18 63 25 21 172 24 21 29 137 25 23 40 21 26 24 60 27 22 407 47 47 134 26 23 40 19 25 35 52 25 25 28 1040 30 64 129 27 24 30 23 22 28 50 23 21 172 42 129 137 25 23 40 21 26 24 60 27 22 407 47 47 134 26 23 40 19 25 26 53 52 25 28 1040 30 64 129 27 24 30 23 22 28 50 23 21 172 42 129 137 25 23 40 19 25 26 53 47 37 76 52 13100 26 35 23 24 40 21 26 24 60 27 22 407 47 47 134 26 23 40 19 25 26 53 47 37 77 12 42 129 137 25 23 40 19 25 26 53 43 27 22 20 66 24 60 27 22 407 47 47 134 26 23 40 19 25 26 53 43 27 22 28 50 23 21 172 42 29 137 25 23 40 19 25 26 27 28 50 23 21 172 42 129 137 25 23 40 21 30 48 65 34 1040 667 152 13100 31 26 25 286 40 47 170 27 30 27 30 30 21 30 21 30 48 65 342 1040 667 152 13100 31 26 25 286 40 47 170 27 30 27 14 28 23 19 13 29 16 19 30 26 35 35 350 154 1100 65 342 1040 667 152 13100 31 26 25 286 40 47 170 27 310 27 14 65 25 13100 31 16 26 | 5 | 33 | 29 | 29 | 22 | 15 | 27 | 32 | 30 | 60 | 78 | 57 | 396 | | 10 27 27 22 25 18 1050 28 22 84 44 26 1270 11 25 30 21 29 20 451 29 20 69 44 25 47 23 485 12 24 48 21 23 25 154 28 22 78 40 21 400 14 21 45 25 19 23 120 27 20 43 32 25 340 15 22 70 18 20 21 96 27 20 43 32 25 340 16 21 146 15 21 20 91 26 19 33 43 21 26 17 21 111 17 22 20 70 26 21 32 33 18 241 18 20 76 19 23 20 55 31 26 27 24 31 72 19 22 55 22 24 21 45 37 27 16 151 23 188 20 26 49 25 26 22 36 29 29 13 80 21 180 21 26 41 21 20 22 46 26 28 13 55 18 165 22 24 36 18 19 23 61 27 24 453 45 16 153 23 25 43 27 22 20 64 26 22 36 23 188 20 26 41 21 20 22 46 26 28 13 55 18 165 22 24 36 18 19 23 61 27 24 453 45 16 153 23 25 43 27 22 20 64 26 22 342 45 48 142 24 22 42 36 18 19 23 61 27 24 453 45 16 153 23 25 43 27 22 20 64 26 22 342 45 48 142 24 22 42 24 25 18 63 25 21 172 42 199 137 25 23 40 21 26 24 60 27 22 407 47 47 134 26 23 40 19 25 35 52 28 60 27 22 407 47 47 134 26 23 40 19 25 35 52 28 60 27 22 407 47 47 134 26 23 40 19 25 35 52 28 60 27 22 407 47 47 134 26 23 40 19 25 35 52 28 20 64 26 22 342 45 48 142 27 24 22 42 24 25 18 63 25 21 172 42 129 137 25 23 40 21 26 24 60 27 22 407 47 47 134 26 23 40 19 25 35 52 28 50 23 21 172 42 129 137 25 23 40 21 26 24 60 27 22 407 47 47 134 26 23 40 19 25 35 52 28 50 23 21 172 42 129 137 25 23 40 21 26 24 60 27 22 407 47 47 134 26 23 40 19 25 35 52 28 50 23 21 758 29 152 123 28 23 23 23 19 25 26 53 47 31 255 29 123 119 27 24 30 23 23 22 28 50 23 21 758 29 152 123 28 23 23 23 19 25 26 53 47 31 255 29 123 119 30 26 35 23 350 41 38 105 142 667 33 110 31 26 35 350 154 1100 65 342 1040 667 152 13100 MIN 20 23 15 19 15 24 23 19 13 29 16 19 AC-FT 1680 2610 1440 2620 1550 8630 1860 2400 9880 5550 3000 49880 EVENT 1 1, 192 | 6 | | | | | 19 | | 30 | | | | | 132 | | 10 27 27 22 25 18 1050 28 22 84 44 26 1270 11 25 30 21 29 20 451 29 20 69 44 25 47 23 485 12 24 48 21 23 25 154 28 22 78 40 21 400 14 21 45 25 19 23 120 27 20 43 32 25 340 15 22 70 18 20 21 96 27 20 43 32 25 340 16 21 146 15 21 20 91 26 19 33 43 21 26 17 21 111 17 22 20 70 26 21 32 33 18 241 18 20 76 19 23 20 55 31 26 27 24 31 72 19 22 55 22 24 21 45 37 27 16 151 23 188 20 26 49 25 26 22 36 29 29 13 80 21 180 21 26 41 21 20 22 46 26 28 13 55 18 165 22 24 36 18 19 23 61 27 24 453 45 16 153 23 25 43 27 22 20 64 26 22 36 23 188 20 26 41 21 20 22 46 26 28 13 55 18 165 22 24 36 18 19 23 61 27 24 453 45 16 153 23 25 43 27 22 20 64 26 22 342 45 48 142 24 22 42 36 18 19 23 61 27 24 453 45 16 153 23 25 43 27 22 20 64 26 22 342 45 48 142 24 22 42 24 25 18 63 25 21 172 42 199 137 25 23 40 21 26 24 60 27 22 407 47 47 134 26 23 40 19 25 35 52 28 60 27 22 407 47 47 134 26 23 40 19 25 35 52 28 60 27 22 407 47 47 134 26 23 40 19 25 35 52 28 60 27 22 407 47 47 134 26 23 40 19 25 35 52 28 20 64 26 22 342 45 48 142 27 24 22 42 24 25 18 63 25 21 172 42 129 137 25 23 40 21 26 24 60 27 22 407 47 47 134 26 23 40 19 25 35 52 28 50 23 21 172 42 129 137 25 23 40 21 26 24 60 27 22 407 47 47 134 26 23 40 19 25 35 52 28 50 23 21 172 42 129 137 25 23 40 21 26 24 60 27 22 407 47 47 134 26 23 40 19 25 35 52 28 50 23 21 758 29 152 123 28 23 23 23 19 25 26 53 47 31 255 29 123 119 27 24 30 23 23 22 28 50 23 21 758 29 152 123 28 23 23 23 19 25 26 53 47 31 255 29 123 119 30 26 35 23 350 41 38 105 142 667 33 110 31 26 35 350 154 1100 65 342 1040 667 152 13100 MIN 20 23 15 19 15 24 23 19 13 29 16 19 AC-FT 1680 2610 1440 2620 1550 8630 1860 2400 9880 5550 3000 49880 EVENT 1 1, 192 | 7 | | | | | | | | | | | | 153 | | 10 27 27 22 25 18 1050 28 22 84 44 26 1270 11 25 30 21 29 20 451 29 20 69 44 25 47 23 485 12 24 48 21 23 25 154 28 22 78 40 21 400 14 21 45 25 19 23 120 27 20 43 32 25 340 15 22 70 18 20 21 96 27 20 43 32 25 340 16 21 146 15 21 20 91 26 19 33 43 21 26 17 21 111 17 22 20 70 26 21 32 33 18 241 18 20 76 19 23 20 55 31 26 27 24 31 72 19 22 55 22 24 21 45 37 27 16 151 23 188 20 26 49 25 26 22 36 29 29 13 80 21 180 21 26 41 21 20 22 46 26 28 13 55 18 165 22 24 36 18 19 23 61 27 24 453 45 16 153 23 25 43 27 22 20 64 26 22 36 23 188 20 26 41 21 20 22 46 26 28 13 55 18 165 22 24 36 18 19 23 61 27 24 453 45 16 153 23 25 43 27 22 20 64 26 22 342 45 48 142 24 22 42 36 18 19 23 61 27 24 453 45 16 153 23 25 43 27 22 20 64 26 22 342 45 48 142 24 22 42 24 25 18 63 25 21 172 42 199 137 25 23 40 21 26 24 60 27 22 407 47 47 134 26 23 40 19 25 35 52 28 60 27 22 407 47 47 134 26 23 40 19 25 35 52 28 60 27 22 407 47 47 134 26 23 40 19 25 35 52 28 60 27 22 407 47 47 134 26 23 40 19 25 35 52 28 20 64 26 22 342 45 48 142 27 24 22 42 24 25 18 63 25 21 172 42 129 137 25 23 40 21 26 24 60 27 22 407 47 47 134 26 23 40 19 25 35 52 28 50 23 21 172 42 129 137 25 23 40 21 26 24 60 27 22 407 47 47 134 26 23 40 19 25 35 52 28 50 23 21 172 42 129 137 25 23 40 21 26 24 60 27 22 407 47 47 134 26 23 40 19 25 35 52 28 50 23 21 758 29 152 123 28 23 23 23 19 25 26 53 47 31 255 29 123 119 27 24 30 23 23 22 28 50 23 21 758 29 152 123 28 23 23 23 19 25 26 53 47 31 255 29 123 119 30 26 35 23 350 41 38 105 142 667 33 110 31 26 35 350 154 1100 65 342 1040 667 152 13100 MIN 20 23 15 19 15 24 23 19 13 29 16 19 AC-FT 1680 2610 1440 2620 1550 8630 1860 2400 9880 5550 3000 49880 EVENT 1 1, 192 | 8 | | | | | | | | | | | | 13100 | | 11 | 9 | | | | | 22 | 1100 | 31 | | | | | 5090 | | 12 | 10 | 27 | 27 | 22 | 25 | 18 | 1050 | 28 | 22 | 84 | 44 | 26 | 1270 | | 12 | 11 | 25 | 30 | 21 | 29 | 20 | 451 | 29 | 20 | 69 | 44 | 24 | 695 | | 13 | 12 | 24 | 47 | 19 | 26 | 23 | 238 | 28 | 21 | 52 | 47 | 23 | 485 | | 14 21 45 25 19 23 120 27 20 43 32 25 340 15 22 70 18 20 21 96 27 20 35 47 26 296 16 21 146 15 21 20 91 26 21 32 33 18 241 18 20 76 19 23 20 55 31 26 27 243 17 220 19 22 55 22 24 21 45 37 27 16 151 23 198 20 26 49 25 26 22 56 29 29 13 80 21 180 21 26 41 21 20 22 46 26 28 13 55 18 165 22 24 36 18 19 23 61 27 24 453 45 16 153 <td>13</td> <td>22</td> <td>48</td> <td>21</td> <td>23</td> <td></td> <td></td> <td></td> <td>22</td> <td>78</td> <td>40</td> <td>21</td> <td>400</td> | 13 | 22 | 48 | 21 | 23 | | | | 22 | 78 | 40 | 21 | 400 | | 15 | 14 | 21 | 45 | 25 | 19 | | | | 20 | 43 | 32 | 25 | 340 | | 17 | 15 | 22 | 70 | 18 | 20 | | | 27 | | 3 <b>5</b> | 47 | 26 | 296 | | 17 | 16 | 21 | 146 | 15 | 21 | 20 | 91 | 26 | 19 | 33 | 43 | 21 | 266 | | 18 20 76 19 23 20 55 31 26 27 243 17 220 19 22 55 22 24 21 45 37 27 16 151 23 198 20 26 49 25 26 22 56 29 29 13 80 21 180 21 26 41 21 20 22 46 26 28 13 55 18 165 22 24 36 18 19 23 61 27 24 453 45 16 153 23 25 43 27 22 20 64 26 22 342 45 48 142 24 22 42 24 25 18 63 25 21 172 42 129 137 25 23 40 21 26 24 60 27 22 407 47 47 47 | 17 | 21 | 111 | | | | | | 21 | 32 | 33 | 18 | 241 | | 19 22 55 22 24 21 45 37 27 16 151 23 198 21 26 41 21 20 22 46 26 28 13 55 18 165 22 24 36 18 19 23 61 27 24 453 45 16 153 23 25 43 27 22 20 64 26 22 342 45 48 142 24 22 42 24 25 18 63 25 21 172 42 129 137 25 23 40 21 26 24 60 27 22 407 47 47 134 26 23 40 19 25 35 52 25 28 1040 30 64 129 27 24 30 23 22 28 50 23 21 778 29 152 123 28 23 23 25 43 30 21 30 23 22 28 50 23 21 758 29 152 123 28 23 23 23 30 21 30 23 22 28 50 23 21 758 29 152 123 29 23 30 21 30 21 30 48 65 342 180 82 53 114 30 26 35 35 23 350 41 38 105 142 667 33 110 31 26 25 286 40 47 170 27 TOTAL 848 1317 727 1320 781 4350 940 1212 4983 2798 1512 25148 MEAN 27.4 43.9 23.5 42.6 27.9 140 31.3 39.1 166 90.3 48.8 838 MAX 64 146 35 350 154 1100 65 342 100 667 152 13100 MIN 20 23 15 19 15 24 23 19 13 29 16 19 AC-FT 1680 2610 1440 2620 1550 8630 1860 2400 9880 5550 3000 49880 CFSM .06 .10 .05 .10 .06 .32 .07 .09 .38 .21 .11 1.92 | 18 | | | | | | | | | | | | | | 20 | 19 | 22 | | | | | | | | 16 | 151 | 23 | 198 | | 22 24 36 18 19 23 61 27 24 453 45 16 153 23 25 43 27 22 20 64 26 22 342 45 48 142 24 22 42 24 25 18 63 25 21 172 42 129 137 25 23 40 21 26 24 60 27 22 407 47 47 134 26 23 40 19 25 35 52 25 28 1040 30 64 129 27 24 30 23 22 28 50 23 21 758 29 152 123 28 23 23 19 25 26 53 47 31 255 29 123 119 29 23 30 21 30 48 65 342 180 82 53 114 30 26 35 23 350 41 38 105 142 667 33 110 | 20 | 26 | 49 | | | | | | | 13 | | 21 | 180 | | 22 24 36 18 19 23 61 27 24 453 45 16 153 23 25 43 27 22 20 64 26 22 342 45 48 142 24 22 42 24 25 18 63 25 21 172 42 129 137 25 23 40 21 26 24 60 27 22 407 47 47 134 26 23 40 19 25 35 52 25 28 1040 30 64 129 27 24 30 23 22 28 50 23 21 758 29 152 123 28 23 23 19 25 26 53 47 31 255 29 123 119 29 23 30 21 30 48 65 342 180 82 53 114 30 26 35 23 350 41 38 105 142 667 33 110 | 21 | 26 | 41 | 21 | 20 | 22 | 46 | 26 | 28 | 13 | 55 | 18 | 165 | | 23 | 22 | 24 | 36 | 18 | 19 | | 61 | | 24 | 453 | 45 | 16 | 153 | | 24 22 42 24 25 18 63 25 21 172 42 129 137 25 23 40 21 26 24 60 27 22 407 47 47 134 26 23 40 19 25 35 52 25 28 1040 30 64 129 27 24 30 23 22 28 50 23 21 758 29 152 123 28 23 23 19 25 26 53 47 31 255 29 123 119 29 23 30 21 30 48 65 342 180 82 53 114 30 26 35 23 350 41 38 105 142 667 33 110 31 26 <td>23</td> <td>25</td> <td>43</td> <td>27</td> <td>22</td> <td>20</td> <td>64</td> <td>26</td> <td>22</td> <td>342</td> <td>45</td> <td>48</td> <td>142</td> | 23 | 25 | 43 | 27 | 22 | 20 | 64 | 26 | 22 | 342 | 45 | 48 | 142 | | 25 23 40 21 26 24 60 27 22 407 47 47 134 26 23 40 19 25 35 52 25 28 1040 30 64 129 27 24 30 23 22 28 50 23 21 758 29 152 123 28 23 23 19 25 26 53 47 31 255 29 123 119 29 23 30 21 30 48 65 342 180 82 53 114 30 26 35 23 350 41 38 105 142 667 33 110 31 26 25 286 40 47 170 27 TOTAL 848 1317 727 1320 781 4350 940 1212 4983 2798 1512 25148 MEAN 27.4 43.9 23.5 42.6 27.9 140 31.3 39.1 166 90.3 48.8 838 MAX 64 146 35 350 154 1100 65 342 1040 667 152 13100 MIN 20 23 15 19 15 24 23 19 13 29 16 19 AC-FT 1680 2610 1440 2620 1550 8630 1860 2400 9880 5550 3000 49880 CFSM .06 .10 .05 .10 .06 .32 .07 .09 .38 .21 .11 1.92 | 24 | 22 | 42 | 24 | 25 | | 63 | 25 | 21 | 172 | 42 | 129 | 137 | | 27 24 30 23 22 28 50 23 21 758 29 152 123 28 23 23 19 25 26 53 47 31 255 29 123 119 29 23 30 21 30 48 65 342 180 82 53 114 30 26 35 23 350 41 38 105 142 667 33 110 31 26 25 286 40 47 170 27 TOTAL 848 1317 727 1320 781 4350 940 1212 4983 2798 1512 25148 MEAN 27.4 43.9 23.5 42.6 27.9 140 31.3 39.1 166 90.3 48.8 838 MAX 64 146 35 350 154 1100 65 342 1040 667 152 13100 MIN 20 23 15 19 15 24 23 19 13 | 25 | 23 | 40 | 21 | 26 | 24 | 60 | 27 | 22 | 407 | 47 | 47 | 134 | | 27 | 26 | 23 | 40 | 19 | 25 | 35 | 52 | 25 | 28 | 1040 | 30 | 64 | | | 29 23 30 21 30 48 65 342 180 82 53 114 30 26 35 23 350 41 38 105 142 667 33 110 31 26 25 286 40 47 170 27 TOTAL 848 1317 727 1320 781 4350 940 1212 4983 2798 1512 25148 MEAN 27.4 43.9 23.5 42.6 27.9 140 31.3 39.1 166 90.3 48.8 838 MAX 64 146 35 350 154 1100 65 342 1040 667 152 13100 MIN 20 23 15 19 15 24 23 19 13 29 16 19 AC-FT 1680 2610 1440 2620 1550 8630 1860 2400 9880 5550 3000 49880 CFSM .06 .10 .05 .10 .06 .32 .07 .09 .38 .21 .11 1.92 | 27 | 24 | 30 | 23 | 22 | 28 | 50 | 23 | 21 | | 29 | | | | 29 23 30 21 30 48 65 342 180 82 53 114 30 26 35 23 350 41 38 105 142 667 33 110 31 26 25 286 40 47 170 27 TOTAL 848 1317 727 1320 781 4350 940 1212 4983 2798 1512 25148 MEAN 27.4 43.9 23.5 42.6 27.9 140 31.3 39.1 166 90.3 48.8 838 MAX 64 146 35 350 154 1100 65 342 1040 667 152 13100 MIN 20 23 15 19 15 24 23 19 13 29 16 19 AC-FT 1680 2610 1440 2620 1550 8630 1860 2400 9880 5550 3000 49880 CFSM .06 .10 .05 .10 .06 .32 .07 .09 .38 .21 .11 1.92 | | 23 | 23 | 19 | 25 | 26 | 53 | 47 | | 255 | | | | | 30 | | 23 | 30 | 21 | 30 | | 48 | 65 | 342 | 180 | 82 | | | | 31 26 25 286 40 47 170 27 TOTAL 848 1317 727 1320 781 4350 940 1212 4983 2798 1512 25148 MEAN 27.4 43.9 23.5 42.6 27.9 140 31.3 39.1 166 90.3 48.8 838 MAX 64 146 35 350 154 1100 65 342 1040 667 152 13100 MIN 20 23 15 19 15 24 23 19 13 29 16 19 AC-FT 1680 2610 1440 2620 1550 8630 1860 2400 9880 5550 3000 49880 CFSM .06 .10 .05 .10 .06 .32 .07 .09 .38 .21 .11 1.92 | 30 | | 35 | 23 | 350 | | 41 | 38 | 105 | 142 | 667 | | 110 | | MEAN 27.4 43.9 23.5 42.6 27.9 140 31.3 39.1 166 90.3 48.8 838 MAX 64 146 35 350 154 1100 65 342 1040 667 152 13100 MIN 20 23 15 19 15 24 23 19 13 29 16 19 AC-FT 1680 2610 1440 2620 1550 8630 1860 2400 9880 5550 3000 49880 CFSM .06 .10 .05 .10 .06 .32 .07 .09 .38 .21 .11 1.92 | 31 | 26 | | 25 | 286 | | 40 | | 47 | | 170 | 27 | | | MEAN 27.4 43.9 23.5 42.6 27.9 140 31.3 39.1 166 90.3 48.8 838 MAX 64 146 35 350 154 1100 65 342 1040 667 152 13100 MIN 20 23 15 19 15 24 23 19 13 29 16 19 AC-FT 1680 2610 1440 2620 1550 8630 1860 2400 9880 5550 3000 49880 CFSM .06 .10 .05 .10 .06 .32 .07 .09 .38 .21 .11 1.92 | TOTAL | 848 | 1317 | 727 | 1320 | 781 | 4350 | 940 | 1212 | 4983 | 2798 | 1512 | 25148 | | MAX 64 146 35 350 154 1100 65 342 1040 667 152 13100 MIN 20 23 15 19 15 24 23 19 13 29 16 19 AC-FT 1680 2610 1440 2620 1550 8630 1860 2400 9880 5550 3000 49880 CFSM .06 .10 .05 .10 .06 .32 .07 .09 .38 .21 .11 1.92 | | | 43.9 | 23.5 | | | | 31.3 | 39.1 | 166 | | 48.8 | 838 | | MIN 20 23 15 19 15 24 23 19 13 29 16 19 AC-FT 1680 2610 1440 2620 1550 8630 1860 2400 9880 5550 3000 49880 CFSM .06 .10 .05 .10 .06 .32 .07 .09 .38 .21 .11 1.92 | | | 146 | 35 | | 154 | | | 342 | | | 152 | | | AC-FT 1680 2610 1440 2620 1550 8630 1860 2400 9880 5550 3000 49880 CFSM .06 .10 .05 .10 .06 .32 .07 .09 .38 .21 .11 1.92 | | | 23 | 15 | | 15 | 24 | 23 | 19 | | | | | | CFSM .06 .10 .05 .10 .06 .32 .07 .09 .38 .21 .11 1.92 | | 1680 | 2610 | 1440 | | 1550 | | 1860 | 2400 | | 5550 | 3000 | | | | | | .10 | | | | | .07 | | .38 | | .11 | | | | IN. | | .11 | .06 | .11 | | | | .10 | .43 | | .13 | | CAL YR 1988 TOTAL 25501 MEAN 69.7 MAX 752 MIN 15 AC-FT 50580 CFSM .16 IN. 2.18 WTR YR 1989 TOTAL 45936 MEAN 126 MAX 13100 MIN 13 AC-FT 91110 CFSM .29 IN. 3.92 #### 06809500 EAST NISHNABOTNA RIVER AT RED OAK, IA LOCATION.--Lat 41°00'31", long 95°14'29", in NW1/4 SE1/4 sec.29, T.72 N., R.38 W., Montgomery County, Hydrologic Unit 10240003, on upstream side of Coolbaugh Street and 200 ft left of left end of Coolbaugh Street bridge in Red Oak, and 0.2 mi upstream from Red Oak Creek, 38.0 mi upstream from confluence with West Nishnabotna River, and at mile 53.6 upstream from mouth of Nishnabotna River. DRAINAGE AREA. -- 894 mi<sup>2</sup>. PERIOD OF RECORD. -- May 1918 to July 1925, May 1936 to current year. Monthly discharge only for some periods, published in WSP 1310. REVISED RECORDS.--WSP 1240: 1921, 1922-23 (M), 1924, 1942 (M), 1944 (M), 1946. WSP 1440: Drainage area. WSP 1710: 1957. GAGE.--Water-stage recorder. Datum of gage is 1,005.45 ft above NGVD. Prior to July 5, 1925, nonrecording gage at present site at datum 4.60 ft higher. May 29, 1936, to Nov. 13, 1952, nonrecording gage with supplementary water-stage recorder in operation above 3.2 ft gage height July 30, 1939, to Nov. 13, 1952, and Nov. 14, 1952, to June 13, 1966, water-stage recorder, all at site 0.5 mi upstream at datum 5.00 ft higher. June 14, 1966, to Sept. 30, 1969, at present site at datum 5.00 ft higher. REMARKS.--Estimated daily discharges: Nov. 28 to Jan. 28 and Feb. 2 to Mar. 9. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. National Weather Service Limited Automatic Remote Collector at station. AVERAGE DISCHARGE. -- 59 years (water years 1919-24, 1937-89), 395 ft3/s, 6.00 in/yr, 286,200 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 38,000 ft<sup>3</sup>/s Sept. 13, 1972, gage height, 27.43 ft; maximum gage height, 28.23 ft June 13, 1947, present datum; minimum daily discharge, 6 ft<sup>3</sup>/s Aug. 18, 1936. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 4,500 ft3/s and maximum (\*): | Date Time<br>March 10 0355 | Discharge<br>(ft <sup>3</sup> /s)<br>4,820 | Gage height<br>(ft)<br>12.70 | Date<br>Sept. 9 | Time<br>1430 | Discharge<br>(ft <sup>3</sup> /s)<br>*22,100 | Gage height<br>(ft)<br>*21.74 | |----------------------------|--------------------------------------------|------------------------------|-----------------|--------------|----------------------------------------------|-------------------------------| | | | | | | | | Minimum discharge, 34 ft3/s Dec. 9. | | | DISCHARG | E, CUBIC | FEET PER | SECOND, | WATER YEAR<br>EAN VALUES | OCTOBER | 1988 TO | SEPTEMBER | 1989 | | | |--------|-----------|------------|------------|----------|------------|--------------------------|----------|----------|-----------|------------|------------|----------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 2 | 110<br>83 | 52<br>54 | 70<br>64 | 76<br>60 | 230<br>110 | 90<br>89 | 93<br>90 | 74<br>68 | 96<br>80 | 240<br>237 | 252<br>163 | 99<br>93 | | 2 | 65 | 54 | 71 | 46 | 47 | 90 | 87 | 65 | 88 | 179 | 131 | 97 | | 4 | 58 | 56 | źō | 50 | 39 | 110 | 84 | 64 | 147 | 154 | 118 | 384 | | 5 | 54 | 56 | 68 | 60 | 38 | 98 | 79 | 64 | 171 | 137 | 109 | 1280 | | 6 | 53 | 54 | 74 | 68 | 43 | 94 | 78 | 61 | 99 | 124 | 100 | 432 | | 7<br>8 | 52 | 54 | 76 | 74 | 50 | 100 | 79 | 60 | 80 | . 114 | 95 | 236 | | 8 | 54 | 54 | 60 | 66 | 60 | 118 | 78 | 57 | 350 | 106 | 91 | 11000 | | 9 | 54 | 54 | 43 | 58 | 50 | 400 | 75 | 54 | 472 | 101 | 87 | 19700 | | 10 | 53 | 55 | 60 | 66 | 48 | 3170 | 73 | 54 | 204 | 98 | 83 | 5360 | | 11 | 50 | 55 | 56 | 70 | 52 | 1290 | 70 | 53 | 130 | 96 | 79 | 2400 | | 12 | 49 | <b>63</b> | 52 | 72 | 58 | 609 | 68 | 52 | 110 | 101 | 77 | 1550 | | 13 | 50 | 70 | 59 | 56 | 68 | 374 | 65 | 51 | 98 | 103 | 74 | 1130 | | 14 | 49 | 7 <b>2</b> | 70 | 54 | 62 | 268 | 64 | 51 | 103 | 95 | 72 | 920 | | 15 | 49 | 147 | 60 | 59 | 58 | 216 | 62 | 52 | 89 | 104 | 75 | 785 | | 16 | 50 | 261 | 43 | 62 | 56 | 181 | 61 | 53 | 84 | 114 | 93 | 680 | | 17 | 50 | 285 | 45 | 64 | 56 | 168 | 60 | 59 | 80 | 101 | 74 | 605 | | 18 | 48 | 149 | 54 | 66 | 58 | 116 | 61 | 60 | 85 | 238 | 67 | 540 | | 19 | 48 | 116 | <b>6</b> 6 | 72 | 60 | 138 | 65 | 61 | 84 | 661 | 71 | 487 | | 20 | 52 | 98 | 77 | 80 | 64 | 140 | 68 | 67 | 77 | 234 | 73 | 440 | | 21 | 54 | 90 | 64 | 60 | 68 | 130 | 63 | 62 | 71 | 140 | 75 | 405 | | 22 | 54 | 84 | 52 | 62 | 70 | 119 | 60 | 59 | 2030 | 117 | 70 | 378 | | 23 | 55 | <b>8</b> 6 | 84 | 64 | 60 | 125 | 58 | 56 | 1630 | 104 | 64 | 350 | | 24 | 54 | 84 | 70 | 70 | 50 | 117 | 58 | 56 | 679 | 95 | 90 | 328 | | 25 | 53 | 83 | 58 | 74 | 60 | 109 | 57 | 54 | 2720 | 88 | 143 | 323 | | 26 | 52 | 83 | 48 | 70 | 120 | 106 | 55 | 52 | 1550 | 85 | 101 | 317 | | 27 | 51 | 83 | 64 | 66 | 100 | 104 | 61 | 55 | 2120 | 75 | 167 | 296 | | 28 | 51 | 69 | 48 | 76 | 94 | 102 | 97 | 58 | 741 | 75 | 304 | 280 | | 29 | 51 | 66 | 54 | 199 | | 104 | 69 | 186 | 408 | 74 | 206 | 269 | | 30 | 50 | 74 | 61 | 758 | | 102 | 74 | 348 | 306 | 586 | 142 | 255 | | 31 | 51 | | 74 | 490 | | 97 | | 144 | | 898 | 112 | | | TOTAL | 1707 | 2661 | 1915 | 3268 | 1929 | 9074 | 2112 | 2310 | 14982 | 5674 | 3458 | 51419 | | MEAN | 55.1 | 88.7 | 61.8 | 105 | 68.9 | 293 | 70.4 | 74.5 | 499 | 183 | 112 | 1714 | | MAX | 110 | 285 | 84 | 758 | 230 | 3170 | 97 | 348 | 2720 | 898 | 304 | 19700 | | MIN | 48 | 52 | 43 | 46 | 38 | 89 | 55 | 51 | 71 | 74 | 64 | 93 | | AC-FT | 3390 | 5280 | 3800 | 6480 | 3830 | 18000 | 4190 | 4580 | 29720 | 11250 | 6860 | 102000 | | CFSM | .06 | . 10 | . 07 | . 12 | . 08 | .33 | .08 | .08 | . 56 | . 20 | . 12 | 1.92 | | IN. | .07 | .11 | .08 | . 14 | .08 | .38 | .09 | . 10 | . 62 | . 24 | . 14 | 2.14 | CAL YR 1988 TOTAL 49085 MEAN 134 MAX 1000 MIN 42 AC-FT 97360 CFSM .15 IN. 2.04 WTR YR 1989 TOTAL 100509 MEAN 275 MAX 19700 MIN 38 AC-FT 199400 CFSM .31 IN. 4.18 # 06810000 NISHNABOTNA RIVER ABOVE HAMBURG, IA (National stream-quality accounting network station) LOCATION. ~-Lat 40°37'57", long 95°37'32", in SW1/4 SE1/4 sec.11, T.67 N., R.42 W., Fremont County, Hydrologic Unit 10240004, on left bank 1.7 mi downstream from confluence of East Nishnabotna and West Nishnabotna Rivers, 2 mi northeast of Hamburg, and at mile 13.8. DRAINAGE AREA. -- 2,806 mi2. # WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- March 1922 to September 1923, October 1928 to current year. Monthly discharge only for some periods published in WSP 1310. REVISED RECORDS.--WSP 1240: 1923, 1929-37, 1938-40 (M), 1943 (M). WSP 1440: Drainage area. WDR IA-74-1: 1973. GAGE.--Water-stage encoder. Datum of gage is 894.17 ft above NGVD. See WSP 1730 for history of changes prior to Nov. 16, 1950. REMARKS.--Estimated daily discharges: Dec. 10 to Jan. 25, Feb. 2 to March 9, March 18 - 20, and Sept. 19. Records good except those for estimated daily discharges, which are poor. U.S. Army Corps of Engineers rain-gage and satellite data collection platform at station. AVERAGE DISCHARGE--62 years (water years 1923, 1929-89), 1,118 ft<sup>3</sup>/s, 5.41 in/yr, 810,000 acre-ft/yr; median of yearly mean discharges, 940 ft<sup>3</sup>/s, 4.5 in/yr, 681,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 55,500 ft<sup>3</sup>/s June 24, 1947, gage height, 26.03 ft, from flood-mark, present site and datum; maximum gage height, 28.27 ft Sept. 10, 1989; minimum daily discharge, 4.5 ft<sup>3</sup>/s Aug. 30, 1934. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 9,000 ft3/s and maximum (\*): | | | Discharge | Gage height | | | Discharge | Gage height | |---------|------|------------|-------------|----------|------|----------------------|-------------| | Date | Time | $(ft^3/s)$ | (ft) | Date | Time | (ft <sup>3</sup> /s) | (ft) | | Mar 10 | 1115 | 12.000 | 21.22 | Sept. 10 | 0315 | *32,900 | *28.27 | | June 25 | 1715 | 12,900 | 21.65 | - | | · | | Minimum discharge, 128 ft3/s Aug. 24, 25. | | | DISCHARGE | , CUBIC | FEET PER | SECOND, | WATER YEAR<br>EAN VALUES | OCTOBER | 1988 TO | SEPTEMBER | 1989 | | | |-----------------------------------|--------------------------------------------------|---------------------------------|------------------------------------------|--------------------------------------------|--------------------------------------------|----------------------------------------------------|-------------------------------------------|---------------------------------------------------|-----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------------| | DAY | OCT | NOV, | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 427 | 164 | 237 | 280 | 1110 | 260 | 303 | 270 | 450 | 810 | 1240 | 243 | | 2 | 376 | 161 | 240 | 230 | 350 | 255 | 301 | 264 | 302 | 738 | 534 | 204 | | 3 | 270 | 170 | 232 | 180 | 170 | 270 | 292 | 241 | 271 | 781 | 380 | 200 | | 4 | 203 | 181 | 230 | 190 | 120 | 300 | 279 | 243 | 678 | 587 | 315 | 641 | | 5 | 177 | 193 | 232 | 220 | 110 | 280 | 269 | 230 | 746 | 498 | 281 | 3300 | | 6 | 166 | 193 | 231 | 240 | 125 | 270 | 264 | 220 | 431 | 449 | 247 | 1890 | | 7 | 154 | 196 | 223 | 270 | 150 | 300 | 264 | 209 | 290 | 405 | 224 | 1070 | | 8 | 158 | 194 | 213 | 230 | 170 | 350 | 266 | 203 | 1520 | 371 | 207 | 14400 | | 9 | 156 | 196 | 180 | 210 | 130 | 600 | 257 | 189 | 1630 | 346 | 199 | 29900 | | 10 | 166 | 198 | 150 | 250 | 120 | 7580 | 245 | 182 | 875 | 326 | 188 | 21500 | | 11 | 154 | 196 | 170 | 270 | 135 | 3980 | 242 | 176 | 480 | 309 | 180 | 14600 | | 12 | 144 | 214 | 175 | 280 | 150 | 2170 | 240 | 171 | 340 | 304 | 173 | 9200 | | 13 | 145 | 235 | 220 | 230 | 170 | 1280 | 235 | 166 | 319 | 297 | 167 | 6480 | | 14 | 148 | 238 | 240 | 200 | 160 | 861 | 235 | 163 | 267 | 288 | 160 | 4470 | | 15 | 147 | 413 | 190 | 210 | 150 | 653 | 233 | 160 | 258 | 385 | 149 | 3580 | | 16 | 154 | 893 | 160 | 210 | 135 | 549 | 231 | 154 | 224 | 482 | 163 | 2910 | | 17 | 148 | 589 | 180 | 215 | 140 | 471 | 225 | 152 | 204 | 343 | 193 | 2520 | | 18 | 134 | 530 | 200 | 220 | 145 | 370 | 224 | 154 | 212 | 644 | 160 | 2220 | | 19 | 135 | 391 | 220 | 225 | 150 | 320 | 227 | 180 | 207 | 1210 | 152 | 2030 | | 20 | 151 | 332 | 250 | 230 | 155 | 350 | 232 | 215 | 193 | 977 | 151 | 1820 | | 21 | 161 | 300 | 220 | 210 | 165 | 351 | 235 | 234 | 177 | 510 | 140 | 1640 | | 22 | 161 | 285 | 200 | 200 | 170 | 369 | 226 | 230 | 3210 | 375 | 697 | 1470 | | 23 | 181 | 273 | 250 | 220 | 155 | 347 | 216 | 183 | 4870 | 329 | 221 | 1320 | | 24 | 165 | 264 | 230 | 250 | 145 | 347 | 216 | 163 | 2700 | 307 | 140 | 1210 | | 25 | 161 | 265 | 210 | 270 | 190 | 340 | 207 | 150 | 9060 | 277 | 149 | 1100 | | 26<br>27<br>28<br>29<br>30 | 164<br>163<br>160<br>160<br>160<br>162 | 272<br>278<br>256<br>250<br>242 | 180<br>210<br>180<br>200<br>240<br>270 | 256<br>240<br>279<br>430<br>613<br>1560 | 350<br>310<br>260 | 335<br>330<br>329<br>321<br>322<br>310 | 202<br>196<br>583<br>402<br>258 | 139<br>148<br>152<br>157<br>451<br>1120 | 6060<br>4430<br>3020<br>1520<br>1020 | 256<br>243<br>231<br>219<br>221<br>1840 | 228<br>521<br>989<br>847<br>441<br>314 | 1060<br>1010<br>944<br>875<br>835 | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 5511<br>178<br>427<br>134<br>10930<br>.06<br>.07 | 285<br>893<br>161 | 6563<br>212<br>270<br>150<br>3020<br>.08 | 9118<br>294<br>1560<br>180<br>18090<br>.10 | 5790<br>207<br>1110<br>110<br>11480<br>.07 | 25170<br>812<br>7580<br>255<br>49920<br>.29<br>.33 | 7805<br>260<br>583<br>196<br>15480<br>.09 | 7069<br>228<br>1120<br>139<br>14020<br>.08<br>.09 | 45964<br>1532<br>9060<br>177<br>91170<br>.55<br>.61 | 15358<br>495<br>1840<br>219<br>30460<br>.18<br>.20 | 10150<br>327<br>1240<br>140<br>20130<br>.12<br>.13 | 134642<br>4488<br>29900<br>200<br>267100<br>1.60<br>1.78 | CAL YR 1988 TOTAL 188695 MEAN 516 MAX 2650 MIN 106 AC-FT 374300 CFSM .18 IN. 2.50 WTR YR 1989 TOTAL 281702 MEAN 772 MAX 29900 MIN 110 AC-FT 558800 CFSM .28 IN. 3.73 # 06810000 NISHNABOTNA RIVER ABOVE HAMBURG, IA--Continued (National stream-quality accounting network station) # WATER-QUALITY RECORDS PERIOD OF RECORD. -- April 1979 to current year. PERIOD OF DAILY RECORD. --SPECIFIC CONDUCTANCE: April 1979 to September 1981. WATER TEMPERATURES: April 1979 to September 1981. EXTREMES FOR PERIOD OF DAILY RECORD. -SPECIFIC CONDUCTANCE: Maximum daily, 815 microsiemens Sept. 16,18, 19, 28,30, 1979; minimum daily, 155 microsiemens, July 20, 1981. WATER TEMPERATURES: Maximum daily, 32.0°C July 14, 1980; minimum daily 0.0°C, on many days during winter period. # WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | PH<br>(STAND-<br>ARD<br>UNITS)<br>(00400) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | TEMPER-<br>ATURE<br>AIR<br>(DEG C)<br>(00020) | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | OXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION)<br>(00301) | BARO-<br>METRIC<br>PRES-<br>SURE<br>(MM<br>OF<br>HG)<br>(00025) | COLI-<br>FORM,<br>FECAL,<br>0.7<br>UM-MF<br>(COLS./<br>100 ML)<br>(31625) | STREP-<br>TOCOCCI<br>FECAL,<br>KF AGAR<br>(COLS.<br>PER<br>100 ML)<br>(31673) | |------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------| | OCT<br>28<br>DEC | 1130 | 154 | 540 | 8.40 | 5.0 | 7.5 | 3.7 | 12.4 | 99 | 747 | 67 | 190 | | 13 | 1230 | 225 | 650 | 8.20 | 0.0 | 10.5 | 6.6 | 12.8 | 91 | 736 | 100 | 350 | | MAR<br>14 | 1230 | 871 | 308 | 8.40 | 6.0 | 5.0 | 300 | 11.5 | 97 | 723 | 1100 | 13000 | | MAY<br>11 | 1130 | 171 | 560 | 8.60 | 17.0 | 18.0 | 16 | 10.7 | 114 | 743 | 75 | 110 | | JUN<br>29 | 1345 | 1420 | 290 | 8.10 | 28.0 | 31.0 | 1200 | 6.1 | 80 | 740 | 45000 | 19000 | | AUG<br>25 | 1100 | 145 | 432 | 8.20 | 25.0 | 26.0 | 18 | 9.3 | 117 | 735 | 2800 | 1900 | | DATE | HARD-<br>NESS<br>NONCARB<br>WH WAT<br>TOT FLD<br>MG/L AS<br>CACO3<br>(00902) | HARD-<br>NESS<br>TOTAL<br>(MG/L<br>AS<br>CACO3)<br>(00900) | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915) | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925) | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | SODIUM<br>PERCENT<br>(00932) | SODIUM<br>AD-<br>SORP-<br>TION<br>RATIO<br>(00931) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | ALKA-<br>LINITY<br>WAT DIS<br>TOT IT<br>FIELD<br>MG/L AS<br>CACO3<br>(39086) | CAR-<br>BONATE<br>WATER<br>DIS IT<br>FIELD<br>MG/L AS<br>CO3<br>(00452) | BICAR-<br>BONATE<br>WATER<br>DIS IT<br>FIELD<br>MG/L AS<br>HCO3<br>(00453) | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)<br>(00945) | | OCT<br>28 | 40 | 270 | 68 | 25 | 15 | 10 | 0.4 | 4.4 | 240 | 7 | 2 <b>78</b> | 48 | | DEC<br>13 | 49 | 320 | 85 | 27 | 18 | 11 | 0.5 | 4.0 | 283 | 0 | 345 | 54 | | MAR<br>14 | 22 | 130 | 36 | 10 | 7.7 | 10 | 0.3 | 10 | 119 | 3 | 139 | 30 | | MAY<br>11 | 36 | 270 | 68 | 24 | 16 | 11 | 0.4 | 4.4 | 228 | 8 | 261 | 44 | | JUN<br>29 | 15 | 97 | 27 | 7.1 | 14 | 23 | 0.6 | 5.9 | 90 | 0 | 109 | 17 | | AUG<br>25 | 37 | 210 | 55 | 18 | 13 | 11 | 0.4 | 5.0 | 150 | 0 | 183 | 41 | | 23 | 0, | 210 | 33 | 10 | 10 | ** | <b>V.</b> 4 | 3.4 | 130 | • | 100 | 7- | | DATE | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)<br>(00950) | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2)<br>(00955) | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L)<br>(70300) | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L)<br>(70301) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>AC-FT)<br>(70303) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>DAY)<br>(70302) | NITRO-<br>GEN,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00605) | NITRO-<br>GEN,<br>NO2+NO3<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00631) | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00613) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,<br>AMMONIA<br>TOTAL<br>(MG/L<br>AS N)<br>(00610) | | OCT | 16 | 0.20 | 0.5 | 220 | 207 | 0.45 | 120 | 0.40 | 044.0 | 0.020 | 0.040 | 0,200 | | 28<br>DEC | 15 | 0.30 | 8.5 | 332 | 327 | 0.45 | 138 | 0.40 | 0.440 | 0.020 | | | | 13<br>MAR | 17 | 0.30 | 14 | 390 | 396 | 0.53 | 237 | 0.45 | 2.60 | 0.030 | 0.390 | 0.350 | | 14<br>MAY | 10 | 0.30 | 10 | 210 | 192 | 0.29 | 494 | 1.9 | 2.30 | 0.050 | 1.10 | 1.10 | | JUN JUN | 15 | 0.40 | 6.4 | 312 | 320 | 0.42 | 144 | 0.67 | 0.240 | 0.010 | 0.030 | 0.030 | | 29<br>AUG | 6.2 | 0.40 | 9.8 | 152 | 154 | 0.21 | 583 | 1.5 | 3.80 | 0.040 | 0.160 | 0.220 | | 25 | 13 | 0.30 | 4.1 | 252 | 255 | 0.34 | 98.7 | 0.67 | <0.100 | <0.010 | 0.040 | 0.030 | # 06810000 NISHNABOTNA RIVER ABOVE HAMBURG, IA--Continued # WATER-QUALITY RECORDS WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | PHOS-<br>PHOROUS<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | PHOS-<br>PHOROUS<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00666) | PHOROUS<br>TOTAL<br>(MG/L<br>AS P) | SUS-<br>PEND<br>(MG/ | M CH ED P L) (T | ENT,<br>DIS- S<br>ARGE,<br>SUS- %<br>ENDED<br>/DAY) .0 | SED.<br>SUSP.<br>IEVE<br>DIAM.<br>FINER<br>THAN<br>62 MM<br>0331) | ARSENI<br>DIS-<br>SOLVI<br>(UG/I<br>AS AS | IC IN<br>- D<br>ED SO<br>L (U<br>S) AS | IS- I<br>LVED SO<br>G/L (<br>AL) A | ARIUM, I<br>DIS- I<br>DLVED S<br>UG/L (<br>S BA) A | BERYL-<br>LIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>LIS BE)<br>D1010) | CADMIUM<br>DIS-<br>SOLVED<br>(UG/L<br>AS CD)<br>(01025) | |------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------|---------------------------|------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------| | OCT<br>28<br>DEC | 0.60 | 0.070 | 0.090 | 0.090 | | 16 | 6.7 | 92 | | 2 | <10 | 140 | <0.5 | 2 | | 13 | 0.80 | 0.080 | 0.100 | 0.130 | | 58 | 35 | 80 | | | | | | | | MAR<br>14 | 3.0 | 0.070 | 0.180 | 0.580 | 7 | 10 16 | 70 | 9 <b>9</b> | | 2 | 80 | 130 | <0.5 | <1 | | MAY<br>11 | 0.70 | 0.050 | 0.040 | 0.210 | | 71 | 33 | 100 | | 3 | <10 | 150 | <0.5 | <1 | | JUN<br>29 | 1.7 | 0.120 | 0.130 | 0.460 | 38 | 40 147 | 00 | <b>9</b> 9 | - | | | | | | | AUG<br>25 | 0.70 | 0.080 | 0.100 | 0.200 | | 50 | 20 | 99 | | 3 | <10 | 160 | <0.5 | <1 | | DAT | CHR<br>MIU<br>DIS<br>SOL<br>E (UG<br>AS ( | M, COBA<br>- DIS<br>VED SOLV<br>/L (UG<br>CR) AS | ED SO:<br>JL (UC<br>CO) AS | S- D<br>LVED SC<br>G/L (U<br>CU) AS | IS-<br>LVED<br>G/L<br>FE) | LEAD,<br>DIS-<br>SOLVED<br>(UG/L<br>AS PB)<br>01049) | LITHIUM<br>DIS-<br>SOLVED<br>(UG/L<br>AS LI)<br>(01130) | DIS<br>SOLV<br>(UG)<br>AS N | E, ME<br>S-<br>VED S<br>/L (<br>MN) A | ERCURY<br>DIS-<br>SOLVED<br>(UG/L<br>AS HG)<br>(1890) | MOLYB-<br>DENUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS MO)<br>(01060) | NICKEL,<br>DIS-<br>SOLVED<br>(UG/L<br>AS NI) | DIS<br>SOLV<br>(UG)<br>AS S | 1,<br>S-<br>VED<br>VL<br>SE) | | 28<br>DEC | | <1 | <3 | 1 | 20 | <5 | 11 | | 79 | 0.2 | <10 | . 4 | | 2 | | 13 | | | | | | | | | | | | | | | | MAR<br>14 | | <1 | <3 | 6 | 85 | <5 | <4 | | 25 | <0.1 | <10 | 11 | | 2 | | MAY<br>11 | | <1 | <3 | 3 | 17 | <1 | 13 | | 50 | <0.1 | <10 | 24 | | 2 | | JUN<br>29 | | | | | | | | | | | | | | | | AUG<br>25 | | <1 | <3 | 13 | 3 | 21 | 11 | | 22 | 0.1 | <10 | 3 | | 1 | | | | | | | | | | | | | | | | | | DAT | SILV<br>DI:<br>SOL<br>E (UG<br>AS | ER, TI<br>S- DI<br>VED SOL<br>/L (UG | UM, DI<br>S- D<br>VED SO<br>VL (U | IS- D<br>LVED SC<br>G/L (U | LVED<br>G/L | ATRA-<br>ZINE,<br>TOTAL<br>(UG/L) | CYAN-<br>AZINE<br>TOTAL<br>(UG/L) | | IN C<br>LE T<br>ER RE<br>L) (<br>ticide | concen | METOLA-<br>CHLOR<br>IN<br>WHOLE<br>WATER<br>(UG/L)<br>tration | TRI-<br>FLURA-<br>LIN<br>TOTAL<br>RECOVER<br>(UG/L)<br>expressed | BUTY-<br>LATE<br>(UG/L | .) | | ۵ | (010 | 75) (010 | 80) (01 | 085) (01 | 090) ( | 39630) | (81757) | | overabl<br>08) (7 | | (39356) | (39030) | (9990 | 1) | | OCT | | | | | | | | | | | | | | | | 28<br>DEC | < | 1.0 | 250 | <6 | 7 | | | | | | | | | | | 13<br>MAR | | | | | | | | | | | | | | | | 14<br>MAY | <: | 1.0 | 130 | <6 | 5 | | | | | | | | | | | 11<br>JUN | <; | 1.0 | 260 | <6 | 7 | 0.69 | 1.6 | 0. | <b>. 2</b> 9 | <0.10 | <0.10 | <0.10 | | | | 29<br>AUG | | | | | | 5.0 | 2.0 | 3. | .70 | 0.30 | <0.10 | <0.10 | <0. | 10 | | 25 | < | 1.0 | 220 | <6 | 31 | | | | | | | | | | # TARKIO RIVER BASIN 06811840 TARKIO RIVER AT STANTON, IA TARKIO RIVER BASIN 215 LOCATION.--Lat 40°58'52", long 95°06'32", in NW1/4 SW1/4 sec.4, T.71 N., R.37 W., Montgomery County, Hydrologic Unit 10240005, on right bank 10 ft downstream from bridge on county highway H42, 0.1 mi downstream from Little Tarkio Creek, and 0.5 mi west of Stanton. DRAINAGE AREA, -- 49.3 mi<sup>2</sup>. PERIOD OF RECORD. --October 1957 to current year. Annual maximum, water years 1952-57. REVISED RECORDS. -- WSP 1919: 1960 (M). GAGE.--Water-stage recorder and concrete control. Datum of gage is 1,104.67 ft above NGVD. REMARKS.--Estimated daily discharges: Oct. 1 to Nov. 14, Nov. 18 to Jan. 21, Jan. 25, 26, Feb. 2-15, 22-24, and April 2-18, 21-26. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. AVERAGE DISCHARGE.--32 years, 28.9 $\rm ft^3/s$ , 7.96 $\rm in/yr$ , 20,940 acre-ft/yr; median of yearly mean discharges, 25 $\rm ft^3/s$ , 6.9 $\rm in/yr$ , 18,100 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 22,500 ft<sup>3</sup>/s June 9, 1967, gage height, 28.56 ft, from rating curve extended above 1,600 ft<sup>3</sup>/s on basis of slope-area measurement of peak flow; no flow at times most years. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 1,500 ft3/s and maximum (\*): | | | Discharge | Gage height | | | Discharge | Gage height | |---------|------|------------|-------------|---------|------|------------|-------------| | Date | Time | $(ft^3/s)$ | (ft) | Date | Time | $(ft^3/s)$ | (ft) | | June 22 | 0815 | 4.990 | 16.36 | Sept. 8 | 0907 | 4,000 | 15.59 | | June 24 | 1700 | 1,640 | 13.13 | Sept. 8 | 2121 | 2,410 | 14.13 | | June 25 | 0330 | *6.090 | *16.98 | - | | • | | No flow Oct. 3-5. | | | DISCHAR | GE, CUBIC | FEET PER | SECOND | , WATER YEAR<br>MEAN VALUES | OCTOBER | 1988 TO | SEPTEMBER | 1989 | | | |-----------------------------------|------------------------------------------|------------------------------------------|----------------------------------------------|--------------------------------------------|------------------------------------------------|-------------------------------------------------------|-------------------------------------------|----------------------------------------------|--------------------------------------------------------|--------------------------------------------------|------------------------------------------|--------------------------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | .20<br>.01<br>.00<br>.00 | .17<br>.15<br>.14<br>.18<br>.17 | . 62<br>. 58<br>. 64<br>. 62<br>. 60 | .83<br>.52<br>.41<br>.65<br>.86 | 3.5<br>1.3<br>.37<br>.34<br>.35 | 1.2<br>1.1<br>1.5<br>4.6<br>2.8 | .87<br>.82<br>.76<br>.84<br>.78 | 3.6<br>3.8<br>2.5<br>3.4<br>2.7 | . 47<br>. 42<br>. 60<br>. 72<br>. 57 | 12<br>11<br>10<br>9.3<br>8.4 | 1.1<br>.35<br>.28<br>.24<br>.19 | .24<br>.08<br>2.0<br>12<br>5.1 | | 6<br>7<br>8<br>9<br>10 | .01<br>.01<br>.01<br>.01 | .16<br>.18<br>.21<br>.20<br>.21 | .64<br>.66<br>.58<br>.45 | . 82<br>. 78<br>. 65<br>. 52<br>. 57 | .38<br>.44<br>.51<br>.45<br>.43 | 1.2<br>1.2<br>86<br>509<br>296 | .74<br>.70<br>.79<br>.74<br>.68 | 1.4<br>.92<br>.91<br>.92<br>.68 | .57<br>.61<br>1.9<br>1.0<br>.64 | 7.8<br>7.3<br>7.3<br>6.8<br>6.7 | .10<br>.09<br>.08<br>.08 | 1.9<br>32<br>1390<br>336<br>31 | | 11<br>12<br>13<br>14<br>15 | .02<br>.02<br>.02<br>.03<br>.02 | .21<br>.24<br>.35<br>.28 | .38<br>.41<br>.48<br>.59<br>.47 | .66<br>.74<br>.50<br>.61 | . 64<br>. 57<br>. 52<br>. 47<br>. 52 | 130<br>88<br>19<br>5.2<br>3.8 | .64<br>.60<br>.56<br>.54<br>.51 | .63<br>.63<br>.67<br>.59<br>.62 | .79<br>1.0<br>.92<br>.82<br>.78 | 6.5<br>6.5<br>6.5<br>6.0<br>8.4 | .10<br>.08<br>.07<br>.07 | 18<br>13<br>11<br>9.0<br>7.6 | | 16<br>17<br>18<br>19<br>20 | .02<br>.03<br>.05<br>.04 | 43<br>5.0<br>2.5<br>1.5<br>1.2 | .36<br>.40<br>.47<br>.57<br>.66 | . 56<br>. 68<br>. 78<br>. 70<br>. 62 | .56<br>.60<br>.63<br>.68 | 3.1<br>2.0<br>1.4<br>1.8<br>2.7 | . 49<br>. 48<br>. 48<br>. 61<br>. 65 | .87<br>.72<br>.87<br>.89<br>.72 | .66<br>.69<br>1.1<br>1.3<br>1.3 | 7.6<br>6.7<br>9.0<br>7.1<br>6.0 | .07<br>.06<br>.06<br>.07 | 7.0<br>6.7<br>6.4<br>6.2<br>6.0 | | 21<br>22<br>23<br>24<br>25 | .06<br>.16<br>.15<br>.14 | 1.1<br>1.0<br>.88<br>.80<br>.74 | . 35<br>. 52<br>. 74<br>. 62<br>. 52 | . 58<br>. 62<br>. 63<br>. 59<br>. 57 | .76<br>.64<br>.58<br>.65<br>.88 | 1.3<br>1.5<br>1.7<br>1.4<br>1.3 | .60<br>.56<br>.53<br>.52<br>.48 | . 62<br>. 62<br>. 62<br>. 68<br>. 48 | 1.3<br>936<br>26<br>239<br>1110 | 4.7<br>3.0<br>3.2<br>2.8<br>2.3 | .06<br>.06<br>.07<br>.07 | 5.9<br>5.8<br>5.7<br>5.7<br>5.6 | | 26<br>27<br>28<br>29<br>30<br>31 | .12<br>.11<br>.12<br>.11<br>.10 | .70<br>.66<br>.64<br>.58<br>.64 | . 45<br>. 60<br>. 40<br>. 43<br>. 60<br>. 78 | .56<br>.62<br>6.6<br>158<br>17<br>5.2 | 1.3<br>1.8<br>1.6 | | .45<br>.88<br>60<br>26<br>3.6 | . 41<br>. 35<br>. 36<br>. 76<br>. 58<br>. 49 | 37<br>20<br>16<br>14<br>14 | 1.9<br>1.2<br>.61<br>.50<br>2.4<br>3.1 | .37<br>6.6<br>5.5<br>5.3<br>1.6 | 5.6<br>5.5<br>5.5<br>5.6 | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 1.89<br>.061<br>.20<br>.00<br>3.7<br>.00 | 94.79<br>3.16<br>43<br>.14<br>188<br>.06 | 16.77<br>.54<br>.78<br>.35<br>.33<br>.01 | 204.17<br>6.59<br>158<br>.41<br>405<br>.13 | 22.18<br>.79<br>3.5<br>.34<br>44<br>.02<br>.02 | 1175.35 3<br>37.9<br>509<br>.95<br>2330<br>.77<br>.89 | 06.90<br>10.2<br>260<br>.45<br>609<br>.21 | 34.01<br>1.10<br>3.8<br>.35<br>67<br>.02 | 2430.16<br>81.0<br>1110<br>.42<br>4820<br>1.64<br>1.83 | 182.61<br>5.89<br>12<br>.50<br>362<br>.12<br>.14 | 23.28<br>.75<br>6.6<br>.06<br>.46<br>.02 | 1957.72<br>65.3<br>1390<br>.08<br>3880<br>1.32<br>1.48 | CAL YR 1988 TOTAL 1761.21 MEAN 4.81 MAX 52 MIN .00 AC-FT 3490 CFSM .10 IN. 1.33 WTR YR 1989 TOTAL 6449.83 MEAN 17.7 MAX 1390 MIN .00 AC-FT 12790 CFSM .36 IN. 4.87 #### 06813500 MISSOURI RIVER AT RULO, NE LOCATION.--Lat 40°03'13", long 95°25'19", in NW1/4 NW1/4 sec.17, T.1 N., R.18 E., Richardson County, Hydrologic Unit 10240005, on right bank at downstream side of bridge on U.S. Highway 159 at Rulo, 3.2 mi upstream from Big Nemaha River, and at mile 498.0. DRAINAGE AREA. --414,900 mi2, approximately. The 3,959 mi2 in Great Divide basin are not included. PERIOD OF RECORD. --October 1949 to current year in reports of U.S. Geological Survey. Gage-height record collected at site 80 ft upstream January 1886 to December 1899 published in reports of Missouri River Commission September 1929 to September 1950 in files of Kansas City office of U.S. Army Corps of Engineers. GAGE.--Water-stage encoder. Datum of gage is 837.23 ft above NGVD Oct. 1949 to Sept. 12, 1950, nonrecording gage at site 80 ft upstream and Sept. 13, 1950 to Apr. 19, 1983, recording gage on downstream end of middle pier pier, all at same datum. REMARKS.--Estimated daily discharges: Aug. 5 - 7. Records good except those for estimated daily discharges, which are poor. Flow regulated by upstream main-stem reservoirs. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers satellite data collection platform at station. AVERAGE DISCHARGE.--40 years, 41,430 ft3/s, 30,020,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 358,000 ft<sup>3</sup>/s Apr. 22, 1952, gage height, 25.60 ft; minimum daily discharge, 4,420 ft<sup>3</sup>/s Jan. 13, 1957; minimum gage height, 0.65 ft Jan. 7, 1971, result of freezeup. EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood in 1881 reached a stage of 22.9 ft, from floodmark, discharge not determined. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 118,000 ft<sup>3</sup>/s Sept. 9, gage height, 20.94 ft; minimum daily discharge, 8,190 ft<sup>3</sup>/s Feb. 7; minimum gage height 0.78 ft Feb. 7. | | | DISCH | ARGE, CUE | IC FEET P | | , WATER Y<br>MEAN VALU | | ER 1988 T | O SEPTEMBE | R 1989 | | | |----------------------------------|----------------------------------------------------|----------------------------------------------|----------------------------------------------------|----------------------------------------------------|---------------------------------------------|----------------------------------------------------|-----------------------------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------------------------|----------------------------------------------------|------------------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 47800 | 37500 | 19700 | 15300 | 26100 | 24200 | 38200 | 37300 | 37000 | 43200 | 41100 | 34100 | | 2 | 41900 | 37000 | 20400 | 16000 | 26800 | 23300 | 38500 | 37100 | 34600 | 41300 | 37200 | 33500 | | 3 | 40600 | 37500 | 21200 | 17400 | 23100 | 22800 | 37000 | 36800 | 37400 | 41000 | 36300 | 33300 | | 4 | 39800 | 37600 | 20600 | 18200 | 15500 | 22900 | 35600 | 36500 | 37400 | 42000 | 36100 | 41700 | | 5 | 39100 | 38200 | 20400 | 17700 | 12100 | 22000 | 35900 | 36200 | 36400 | 41200 | 35400 | 55200 | | 6 | 39300 | 38400 | 21000 | 18200 | 8980 | 18900 | 35400 | 36000 | 35500 | 39700 | 34900 | 50500 | | 7 | 39000 | 38500 | 20600 | 21100 | 8190 | 17300 | 35500 | 36200 | 35700 | 38500 | 35600 | 47000 | | 8 | 38800 | 38600 | 20500 | 25600 | 13600 | 18500 | 35900 | 35900 | 35600 | 38500 | 34800 | 53800 | | 9 | 39000 | 38700 | 20400 | 25200 | 21400 | 21900 | 35900 | 35900 | 38100 | 36200 | 34600 | 114000 | | 10 | 38800 | 38200 | 21000 | 20000 | 21400 | 31000 | 36200 | 35300 | 38600 | 35400 | 34500 | 106000 | | 11 | 39100 | 36100 | 19900 | 15300 | 22300 | 40200 | 36000 | 35200 | 38100 | 36100 | 34600 | 75500 | | 12 | 38600 | 35100 | 18300 | 13400 | 22600 | 43100 | 36600 | 35400 | 38400 | 34700 | 34200 | 58700 | | 13 | 38600 | 34700 | 18400 | 14500 | 23700 | 47400 | 36500 | 35700 | 38000 | 33500 | 34100 | 49800 | | 14 | 39400 | 33400 | 18000 | 17600 | 25000 | 43800 | 37100 | 36000 | 37600 | 35300 | 34300 | 44400 | | 15 | 39400 | 31800 | 18000 | 19400 | 25900 | 38500 | 37300 | 35900 | 37300 | 35700 | 34400 | 42500 | | 16 | 39300 | 30700 | 19500 | 19600 | 25700 | 35700 | 37300 | 36400 | 36400 | 36900 | 34900 | 41500 | | 17 | 39800 | 29200 | 21000 | 19500 | 24700 | 33100 | 37200 | 36200 | 35600 | 37100 | 34900 | 39900 | | 18 | 40100 | 26900 | 20800 | 20100 | 24100 | 30100 | 37300 | 36200 | 36100 | 38400 | 34400 | 39300 | | 19 | 39800 | 24300 | 19300 | 21100 | 24100 | 28500 | 37600 | 36700 | 35700 | 43500 | 34200 | 38800 | | 20 | 40500 | 23000 | 18800 | 21300 | 24100 | 24800 | 37300 | 36800 | 35500 | 43300 | 34500 | 37900 | | 21 | 40200 | 22700 | 20400 | 22000 | 23700 | 23500 | 36400 | 37400 | 35500 | 42600 | 34600 | 37000 | | 22 | 40100 | 22600 | 22400 | 22800 | 22400 | 23300 | 36900 | 37300 | 35900 | 39900 | 35100 | 36500 | | 23 | 39900 | 21800 | 24000 | 22700 | 20900 | 23200 | 36800 | 36900 | 42700 | 38400 | 36400 | 36400 | | 24 | 39000 | 21500 | 24600 | 22100 | 21800 | 23000 | 36900 | 36900 | 40200 | 37600 | 36600 | 35700 | | 25 | 38400 | 21300 | 24100 | 22800 | 22600 | 22900 | 37200 | 37000 | 45900 | 37600 | 35900 | 35200 | | 26<br>27<br>28<br>29<br>30<br>31 | 38400<br>38300<br>38300<br>38000<br>37800<br>37700 | 20700<br>21200<br>21100<br>21300<br>21200 | 22300<br>21100<br>19400<br>18900<br>18600<br>16200 | 23700<br>23000<br>21600<br>20900<br>22600<br>24300 | 21600<br>21600<br>23400<br> | 22900<br>23100<br>24600<br>28200<br>33200<br>36400 | 36500<br>37300<br>39900<br>39600<br>37600 | 37800<br>37600<br>37000<br>36900<br>37600<br>40200 | 57000<br>44500<br>43700<br>41500<br>41100 | 36200<br>35500<br>36500<br>35600<br>35400<br>40500 | 35300<br>35600<br>42700<br>51500<br>39000<br>35000 | 34900<br>35000<br>34600<br>34600<br>34600 | | MEAN<br>MAX<br>MIN | 1224800<br>39510<br>47800<br>37700<br>2429000 | 900800<br>30030<br>38700<br>20700<br>1787000 | 629800<br>20320<br>24600<br>16200<br>1249000 | 625000<br>20160<br>25600<br>13400<br>1240000 | 597370<br>21330<br>26800<br>8190<br>1185000 | 872300<br>28140<br>47400<br>17300<br>1730000 | 1109400<br>36980<br>39900<br>35400<br>2200000 | 1136300<br>36650<br>40200<br>35200<br>2254000 | 38770<br>57000<br>34600 | 1187300<br>38300<br>43500<br>33500<br>2355000 | 1122700<br>36220<br>51500<br>34100<br>2227000 | 1391900<br>46400<br>114000<br>33300<br>2761000 | CAL YR 1988 TOTAL 13055600 MEAN 35670 MAX 50700 MIN 16200 AC-FT 25900000 WTR YR 1989 TOTAL 11960670 MEAN 32770 MAX 114000 MIN 8190 AC-FT 23720000 217 #### 06817000 NODAWAY RIVER AT CLARINDA, IA LOCATION .-- Lat 40°44'19", ATION.--Lat 40°44'19", long 95°00'47", in SW1/4 NE1/4 sec.32, T.69 N., R.36 W., Page County, Hydrologic Unit 10240009, near left abutment on downstream side of bridge on State Highway 2 (city route), 0.5 mi downstream from North Branch, 1.2 mi east of city square of Clarinda, and 7.5 mi upstream from East Nodaway River. DRAINAGE AREA, -- 762 mi2. # WATER DISCHARGE RECORDS PERIOD OF RECORD. -- May 1918 to July 1925, May 1936 to current year. Monthly discharge only for some periods, published in WSP 1310. REVISED RECORDS.--WSP 1240: 1918-20 (M), 1921, 1922-25 (M), 1936-38, 1942, 1943-45 (M), 1948. WSP 1440: Drainage area. WSP 1710: 1958, 1959 (P). GAGE.--Water-stage recorder. Datum of gage is 955.36 ft above NGVD. Prior to July 5, 1925, and May 28, 1936, to Mar. 26, 1957 nonrecording gage at same site, and prior to Oct. 1, 1987, at datum 5.00 ft. higher. REMARKS.--Estimated daily discharges: Dec. 16-18, 21, 22, 29,30, Jan. 8-10, 16-18, 21-22, and Feb. 1 to Mar. 9. Records good except those for estimated daily discharges, which are poor. Clarinda municipal water supply is taken from Nodaway River, 500 ft upstream from station. Average daily pumpage was 1.57 ft<sup>3</sup>/s. U.S. National Weather Service Limited Automatic Remote Collector (LARC) at station. COOPERATION. -- Average pumpage provided by City of Clarinda water works. AVERAGE DISCHARGE.--59 years (1918-24, 1936-89), 351 ft<sup>3</sup>/s, 6.26 in/yr, 254,300 acre-ft/yr; median of yearly mean discharges, 280 ft<sup>3</sup>, 5.0 in/yr, 203,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 31,100 ft<sup>3</sup>/s June 13, 1947, gage-height, 25.3 ft, from flood-mark, from rating curve extended above 15,000 ft<sup>3</sup>/s on basis of an overflow profile and extended channel rating; minimum daily discharge, 1.0 ft<sup>3</sup>/s Sept. 5, 9, 12, 14, 1918, Dec. 9, 27-31, 1923. gage-height, 25.3 ft, from flood- EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood in August 1903 reached a stage of 25.4 ft, from floodmarks, discharge not determined. Gage height Minimum discharge, 13 ft3/s Nov. 28. | | | DISCHARGE | , CUBIC | FEET PER | SECOND, | WATER YEAR<br>EAN VALUES | OCTOBER | 1988 TO | SEPTEMBER | 1989 | | | |-----------------------------------|----------------------------------------|----------------------------|-----------------------------------------|------------------------------------------|-----------------------------------------|--------------------------------------------------|-----------------------------------------|----------------------------------------|------------------------------------------------------|-----------------------------------------|------------------------------------------|--------------------------------------------------------| | DAY | OCT | NOA | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 79 | 20 | 41 | 29 | 80 | 50 | 59 | 49 | 29 | 214 | 149 | 67 | | 2 | 58 | 23 | 38 | 41 | 40 | 50 | 54 | 44 | 26 | 212 | 88 | 52 | | 3 | 39 | 26 | 40 | 30 | 28 | 50 | 49 | 45 | 30 | 190 | 66 | 47 | | 4 | 32 | 26 | 39 | 39 | 22 | 60 | 47 | 46 | 31 | 158 | 58 | 175 | | 5 | 28 | 24 | 35 | 34 | 23 | 56 | 44 | 41 | 28 | 136 | 53 | 186 | | 6 | 27 | 23 | 37 | 38 | 24 | 54 | 43 | 38 | 25 | 118 | 48 | 159 | | 7 | 27 | 25 | 38 | 41 | 27 | 56 | 39 | 36 | 22 | 102 | 44 | 2380 | | 8 | 28 | 26 | 28 | 37 | 32 | 66 | 39 | 35 | 35 | 92 | 39 | 18200 | | 9 | 25 | 24 | 27 | 32 | 29 | 140 | 40 | 32 | 107 | 82 | 35 | 19000 | | 10 | 23 | 23 | 31 | 35 | 27 | 3890 | 39 | 30 | 61 | 76 | 36 | 3840 | | 11 | 23 | 24 | 34 | 37 | 30 | 1090 | 39 | 27 | 42 | 70 | 36 | 1300 | | 12 | 24 | 29 | 32 | 39 | 33 | 474 | 35 | 29 | 35 | 68 | 35 | 876 | | 13 | 25 | 33 | 35 | 39 | 37 | 294 | 34 | 30 | 28 | 72 | 34 | 690 | | 14 | 24 | 33 | 34 | 29 | 34 | 189 | 35 | 29 | 24 | 112 | 31 | 584 | | 15 | 24 | 38 | 40 | 30 | 31 | 148 | 37 | 27 | 23 | 114 | 29 | 495 | | 16 | 24 | 248 | 28 | 35 | 31 | 115 | 37 | 25 | 24 | 101 | 34 | 425 | | 17 | 21 | 335 | 31 | 36 | 31 | 94 | 36 | 25 | 24 | 84 | 34 | 375 | | 18 | 18 | 171 | 33 | 35 | 32 | 77 | 35 | 29 | 28 | 119 | 34 | 335 | | 19 | 20 | 93 | 35 | 38 | 34 | 78 | 35 | 31 | 25 | 595 | 37 | 295 | | 20 | 25 | 69 | 42 | 40 | 35 | 75 | 34 | 31 | 20 | 232 | 40 | 264 | | 21 | 27 | 56 | 42 | 43 | 37 | 70 | 33 | 29 | 20 | 141 | 40 | 242 | | 22 | 26 | 50 | 38 | 38 | 39 | 73 | 33 | 26 | 7340 | 106 | 42 | 223 | | 23 | 23 | 47 | 42 | 38 | 32 | 69 | 35 | 27 | 3010 | 94 | 35 | 198 | | 24 | 22 | 46 | 53 | 38 | 28 | 63 | 34 | 28 | 658 | 74 | 31 | 180 | | 25 | 22 | 45 | 33 | 42 | 35 | 61 | 34 | 28 | 10500 | 65 | 37 | 173 | | 26<br>27<br>28<br>29<br>30<br>31 | 23<br>23<br>22<br>23<br>23<br>23 | 47<br>44<br>34<br>47<br>41 | 32<br>51<br>43<br>37<br>38<br>36 | 38<br>34<br>42<br>132<br>643<br>271 | 68<br>56<br>52<br> | 65<br>60<br>57<br>56<br>58<br>62 | 31<br>29<br>49<br>63<br>50 | 24<br>22<br>27<br>34<br>32<br>32 | 2890<br>749<br>450<br>314<br>248 | 58<br>53<br>49<br>48<br>53<br>186 | 43<br>465<br>208<br>153<br>113<br>85 | 168<br>158<br>148<br>143<br>137 | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 851<br>27.5<br>79<br>18<br>1690<br>.04 | 59.0<br>335<br>20 | 1143<br>36.9<br>53<br>27<br>2270<br>.05 | 2073<br>66.9<br>643<br>29<br>4110<br>.09 | 1007<br>36.0<br>80<br>22<br>2000<br>.05 | 7800<br>252<br>3890<br>50<br>15470<br>.33<br>.38 | 1201<br>40.0<br>63<br>29<br>2380<br>.05 | 988<br>31.9<br>49<br>22<br>1960<br>.04 | 26846<br>895<br>10500<br>20<br>53250<br>1.17<br>1.31 | 3874<br>125<br>595<br>48<br>7680<br>.16 | 2212<br>71.4<br>465<br>29<br>4390<br>.09 | 51515<br>1717<br>19000<br>47<br>102200<br>2.25<br>2.51 | CAL YR 1988 WTR YR 1989 TOTAL 33959 MEAN 92.8 MAX 800 MIN 17 AC-FT 67360 CFSM .12 IN. 1.66 TOTAL 101280 MEAN 277 MAX 19000 MIN 18 AC-FT 200900 CFSM .36 IN. 4.94 #### 06817000 NODAWAY RIVER AT CLARINDA, IA--Continued # WATER-QUALITY RECORDS LOCATION.--Suspended-sediment samples at normal flows and during winter periods are collected downstream from the dam, 300 ft upstream from gage. Samples at higher stages are collected from the bridge at gage or the Highway 2 bridge. PERIOD OF RECORD. -- October 1976 to current year. PERIOD OF DAILY RECORD. -- SPECIFIC CONDUCTANCE: October 1975 to current year. WATER TEMPERATURES: October 1975 to September 1978, October 1979 to current year. SUSPENDED-SEDIMENT DISCHARGE: October 1975 to current year. REMARKS.--Records of specific conductance are obtained from suspended-sediment samples at time of analysis. Random water temperatures are on file for the 1979 water year. EXTREMES FOR PERIOD OF DAILY RECORD. -SPECIFIC CONDUCTANCE: Maximum daily, 600 microsiemens Aug. 22, 1982; minimum daily, 130 microsiemens June 15, WATER TEMPERATURES: Maximum daily, 31.0°C Aug. 8, 1988; minimum daily, 0.0°C on many days during winter period. SEDIMENT CONCENTRATIONS: Maximum daily mean, 23,800 mg/L Apr. 17, 1978; minimum daily mean, 3 mg/L Dec. 1, 1986. SEDIMENT LOADS: Maximum daily, 1,500,000 tons June 16, 1982; minimum daily, 0.23 ton Dec. 14, 1977. EXTREMES FOR CURRENT YEAR. - SPECIFIC CONDUCTANCE: Maximum daily, 561 microsiemens Feb. 4; minimum daily, 150 microsiemens June 23. WATER TEMPERATURE: Maximum daily, 29.0°C July 8, 28. SEDIMENT CONCENTRATIONS: Maximum daily mean, 14,500 mg/L Sep. 8; minimum daily mean, 4 mg/L Oct. 29, 30. SEDIMENT LOADS: Maximum daily, 933,000 tons Sept. 8; minimum daily, 0.25 ton Oct. 29, 30. | | SPECIFIC | CONDUCTA | NCE MICRO | SIEMENS/C | M AT 25 I | | WATER YEAR<br>VALUES | OCTOBER | 1988 TO | SEPTEMBER | 1989 | | |------------|----------|----------|-----------|--------------|-----------|-------------|----------------------|---------|---------|-------------|-------------|-----| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 380 | 420 | 450 | 480 | 322 | 459 | 482 | 430 | 435 | 432 | 282 | 420 | | 2 | 340 | 425 | 460 | 500 | 379 | 461 | 474 | 460 | 409 | 415 | 346 | 437 | | 3<br>4 | 370 | 425 | 465 | 480 | 448 | 461 | 476 | 510 | 415 | 372 | 400 | | | 4 | 380 | 425 | 470 | 479 | 561 | | 477 | 450 | 420 | 407 | 425 | 315 | | 5 | 400 | 415 | 475 | 453 | 546 | 419 | 483 | 455 | 427 | 410 | 435 | 268 | | 6 | 400 | 420 | 465 | 424 | 539 | 435 | 467 | 460 | 437 | 425 | 373 | 384 | | 7 | 400 | 425 | 420 | 402 | 523 | 458 | 461 | 460 | 438 | 394 | 406 | 334 | | 8 | 390 | 425 | 430 | 469 | 512 | 454 | 454 | 450 | 438 | 324 | 423 | 286 | | 9 | 390 | 425 | 445 | 500 | 525 | 411 | 453 | 440 | 242 | 315 | 430 | | | 10 | 380 | 430 | 460 | 480 | 517 | 186 | 452 | 440 | 363 | 299 | 435 | | | 11 | 380 | 425 | 480 | 492 | 515 | 185 | 427 | 450 | 377 | 285 | 433 | 335 | | 12 | 397 | 415 | 495 | 460 | 513 | 222 | 446 | 445 | 362 | 312 | 418 | 347 | | 13 | 400 | 425 | 450 | 455 | 502 | 266 | 440 | 425 | 416 | 311 | 420 | 371 | | 14 | 390 | 425 | 430 | 454 | 483 | 317 | 435 | | 437 | 353 | 416 | 394 | | 15 | 376 | 430 | 420 | 453 | 494 | <b>3</b> 50 | 437 | 420 | 445 | 360 | 413 | 419 | | 16 | 373 | 410 | 435 | 440 | 492 | 380 | 441 | 430 | 426 | 345 | 429 | 426 | | 17 | 379 | 270 | 460 | 442 | 462 | 411 | 433 | 435 | 415 | | 421 | 434 | | 18 | 372 | 300 | 455 | 427 | 473 | 433 | 443 | 435 | 410 | 39 <b>6</b> | 408 | 436 | | 19 | 390 | 380 | 420 | 402 | 482 | 438 | 431 | 425 | 408 | 314 | 410 | 446 | | 20、 | 403 | 425 | 385 | 399 | | 439 | 438 | 435 | 410 | 242 | 383 | 458 | | 21 | 407 | 460 | 385 | 430 | 468 | 456 | 450 | 450 | 436 | 370 | 386 | 461 | | 22 | 402 | 460 | 395 | 420 | 473 | 466 | 420 | 460 | 435 | | 396 | 469 | | 23 | 410 | 455 | 365 | 406 | 475 | 457 | 405 | 440 | 150 | 425 | 404 | 462 | | 24 | 420 | 455 | 364 | 404 | 496 | 462 | 415 | 440 | 223 | 433 | 414 | 466 | | 25 | 418 | 450 | 380 | 3 <b>6</b> 5 | 496 | 468 | 420 | 440 | | 442 | 419 | | | 26 | 418 | 445 | 416 | 385 | 503 | 481 | 420 | 440 | | 445 | 423 | 470 | | 27 | 432 | 435 | 435 | 403 | 470 | 459 | 425 | 445 | 227 | 439 | <b>3</b> 99 | | | 28 | 385 | 450 | 472 | 428 | 451 | 470 | 410 | 445 | 345 | 381 | 229 | 470 | | <b>2</b> 9 | 400 | 455 | 505 | 398 | | 468 | 365 | 425 | 379 | 317 | 286 | 466 | | 30 | 400 | 445 | 504 | 325 | | 448 | | 440 | 403 | 325 | 389 | 462 | | 31 | 390 | | 510 | 289 | | 462 | | 440 | | 378 | 398 | | | MAX | 432 | 460 | 510 | 500 | | | | | | | 435 | | | MIN | 340 | 270 | 364 | 289 | | | | | | | 229 | | NODAWAY RIVER BASIN 219 WATER-QUALITY RECORDS | | | WATER | TEMPERATURE | , DEGREES | CELSIU<br>INST | JS, WATER | YEAR OCTO | BER 1988 | TO SEPTEMB | ER 1989 | | | |-----|---------|-----------|----------------|-----------|----------------|------------|------------|----------|-------------|----------|---------|--------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 15.0 | 11.0 | | | | | 10.0 | 14.0 | 20.0 | 27.0 | 26.0 | 24.0 | | 2 | 14.0 | 8.0 | | | | | 10.0 | 14.0 | 20.0 | 27.0 | | 24.0<br>24.0 | | 3 | | | | | | | 11.0 | 13.0 | 21.0 | | 25.0 | | | | 14.0 | 12.0 | | | | | 13.0 | 14.0 | 22.0 | 27.0 | | | | 4 | 13.0 | 12.0 | | | | | 12.0 | 14.0 | 21.0 | 27.0 | | 24.0 | | 5 | 12.0 | 11.0 | | | | | 12.0 | 15.0 | 21.0 | 28.0 | 28.0 | 22.0 | | 6 | 12.0 | 7.0 | | | | | 12.0 | 10.0 | 22.0 | 28.0 | 25.0 | 22.0 | | 7 | 8.0 | 8.0 | | | | | 9.0 | 13.0 | 23.0 | 28.0 | | 24.0 | | 8 | 12.0 | 8.0 | | | | | 10.0 | 16.0 | 23.0 | 29.0 | | 21.0 | | 9 | 12.0 | 10.0 | | | | 4.0 | 8.0 | 17.0 | 21.0 | 27.0 | 22.0 | | | 10 | 15.0 | 8.0 | | | | 9.0 | 7.0 | 17.0 | 19.0 | 27.0 | | | | 11 | 12.0 | 6.0 | | | | 7.0 | 9.0 | 18.0 | 22.0 | 28.0 | 24.0 | 17.0 | | 12 | 11.0 | 8.0 | | | | 8.0 | 11.0 | 17.0 | 22.0 | 27.0 | | 15.0 | | 13 | 14.0 | 7.0 | | | | 8.0 | 11.0 | 20.0 | 22.0 | 26.0 | | 13.0 | | 14 | 16.0 | 8.0 | | | | 7.0 | 13.0 | | 19.0 | 26.0 | 24.0 | 19.0 | | 15 | 15.0 | 15.0 | | | | 5.0 | 11.0 | 19.0 | 17.0 | 24.0 | 23.0 | 16.0 | | 16 | 15.0 | | | | | 6.0 | 13.0 | 21.0 | 20.0 | 20.0 | 22.0 | 16.0 | | 17 | 17.0 | | | | | 6.0 | 14.0 | 19.0 | 21.0 | | | 20.0 | | 18 | 13.0 | | | | | 3.0 | 13.0 | 19.0 | 20.0 | | | | | 19 | 17.0 | | | | | 4.0 | 13.0 | 19.0 | 22.0 | 22.0 | | 20.0 | | 20 | 12.0 | | | | | 10.0 | 14.0 | 19.0 | 24.0 | 22.0 | | 20.0 | | 21 | 12.0 | | | | | 4.0 | 16.0 | 20.0 | 25.0 | 24.0 | 25.0 | 20.0 | | 22 | 11.0 | | | | | 5.0 | 20.0 | 17.0 | 23.0 | | | 20.0 | | 23 | 13.0 | | | | | 7.0 | 19.0 | 21.0 | 21.0 | 22.0 | | 13.0 | | 24 | 9.0 | | | | | 10.0 | 19.0 | 23.0 | 22.0 | 25.0 | | 13.0 | | 25 | 11.0 | | | | | 10.0 | 22.0 | 20.0 | | 26.0 | | | | 26 | 9.0 | | | | | 14.0 | 23.0 | 20.0 | | 26.0 | 25.0 | 14.0 | | 27 | 11.0 | | | | | 11.0 | 21.0 | 18.0 | 25.0 | 27.0 | | | | 28 | 11.0 | | | | | 17.0 | 19.0 | 19.0 | 25.0 | 29.0 | | 13.0 | | 29 | 8.0 | | | | | 13.0 | 15.0 | 22.0 | 26.0 | 27.0 | 23.0 | 16.0 | | 30 | 8.0 | | | | | 14.0 | | 22.0 | 27.0 | 27.0 | | 17.0 | | 31 | 8.0 | | | | | 9.0 | | 21.0 | | 27.0 | 26.0 | | | | \$ | SEDIMENT, | SUSPENDED C | ONCENTRAT | ION (MC | G/L), WATE | ER YEAR OC | TOBER 19 | 38 TO SEPTE | MBER 19 | 89 | | | | 100 437 | | | | | | | | | | | | | | MEAN | T 0 4 D | MEAN | | EAN | | MEAN | | MEAN | | MEAN | 7.040 | | | CONCEN- | LOAD | | | NCEN- | LOAD | CONCEN- | LOAD | | LOAD | CONCEN- | LOAD | | DAW | TRATION | (TONS/ | | | ATION | (TONS/ | | (TONS/ | | TONS/ | TRATION | (TONS/ | | DAY | (MG/L) | DAY) | (MG/L) D | AY) (M | G/L) | DAY) | (MG/L) | DAY) | (MG/L) | DAY) | (MG/L) | DAY) | | | OCTO | BER | NOVEMBER | | DECEME | BER | JANUAR! | Y | FEBRUAR | Y | MARCI | Ħ | | 1 | 56 | 12 | 10 | . 54 | 15 | 1.7 | 6 | . 47 | 260 | 56 | 8 | 1.1 | | 2 | 57 | 8.9 | 14 | .87 | 15 | 1.5 | 6 | .66 | 105 | 36<br>11 | 8 | 1.1 | | 3 | 23 | 2.4 | | 1.2 | 17 | 1.8 | 6 | .49 | 68 | 5.1 | 18 | 2.4 | | 4 | 19 | 1.6 | | 1.2 | 18 | 1.9 | 6 | .63 | 51 | 3.0 | 55 | 8.9 | | 5 | 8 | .60 | | 1.1 | 28 | 2.6 | 7 | .64 | 37 | 2.3 | 36 | 5.4 | | _ | _ | | <del>-</del> - | | _ | | • | | | | | - | | 6 | 11 | .80 | 10 | . 62 | 15 | 1.5 | 8 | . 82 | 26 | 1.7 | 40 | 5.8 | | 7 | 10 | .73 | 9 | .61 | 21 | 2.2 | 8 | . 89 | 19 | 1.4 | 14 | 2.1 | | 8 | 20 | 1.5 | 9 | .63 | 17 | 1.3 | 8 | . 80 | 15 | 1.3 | 7 | 1.2 | | 9 | 14 | . 94 | 7 | .45 | 7 | . 51 | 8 | . 69 | 14 | 1.1 | | 1980 | | 10 | 16 | .99 | 9 | . 56 | 9 | .75 | 8 | . 76 | 12 | . 87 | 4950 | /3800 | .55 .60 1.0 .73 .97 1.7 2.0 1.8 .57 1.0 1.2 1.4 3.3 . 98 . 60 .96 .81 .70 .82 .58 38.94 777786 --- .70 .63 .74 .55 . 57 . 58 . 57 .62 .86 .93 1.7 2.1 1.8 2.3 20 --- 2097.59 1.1 1.3 1.8 2.3 3.2 4.1 2.2 1.7 2.2 3.8 4.1 2.1 1.4 .95 1.1 .93 .87 .71 .25 .25 67.69 64 38 36 40 57 56 30 23 16 18 --- 31 TOTAL .58 .63 1.2 1.2 3.2 6.2 4.2 3.9 3.6 3.5 2.8 2.5 1.4 2.9 2.5 --- 2646.79 42 18 8.7 13 9.9 8.3 8.3 6.3 6.1 5.9 6.0 5.3 5.1 4.5 5.2 3.0 --- 85466.6 2220 1620 775 400 210 134 72 42 64 49 42 34 36 36 34 33 .73 .71 .90 . 83 1.3 1.5 .75 .78 1.4 1.8 .70 .95 .95 .45 1.0 2.2 1.2 1.3 --- 103.22 9 8 9 16 18 9 9 15 19 12 8 9 # NODAWAY RIVER BASIN # 06817000 NODAWAY RIVER AT CLARINDA, IA--Continued # WATER-QUALITY RECORDS SEDIMENT, SUSPENDED CONCENTRATION (MG/L), WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DAY | MEA<br>CON<br>TRA<br>(MG | LOAD<br>(TONS/<br>DAY) | MEAN<br>CONCE<br>TRATI<br>(MG/L | LOAD<br>(TONS<br>DAY) | MEAN<br>CONCEN-<br>TRATION<br>(MG/L) | LOAD<br>(TONS/<br>DAY) | MEAN<br>CONCEN<br>TRATIO<br>(MG/L) | LOAD<br>(TONS/<br>DAY) | MEAN<br>CONCEN<br>TRATIO<br>(MG/L) | LOAD<br>(TONS/<br>DAY) | MEAN<br>CONCEN-<br>TRATION<br>(MG/L) | LOAD<br>(TONS/<br>DAY) | |----------------------------------|-------------------------------|---------------------------------|------------------------------------|----------------------------------------|--------------------------------------|------------------------------------------|------------------------------------|----------------------------------------|----------------------------------------|---------------------------------------|---------------------------------------|------------------------------------------| | | | APRIL | MA | Y | J | UNE | JU | LY | AUG | UST | SEPT | EMBER | | 1<br>2<br>3<br>4<br>5 | 17<br>13<br>15<br>14<br>8 | 2.7<br>1.5<br>2.0<br>1.8<br>.95 | 48<br>37<br>45<br>51<br>41 | 6.4<br>4.4<br>5.5<br>6.3<br>4.5 | 45<br>30<br>41<br>39<br>41 | 3.5<br>2.1<br>3.3<br>3.3<br>3.1 | 95<br>400<br>442<br>190<br>120 | 55<br>229<br>227<br>81<br>44 | 268<br>130<br>90<br>71<br>61 | 108<br>31<br>16<br>11<br>8.7 | 85<br>70<br>73<br>394<br>456 | 15<br>9.8<br>9.3<br>215<br>250 | | 6<br>7<br>8<br>9<br>10 | 7<br>6<br>8<br>8<br>6 | .81<br>.63<br>.84<br>.86<br>.63 | 22<br>35<br>48<br>50<br>48 | 2.3<br>3.4<br>4.5<br>4.3<br>3.9 | 43<br>33<br>301<br>2000<br>400 | 2.9<br>2.0<br>71<br>649<br>66 | 50<br>46<br>44<br>44<br>43 | 16<br>13<br>11<br>9.7<br>8.8 | 45<br>39<br>52<br>47<br>51 | 5.8<br>4.6<br>5.5<br>4.4<br>5.0 | 171<br>3950<br>14500<br>12500<br>3200 | 73<br>47100<br>933000<br>770000<br>33200 | | 11<br>12<br>13<br>14<br>15 | 7<br>12<br>12<br>13<br>11 | .74<br>1.1<br>1.1<br>1.2<br>1.1 | 50<br>49<br>34<br>37<br>35 | 3.6<br>3.8<br>2.8<br>2.9<br>2.6 | 205<br>194<br>168<br>147<br>97 | 23<br>18<br>13<br>9.5<br>6.0 | 49<br>54<br>57<br>94<br>135 | 9.3<br>9.9<br>11<br>28<br>42 | 60<br>59<br>60<br>66<br>92 | 5.8<br>5.6<br>5.5<br>5.5<br>7.2 | 1100<br>600<br>400<br>310<br>241 | 3860<br>1420<br>745<br>489<br>322 | | 16<br>17<br>18<br>19<br>20 | 13<br>12<br>13<br>13<br>13 | 1.3<br>1.2<br>1.2<br>1.2 | 40<br>38<br>40<br>45<br>47 | 2.7<br>2.6<br>3.1<br>3.8<br>3.9 | 98<br>90<br>98<br>80<br>60 | 6.4<br>5.8<br>7.4<br>5.4<br>3.2 | 158<br>120<br>350<br>2380<br>770 | 43<br>27<br>112<br>4490<br>482 | 92<br>66<br>70<br>54<br>54 | 8.4<br>6.1<br>6.4<br>5.4<br>5.8 | 195<br>175<br>170<br>155<br>151 | 224<br>177<br>154<br>123<br>108 | | 21<br>22<br>23<br>24<br>25 | 17<br>23<br>24<br>19<br>17 | 1.5<br>2.0<br>2.3<br>1.7<br>1.6 | 41<br>40<br>41<br>47<br>51 | 3.2<br>2.8<br>3.0<br>3.6<br>3.9 | 58<br>8420<br>6360<br>1750<br>10300 | 3.1<br>321000<br>69900<br>3110<br>367000 | 195<br>139<br>122<br>66<br>55 | 74<br>40<br>31<br>13<br>9.7 | 49<br>59<br>42<br>50<br>56 | 5.3<br>6.7<br>4.0<br>4.2<br>5.6 | 110<br>68<br>44<br>35<br>31 | 72<br>41<br>24<br>17<br>14 | | 26<br>27<br>28<br>29<br>30<br>31 | 18<br>24<br>195<br>415<br>112 | 1.5<br>1.9<br>26<br>71<br>15 | . 43<br>39<br>42<br>54<br>37<br>49 | 2.8<br>2.3<br>3.1<br>5.0<br>3.2<br>4.2 | 3150<br>1110<br>480<br>310<br>160 | 24600<br>2240<br>583<br>263<br>107 | 45<br>37<br>31<br>35<br>41<br>247 | 7.0<br>5.3<br>4.1<br>4.5<br>5.9<br>169 | 76<br>1560<br>780<br>460<br>210<br>115 | 8.8<br>2770<br>438<br>190<br>64<br>26 | 29<br>27<br>20<br>13<br>8 | 13<br>12<br>8.0<br>5.0<br>3.0 | | TOTAL<br>YEAR | | 148.96<br>2682193.79 | | 114.4 | | 789710.0 | | 6312.2 | | 3784.3 | | 1791703.1 | PARTICLE-SIZE DISTRIBUTION OF SUSPENDED SEDIMENT, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | TIME | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SEDI-<br>MENT,<br>SUS-<br>PENDED<br>(MG/L)<br>(80154) | SEDI-<br>MENT,<br>DIS-<br>CHARGE,<br>SUS-<br>PENDED<br>(T/DAY)<br>(80155) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>7 FINER<br>THAN<br>.002 MM<br>(70337) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>7 FINER<br>THAN<br>.004 MM<br>(70338) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>7 FINER<br>THAN<br>.008 MM<br>(70339) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>7 FINER<br>THAN<br>.016 MM<br>(70340) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>7 FINER<br>THAN<br>.062 MM<br>(70342) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>7 FINER<br>THAN<br>.125 MM<br>(70343) | SED.<br>SUSP.<br>FALL<br>DIAM.<br>Z FINER<br>THAN<br>.250 MM<br>(70344) | SED.<br>SUSP.<br>SIEVE<br>DIAM.<br>Z FINER<br>THAN<br>.062 MM<br>(70331) | |------------------|------|-------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------| | OCT | | | _ | | | | | | | | | | | 27<br>NOV | 0945 | 7.0 | 9 | 0.0 | | | | | | | | 100 | | 17 | 0800 | 5.0 | 1480 | 0.0 | 57 | 82 | 96 | 98 | | | | 100 | | DEC<br>13<br>JAN | 1600 | | 13 | 0.0 | | | | ~- | | | | 80 | | 26. <i></i> | 1545 | | 9 | 0.0 | | | | | | | | 94 | | MAR<br>09<br>APR | 1445 | | 40 | 0.0 | | | | | | | | 98 | | 20<br>JUN | 1800 | 17.0 | 18 | 0.0 | | | | | | | | 97 | | 20 | 1100 | 18.0 | 43 | 0.0 | | | | | | | | 87 | | 22<br>JUL | 1715 | 18.0 | 10800 | 0.0 | 43 | 50 | 59 | 71 | 99 | 99 | 100 | | | 07<br>AUG | 0900 | 27.0 | 50 | 0.0 | | | | | | | | 98 | | 18 | 1000 | 20.0 | 71 | 0.0 | | | | | | | | 99 | # 06817000 NODAWAY RIVER AT CLARINDA, IA--Continued WATER-QUALITY RECORDS PARTICLE-SIZE DISTRIBUTION OF SURFACE BED MATERIAL, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | TIME | NUM<br>O<br>SAI<br>PLII<br>POI<br>(COU | BER MA<br>F SII<br>M- DIA<br>NG 7 FI<br>NTS TI | ED<br>AT.<br>EVE<br>AM.<br>INER<br>HAN<br>2 MM | BE<br>MA<br>SIE<br>DIA<br>Z FI<br>TH<br>.125<br>(801 | T.<br>VE<br>M.<br>NER<br>AN<br>MM | BED<br>MAT.<br>SIEVE<br>DIAM.<br>Z FINER<br>THAN<br>.250 MM<br>(80166) | TH<br>. 500 | T.<br>VE<br>M.<br>NER<br>AN<br>MM | BED<br>MAT.<br>SIEVE<br>DIAM.<br>Z FINER<br>THAN<br>1.00 MM<br>(80168) | 1 | |------------------|------------------------|----------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------|-----------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------|------------------------------------------------------------------------|---| | OCT 27 | 0920 | 3 | | 1 | | 2 | 20 | | 79 | 97 | , | | DEC<br>13 | 1555 | 3 | | 1 | | 2 | 15 | | 64 | 78 | i | | JAN<br>26 | 1515 | 3 | | 1 | | 12 | 16 | | 69 | 90 | ) | | MAR<br>09 | 1420 | 3 | | 6 | | 9 | 21 | | 41 | 64 | , | | APR 20 | 1730 | 3 | | 1 | | 2 | 12 | | 60 | 84 | , | | JUN<br>02 | 1045 | 3 | | 1 | | 1 | 9 | | 48 | 78 | š | | JUL<br>07 | 1410 | 3 | | 6 | | 7 | 27 | | 27 | 57 | , | | AUG<br>18 | 0945 | 3 | | | | 0 | 2 | | 10 | 23 | , | | DATE | SI<br>DI<br>7 H<br>2.0 | BED<br>MAT.<br>IEVE<br>IAM.<br>FINER<br>THAN<br>DO MM<br>D169) | BED<br>MAT.<br>SIEVE<br>DIAM.<br>Z FINER<br>THAN<br>4.00 MM<br>(80170) | M<br>SI<br>DI<br>Z F<br>T<br>8.0 | ED<br>AT.<br>EVE<br>AM.<br>INER<br>HAN<br>0 MM<br>171) | 16.0 | T.<br>VE S<br>M. D<br>NER Z<br>AN<br>MM 32 | BED<br>MAT.<br>IEVE<br>IAM.<br>FINER<br>THAN<br>.0 MM<br>0173) | SII<br>DIA<br>7 F:<br>TI<br>64.0 | AT.<br>EVE | | | OCT<br>27<br>DEC | | 99 | 99 | | 100 | | | | | | | | 13<br>JAN | | 80 | 81 | | 82 | | 100 | | | | | | 26<br>MAR | | 93 | 95 | | 97 | | 100 | | | | | | 09<br>APR | | 74 | 79 | | 85 | | 91 | 100 | | | | | 20<br>JUN | | 92 | 93 | | 96 | | 100 | | | | | | 02<br>JUL | | 85 | 88 | | 92 | | 95 | 100 | | | | | 07<br>AUG | | 75 | 86 | | 95 | | 98 | 100 | | | | | 18 | | 33 | 43 | | 56 | | 75 | 96 | | 100 | | 222 PLATTE RIVER BASIN # 06818750 PLATTE RIVER NEAR DIAGONAL, IA LOCATION.--Lat 40°46'02", long 94°24'46", in NE1/4 NW1/4 sec.22, T.69 N., R.31 W., Ringgold County, Hydrologic Unit 10240012, on left bank at downstream side of bridge on county highway, 2.2 mi upstream from Turkey Creek, 4.6 mi southwest of Diagonal, and 4.9 mi downstream from Gard Creek. DRAINAGE AREA. -- 217 mi2. PERIOD OF RECORD. -- April 1968 to current year. REVISED RECORDS. -- WSP 2119: 1969 (P). GAGE. -- Water-stage recorder. Datum of gage is 1,095.27 ft above NGVD. REMARKS.--Estimated daily discharges: Dec. 8-19, 21-30, Jan. 2-4, 8-13, Feb. 1 to Mar. 9, 18-20, and June 4 to July 17. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. AVERAGE DISCHARGE.--21 years, 131 $ft^3/s$ , 8.20 in/yr, 94,910 acre-ft/yr; median of yearly mean discharges, 110 $ft^3/s$ , 6.9 in/yr, 79,700 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 8,630 ft<sup>3</sup>/s Sept. 9, 1989, gage height, 23.60 ft; minimum daily discharge, 0.21 ft<sup>3</sup>/s Jan. 14, 15, 1969. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 1967 reached a stage of 23.16 ft, from floodmark by local resident, discharge, 6,360 ft<sup>3</sup>/s. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 3,000 ft 3/s and maximum (\*): | Date | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height<br>(ft) | Date | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height<br>(ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Sept. 7 | 2300 | 3140 | 15.87 | Sept. 9 | 2300 | *8630 | *23.60 | Minimum discharge, .23 ft3/s Aug. 18, 19. | | | DISCHAR | GE, CUBIC | FEET PER | SECOND, | WATER YEAR<br>EAN VALUES | OCTOBER | 1988 TO | SEPTEMBER | 1989 | | | |-----------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|-----------------------------------------|---------------------------------------------------|-------------------------------------------|-------------------------------------------------|-------------------------------------------|--------------------------------------------|-------------------------------------------|--------------------------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | 7.2<br>3.6<br>1.9<br>2.0<br>1.9 | 2.3<br>1.9<br>2.2<br>2.5<br>2.1 | 3.4<br>3.5<br>3.5<br>3.2<br>3.0 | 2.7<br>1.9<br>1.4<br>1.7 | 13<br>4.5<br>2.0<br>1.5<br>1.0 | 5.8<br>4.7<br>6.0<br>19 | 7.1<br>4.8<br>3.7<br>3.1<br>3.3 | 5.9<br>18<br>12<br>6.6<br>6.9 | 9.1<br>9.6<br>5.7<br>3.7<br>2.9 | 2.3<br>1.8<br>1.5<br>1.8<br>2.2 | 6.5<br>3.1<br>1.6<br>1.2 | 3.0<br>3.0<br>5.8<br>88<br>148 | | 6<br>7<br>8<br>9<br>10 | 1.9<br>2.1<br>1.8<br>2.0<br>1.7 | 2.3<br>2.9<br>2.7<br>2.7<br>2.9 | 3.0<br>2.8<br>2.3<br>1.6<br>2.1 | 2.0<br>4.5<br>4.0<br>1.9<br>2.1 | 1.4<br>1.9<br>2.6<br>2.2<br>1.9 | 5.6<br>4.6<br>18<br>60<br>302 | 3.2<br>2.4<br>1.6<br>2.0<br>3.3 | 4.0<br>4.1<br>3.3<br>3.0<br>2.4 | 2.6<br>2.3<br>2.1<br>2.0<br>1.9 | 1.8<br>1.4<br>1.2<br>1.1 | .90<br>.78<br>.80<br>.68<br>.49 | 42<br>1390<br>3910<br>7530<br>3670 | | 11<br>12<br>13<br>14<br>15 | 1.5<br>1.4<br>1.5<br>1.8<br>1.7 | 2.9<br>4.9<br>3.8<br>3.8<br>5.1 | 2.0<br>1.8<br>2.0<br>2.2<br>2.0 | 2.7<br>3.7<br>2.1<br>2.5<br>3.7 | 2.3<br>2.9<br>3.7<br>2.6<br>2.0 | 104<br>50<br>27<br>17<br>12 | 4.5<br>3.3<br>3.1<br>3.5<br>5.3 | 5.7<br>3.9<br>2.6<br>3.8<br>3.5 | 1.4<br>1.3<br>1.8<br>2.0<br>3.0 | 1.4<br>2.1<br>1.4<br>1.1 | .49<br>.63<br>.65<br>.68 | 496<br>243<br>172<br>128<br>99 | | 16<br>17<br>18<br>19<br>20 | 1.3<br>1.4<br>1.4<br>1.9<br>2.0 | 34<br>29<br>13<br>5.9<br>4.4 | 1.7<br>1.3<br>1.4<br>1.5<br>2.5 | 4.2<br>3.5<br>3.0<br>3.4<br>4.9 | 1.8<br>2.0<br>2.2<br>2.5<br>2.7 | 9.6<br>7.1<br>6.0<br>5.0<br>6.4 | 4.8<br>3.0<br>3.2<br>3.1<br>3.2 | 4.1<br>4.0<br>9.4<br>11<br>5.0 | 1.8<br>1.6<br>2.1<br>2.4<br>2.7 | 1.6<br>1.8<br>190<br>61<br>22 | .59<br>1.7<br>.66<br>.61 | 77<br>63<br>54<br>46<br>40 | | 21<br>22<br>23<br>24<br>25 | 1.7<br>2.2<br>2.0<br>1.7 | 3.5<br>3.1<br>3.5<br>3.2<br>3.2 | 1.8<br>2.0<br>2.5<br>2.2<br>1.9 | 5.9<br>4.5<br>3.4<br>3.7<br>3.8 | 3.0<br>3.6<br>4.2<br>3.1<br>3.7 | 9.8<br>5.3<br>4.4<br>3.8<br>3.8 | 2.4<br>2.5<br>3.7<br>3.2<br>2.9 | 4.4<br>4.5<br>5.3<br>4.3<br>34 | 2.3<br>2.1<br>2.6<br>3.2<br>128 | 8.7<br>3.7<br>1.7<br>1.3 | 1.9<br>3.9<br>6.6<br>3.4<br>2.2 | 35<br>31<br>27<br>23<br>21 | | 26<br>27<br>28<br>29<br>30<br>31 | 1.6<br>1.7<br>1.6<br>1.5<br>1.4<br>2.4 | 3.8<br>3.6<br>3.7<br>3.9<br>3.7 | 1.8<br>2.1<br>1.9<br>1.7<br>2.8<br>2.9 | 3.8<br>3.7<br>4.1<br>65<br>52<br>23 | 5.0<br>7.4<br>6.8<br> | 3.7<br>3.6<br>5.0<br>3.8<br>4.4<br>6.5 | 2.6<br>3.2<br>4.6<br>3.1<br>2.7 | 53<br>17<br>33<br>45<br>38<br>16 | 9.4<br>1.8<br>1.7<br>2.2 | 1.2<br>1.0<br>1.1<br>.96<br>1.2<br>7.6 | 5.3<br>97<br>53<br>64<br>27<br>8.9 | 20<br>19<br>16<br>17<br>12 | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 61.5<br>1.98<br>7.2<br>1.3<br>122<br>.01 | 166.5<br>5.55<br>34<br>1.9<br>330<br>.03 | 70.4<br>2.27<br>3.5<br>1.3<br>140<br>.01 | 230.2<br>7.43<br>65<br>1.4<br>457<br>.03 | 93.5<br>3.34<br>13<br>1.0<br>185<br>.02 | 734.9<br>23.7<br>302<br>3.6<br>1460<br>.11<br>.13 | 102.4<br>3.41<br>7.1<br>1.6<br>203<br>.02 | 373.7<br>12.1<br>53<br>2.4<br>741<br>.06<br>.06 | 354.3<br>11.8<br>139<br>1.3<br>703<br>.05 | 329.56<br>10.6<br>190<br>.96<br>654<br>.05 | 297.80<br>9.61<br>97<br>.49<br>591<br>.04 | 18428.8<br>614<br>7530<br>3.0<br>36550<br>2.83<br>3.16 | CAL YR 1988 TOTAL 7907.2 MEAN 21.6 MAX 400 MIN 1.3 AC-FT 15680 CFSM .10 IN. 1.36 WTR YR 1989 TOTAL 21243.56 MEAN 58.2 MAX 7530 MIN .49 AC-FT 42140 CFSM .27 IN. 3.64 # PLATTE RIVER BASIN 223 # 06819185 EAST FORK ONE HUNDRED AND TWO RIVER AT BEDFORD, IA LOCATION.--Lat 40°39'38", long 94°42'59", in NE1/4 sec.35, T.68 N., R.34 W., Taylor County, Hydrologic Unit 10240013, on left bank at downstream side of bridge of county highway N44, 0.1 mi south of Bedford, 0.4 mi upstream from concrete stablization dam, and 3.0 mi upstream from Daugherty creek. DRAINAGE AREA, --85.4 mi2. PERIOD OF RECORD. --October 1983 to current year. September 1959 to September 1983, at site 2 mi upstream published as "near Bedford" (station 06819190) not equivalent because of difference in drainage area. GAGE. -- Water-stage recorder. Datum of gage is 1,069.16 ft above NGVD. REMARKS.--Estimated daily discharges: Nov. 28-30, Dec. 5-13, 17, 18, 20-22, 28, 29, 31, Jan. 2-5, 8-10, 13, 14, 21, 25, Feb. 3-19, 21-24, Feb. 27 to Mar. 2, July 27 to Aug. 7, and Sept. 16-30. Records fair except those for estimated daily discharges, which are poor. Slight regulation at low flow by low dam used for water supply in Bedford. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. National Weather Service Limited Automatic Remote Collector at station. AVERAGE DISCHARGE. -- 6 years, 58.1 ft3/s, 9.24 in/yr, 42,090 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 9,570 ft<sup>3</sup>/s July 14, 1986, gage height 23.47 ft.; minimum daily discharge, no flow several days in July and August, 1989. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 2,000 ft3/s and maximum (\*): | | | Discharge | Gage height | | | Discharge | Gage height | |---------|------|----------------|-------------|----------|------------|----------------------|-------------| | Date | Time | $(ft^3/s)$ | (ft) | Date | Time | (ft <sup>3</sup> /s) | (ft) | | Sept. 9 | 0245 | <b>*</b> 6,740 | *22.34 | No other | peak above | base discharge. | | Minimum daily discharge, no flow several days in July and August. | | | DISCHAR | GE, CUBIC | FEET PER | SECOND, | WATER YEAR<br>EAN VALUES | OCTOBER | 1988 TO | SEPTEMBER | 1989 | | | |-----------------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|-----------------------------------------|-----------------------------------------|------------------------------------------|-----------------------------------------|-----------------------------------------|-------------------------------------------|-------------------------------------------|------------------------------------------|-------------------------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | .22<br>.62<br>.22<br>.22<br>.12 | .92<br>1.5<br>1.9<br>1.6<br>1.3 | .90<br>1.2<br>.60<br>.22 | 1.2<br>.60<br>.09<br>.20 | .49<br>.42<br>.06<br>.01 | .07<br>.20<br>.73<br>.66<br>5.8 | 1.2<br>1.2<br>1.2<br>1.2 | .97<br>.65<br>1.1<br>.98<br>1.2 | .22<br>.22<br>.22<br>.22<br>.22 | 2.0<br>2.9<br>2.1<br>1.4 | .02<br>.01<br>.0<br>.0 | 1.8<br>2.3<br>3.4<br>6.4<br>15 | | 6<br>7<br>8<br>9<br>10 | .55<br>.76<br>.11<br>.22<br>.22 | 1.3<br>1.3<br>1.7<br>1.9 | .20<br>.13<br>.14<br>.15 | 1.1<br>1.2<br>.30<br>.12<br>.94 | .09<br>.14<br>.20<br>.14<br>.09 | 2.2<br>1.5<br>1.2<br>2.4<br>20 | 1.2<br>1.2<br>1.2<br>1.2<br>1.2 | 1.2<br>1.2<br>.70<br>1.2<br>1.2 | .22<br>.85<br>.30<br>.28<br>.22 | .0<br>.0<br>.0<br>.25 | .0<br>.0<br>.0<br>.0 | 9.4<br>281<br>819<br>3870<br>205 | | 11<br>12<br>13<br>14<br>15 | .64<br>.68<br>.54<br>.22<br>.70 | 1.9<br>2.1<br>1.6<br>1.7<br>2.5 | .13<br>.24<br>.42<br>.22<br>.30 | 1.2<br>.80<br>.39<br>.70 | .37<br>.25<br>.15<br>.09<br>.07 | 8.1<br>2.7<br>1.3<br>.35<br>1.1 | .85<br>1.2<br>1.2<br>1.2<br>.80 | .68<br>.15<br>.22<br>.22 | .24<br>.75<br>.23<br>.22<br>.22 | .0<br>.0<br>.0<br>.0 | .51<br>.84<br>.10<br>.03<br>.01 | 63<br>29<br>18<br>12<br>7.3 | | 16<br>17<br>18<br>19<br>20 | .43<br>.59<br>1.1<br>1.1<br>.93 | .28<br>.22<br>.22<br>.22<br>.52 | .95<br>.02<br>.20<br>1.2<br>.90 | .66<br>.72<br>.71<br>.49<br>.22 | .09<br>.13<br>.20<br>.40<br>.22 | .86<br>.37<br>.74<br>1.2<br>1.2 | 1.2<br>.66<br>.22<br>.22 | .22<br>.77<br>1.3<br>.22<br>.22 | .54<br>.98<br>1.5<br>1.4<br>.23 | 1.7<br>.13<br>43<br>28<br>7.7 | .01<br>.0<br>.0<br>.84<br>1.2 | 5.8<br>4.8<br>4.0<br>3.4<br>3.0 | | 21<br>22<br>23<br>24<br>25 | 1.2<br>1.2<br>.38<br>.65 | .22<br>.22<br>.22<br>.22<br>.42 | .35<br>.45<br>.85<br>.22 | .12<br>.90<br>.61<br>.22 | .12<br>.05<br>.03<br>.15 | 1.2<br>1.2<br>1.2<br>1.2<br>1.2 | . 22<br>. 22<br>. 22<br>. 22<br>. 50 | .22<br>.22<br>.22<br>.22<br>.22 | .22<br>1.2<br>1.2<br>.52 | 4.2<br>2.5<br>1.7<br>.12<br>.0 | .12<br>2.2<br>2.3<br>1.8<br>1.5 | 2.6<br>2.2<br>2.0<br>1.7<br>1.5 | | 26<br>27<br>28<br>29<br>30<br>31 | .22<br>.22<br>.43<br>.22<br>.73 | .22<br>.78<br>.60<br>.40<br>.59 | .63<br>.27<br>.40<br>.70<br>1.2 | .86<br>.93<br>1.8<br>.96<br>.22 | .22<br>.12<br>.04 | 1.2<br>1.2<br>1.2<br>1.2<br>1.2 | .22<br>.31<br>.87<br>1.2<br>1.1 | .22<br>.22<br>.51<br>.64<br>2.9 | 36<br>10<br>5.3<br>4.1<br>2.8 | .0<br>.0<br>.0<br>.0<br>.01<br>.02 | 1.4<br>7.1<br>5.7<br>3.8<br>1.9 | 1.4<br>1.3<br>1.1<br>1.2<br>1.0 | | TOTAL<br>MEAN<br>MAX<br>MIN<br>AC-FT<br>CFSM<br>IN. | 17.46<br>.56<br>1.4<br>.11<br>.35<br>.01 | 29.87<br>1.00<br>2.5<br>.22<br>59<br>.01 | 14.48<br>.47<br>1.2<br>.01<br>.29<br>.01 | 20.28<br>.65<br>1.8<br>.09<br>40<br>.01 | 4.87<br>.17<br>.50<br>.01<br>9.7<br>.00 | 65.88<br>2.13<br>20<br>.07<br>131<br>.02 | 24.46<br>.82<br>1.2<br>.22<br>49<br>.01 | 20.81<br>.67<br>2.9<br>.15<br>41<br>.01 | 111.62<br>3.72<br>41<br>.22<br>221<br>.04 | 100.87<br>3.25<br>43<br>.00<br>200<br>.04 | 33.30<br>1.07<br>7.1<br>.00<br>66<br>.01 | 5379.6<br>179<br>3870<br>1.0<br>10670<br>2.10<br>2.34 | CAL YR 1988 TOTAL 2875.46 MEAN 7.86 MAX 103 MIN .01 AC-FT 5700 CFSM .09 IN. 1.25 WTR YR 1989 TOTAL 5823.50 MEAN 16.0 MAX 3870 MIN .00 AC-FT 11550 CFSM .19 IN. 2.54 # 06897950 ELK CREEK NEAR DECATUR CITY, IA (Hydrologic bench-mark station) LOCATION.--Lat 40°43'18", long 93°56'12", near SE corner sec.34, T.69 N., R.27 W., Decatur County, Hydrologic Unit 10280102, at right downstream corner of bridge on county highway, 1,000 ft downstream from West Elk Creek, 5.2 mi upstream from mouth, and 5.7 mi southwest of Decatur City. DRAINAGE AREA, -- 52.5 mi<sup>2</sup>. Time 1030 Date Sept. 8 # WATER DISCHARGE RECORDS PERIOD OF RECORD. -- October 1967 to current year. Discharge (ft<sup>3</sup>/s) 991 GAGE.--Water-stage recorder. Datum of gage is 924.70 ft above NGVD. Oct. 1, 1967, to Sept. 30, 1974, at datum 10.00 ft higher. REMARKS.--Estimated daily discharges: Nov. 29 to Dec. 7, Dec. 13, 14, 16-20, 29, Jan. 1-28, Feb. 3 to Mar. 9 and May 8, 9. Records good except those for estimated daily discharges, which are poor. AVERAGE DISCHARGE.--22 years, 30.2 ft $^3$ /s, 7.81 in/yr, 21,880 acre-ft/yr; median of yearly mean discharges, 25 ft $^3$ /s, 6.5 in/yr, 18,100 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 16,400 ft<sup>3</sup>/s June 2, 1980, gage height, 28.22 ft, from rating curve extended above 5,300 ft<sup>3</sup>/s on basis of step-backwater computation; no flow at times most years. EXTREMES OUTSIDE PERIOD OF RECORD. --Flood of June 14, 1967, reached a stage of 18.35 ft, datum in use prior to Oct. 1, 1974, discharge, 17,800 ft<sup>3</sup>/s, estimated from rating curve extended above 5,300 ft<sup>3</sup>/s on basis of step-backwater computation. Flood of Aug. 6, 1959, reached a stage between 20.5 and 22.5 ft, datum in use prior to Oct. 1, 1974, 300 ft downstream, from information by assistant county engineer, discharge not determined. Date Sept. 9 Time unknown Gage height (ft) \*23.21 Discharge $(ft^3/s)$ \*6,410 EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 500 ft3/s and maximum (\*): Gage height (ft) 14.09 | No | flow many | days. | | | | | | | | | | | |-----------------------------------|---------------------------------|-----------------------------------------|------------------------------------------|-----------------------------------------|------------------------------------------|-----------------------------------------|-----------------------------------------|------------------------------------------|-----------------------------------------|----------------------------------------|------------------------------------------|--------------------------------------------------------| | | | DISCHAR | GE, CUBIC | C FEET PER | | , WATER YEAR<br>ÆAN VALUES | OCTOBER | 1988 TO | SEPTEMBER | 1989 | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | Jun | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | .13<br>.11<br>.06<br>.01 | .00<br>.00<br>.00<br>.08<br>.13 | .01<br>.00<br>.00<br>.00 | .04<br>.01<br>.00<br>.00 | .00<br>.00<br>.00<br>.00 | .00<br>.00<br>.10<br>.70 | .00<br>.00<br>.00<br>.00 | .45<br>.21<br>.19<br>.40<br>.35 | 1.0<br>.54<br>1.6<br>.66<br>.21 | .01<br>.00<br>.00<br>.00 | .39<br>.35<br>.35<br>.37<br>.26 | 2.1<br>.86<br>.82<br>17<br>9.6 | | 6<br>7<br>8<br>9<br>10 | .00<br>.00<br>.02<br>.07 | .13<br>.11<br>.10<br>.16 | .00<br>.00<br>.02<br>.01<br>.03 | .01<br>.00<br>.00<br>.00 | .00<br>.00<br>.00<br>.00 | .35<br>.25<br>.17<br>.35<br>.71 | .00<br>.00<br>.00<br>.00 | .26<br>.15<br>.01<br>.00 | .01<br>.00<br>.00<br>.00 | .00<br>.00<br>.00<br>.00 | .16<br>.16<br>.13<br>.13 | 3.3<br>2.0<br>544<br>2070<br>47 | | 11<br>12<br>13<br>14<br>15 | .02<br>.00<br>.00<br>.00 | .14<br>.23<br>.16<br>.11 | .00<br>.02<br>.01<br>.02<br>.03 | .00<br>.00<br>.00<br>.00 | .00<br>.00<br>.02<br>.01<br>.00 | 1.0<br>.10<br>.00<br>.00 | .00<br>.00<br>.00<br>.02<br>.00 | .00<br>.02<br>.01<br>.00 | .00<br>.00<br>.00<br>.00 | .16<br>.16<br>.12<br>.10<br>.24 | .00<br>.00<br>.00<br>.00 | 14<br>6.6<br>4.0<br>2.5<br>1.6 | | 16<br>17<br>18<br>19<br>20 | .00<br>.00<br>.00<br>.00 | .13<br>.10<br>.10<br>.10 | .02<br>.01<br>.00<br>.00 | .00<br>.00<br>.00<br>.00 | .00<br>.00<br>.00<br>.00 | .00<br>.00<br>.00<br>.00 | .00<br>.00<br>.01<br>.00 | .00<br>.00<br>.13<br>.36<br>.22 | .00<br>.01<br>.00<br>.00 | .22<br>.17<br>.49<br>.33 | .00<br>.00<br>.00<br>.00 | 1.1<br>.73<br>.55<br>.41 | | 21<br>22<br>23<br>24<br>25 | .04<br>.04<br>.05<br>.02<br>.02 | .08<br>.12<br>.13<br>.13 | .03<br>.05<br>.06<br>.08 | .00<br>.00<br>.00<br>.00 | .00<br>.00<br>.00<br>.00 | .00<br>.00<br>.00<br>.00 | .00<br>.00<br>.00<br>.00 | .13<br>.13<br>.09<br>.13 | .00<br>.00<br>.01<br>.00 | .30<br>.32<br>.37<br>.35<br>.30 | .00<br>.00<br>.31<br>.00 | .23<br>.12<br>.00<br>.02<br>.00 | | 26<br>27<br>28<br>29<br>30<br>31 | .00<br>.00<br>.00<br>.00<br>.00 | .18<br>.10<br>.07<br>.03<br>.02 | .06<br>.07<br>.03<br>.02<br>.09 | .00<br>.04<br>.05<br>.01<br>.00 | .00<br>.00<br>.00 | .00<br>.00<br>.00<br>.00<br>.00 | .10<br>.06<br>.09<br>.04<br>.05 | 3.0<br>.50<br>.83<br>4.6<br>1.3 | .02<br>.00<br>.00<br>.00 | .34<br>.36<br>.30<br>.38<br>.45 | .05<br>.47<br>11<br>34<br>5.5<br>2.8 | .00<br>.00<br>.00<br>.02<br>.08 | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | .022<br>.13<br>.00 | 3.23<br>.11<br>.23<br>.00<br>6.4<br>.00 | 0.82<br>.026<br>.11<br>.00<br>1.6<br>.00 | 0.18<br>.006<br>.05<br>.00<br>.4<br>.00 | 0.03<br>.001<br>.02<br>.00<br>.06<br>.00 | 4.23<br>.14<br>1.0<br>.00<br>8.4<br>.00 | 0.46<br>.015<br>.10<br>.00<br>.9<br>.00 | 28.82<br>.93<br>.15<br>.00<br>.57<br>.02 | 4.06<br>.14<br>1.6<br>.00<br>8.1<br>.00 | 6.23<br>.20<br>.49<br>.00<br>12<br>.00 | 56.51<br>1.82<br>34<br>.00<br>112<br>.03 | 2728.98<br>91.0<br>2070<br>.00<br>5410<br>1.73<br>1.93 | CAL YR 1988 TOTAL 1286.31 MEAN 3.51 MAX 80 MIN .00 AC-FT 2550 CFSM .07 IN. .91 WTR YR 1989 TOTAL 2834.24 MEAN 7.77 MAX 2070 MIN .00 AC-FT 5620 CFSM .15 IN. 2.01 GRAND RIVER BASIN 225 # 06897950 ELK CREEK NEAR DECATUR CITY, IA--Continued (Hydrologic bench-mark station) # WATER-QUALITY RECORDS PERIOD OF RECORD. -- Water years 1968 to current year. REMARKS.--Miscellaneous biological data collected September 1970 to September 1972 are available in the Iowa City district office. WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | PH<br>(STAND-<br>ARD<br>UNITS)<br>(00400) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | TEMPER-<br>ATURE<br>AIR<br>(DEG C)<br>(00020) | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | OXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION)<br>(00301) | BARO-<br>METRIC<br>PRES-<br>SURE<br>(MM<br>OF<br>HG)<br>(00025) | COLI-<br>FORM,<br>FECAL,<br>0.7<br>UM-MF<br>(COLS./<br>100 ML)<br>(31625) | |-------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------| | JUN<br>06 | 0715 | 0.01 | 660 | 8.10 | 19.0 | 14.5 | 6.7 | 4.2 | 47 | 732 | 290 | | DATE<br>JUN | STREP-<br>TOCOCCI<br>FECAL,<br>KF AGAR<br>(COLS.<br>PER<br>100 ML)<br>(31673) | HARD-<br>NESS<br>NONCARB<br>WH WAT<br>TOT FLD<br>MG/L AS<br>CACO3<br>(00902) | HARD-<br>NESS<br>TOTAL<br>(MG/L<br>AS<br>CACO3)<br>(00900) | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915) | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925) | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | SODIUM<br>PERCENT<br>(00932) | SODIUM<br>AD-<br>SORP-<br>TION<br>RATIO<br>(00931) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | ALKA-<br>LINITY<br>WAT DIS<br>TOT IT<br>FIELD<br>MG/L AS<br>CACO3<br>(39086) | CAR-<br>BONATE<br>WATER<br>DIS IT<br>FIELD<br>MG/L AS<br>CO3<br>(00452) | | 06 | 450 | 27 | 260 | 70 | 20 | 19 | 12 | 0.5 | 32 | 254 | 0 | | DATE | BICAR-<br>BONATE<br>WATER<br>DIS IT<br>FIELD<br>MG/L AS<br>HCO3<br>(00453) | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)<br>(00945) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)<br>(00950) | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2)<br>(00955) | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L)<br>(70300) | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L)<br>(70301) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>AC-FT)<br>(70303) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>DAY)<br>(70302) | NITRO-<br>GEN,<br>NO2+NO3<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00631) | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00613) | | JUN<br>06 | 310 | 35 | 42 | 0.20 | 9.7 | 480 | 375 | 0.65 | 0.01 | 0.130 | 0.070 | | DATE | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,<br>AMMONIA<br>TOTAL<br>(MG/L<br>AS N)<br>(00610) | PHOS-<br>PHOROUS<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | PHOS-<br>PHOROUS<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00666) | PHOS-<br>PHOROUS<br>TOTAL<br>(MG/L<br>AS P)<br>(00665) | ARSENIC<br>DIS-<br>SOLVED<br>(UG/L<br>AS AS)<br>(01000) | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL)<br>(01106) | BARIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS BA)<br>(01005) | BERYL-<br>LIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS BE)<br>(01010) | CADMIUM<br>DIS-<br>SOLVED<br>(UG/L<br>AS CD)<br>(01025) | CHRO-<br>MIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CR)<br>(01030) | | JUN<br>06 | 2.30 | 2.40 | 0.520 | 0.990 | 1.40 | 7 | <10 | 120 | <0.5 | <1 | <1 | | DATE | COBALT,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CO)<br>(01035) | COPPER,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CU)<br>(01040) | IRON,<br>DIS-<br>SOLVED<br>(UG/L<br>AS FE)<br>(01046) | LEAD,<br>DIS-<br>SOLVED<br>(UG/L<br>AS PB)<br>(01049) | LITHIUM<br>DIS-<br>SOLVED<br>(UG/L<br>AS LI)<br>(01130) | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(UG/L<br>AS MN)<br>(01056) | MERCURY<br>DIS-<br>SOLVED<br>(UG/L<br>AS HG)<br>(71890) | MOLYB-<br>DENUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS MO)<br>(01060) | NICKEL,<br>DIS-<br>SOLVED<br>(UG/L<br>AS NI)<br>(01065) | SELE-<br>NIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS SE)<br>(01145) | SILVER,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AG)<br>(01075) | | JUN<br>06 | 5 | 2 | 290 | 1 | 7 | 2400 | <0.1 | 20 | 10 | 1 | <1.0 | 226 # GRAND RIVER BASIN # 06897950 ELK CREEK NEAR DECATUR CITY, IA--Continued # (hydrologic bench-mark station) # WATER-QUALITY RECORDS | DATE | STRON-<br>TIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS SR)<br>(01080) | VANA-<br>DIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS V)<br>(01085) | ZINC,<br>DIS-<br>SOLVED<br>(UG/L<br>AS ZN)<br>(01090) | GROSS<br>ALPHA,<br>DIS-<br>SOLVED<br>(UG/L<br>AS<br>U-NAT)<br>(80030) | GROSS<br>ALPHA,<br>SUSP.<br>TOTAL<br>(UG/L<br>AS<br>U-NAT)<br>(80040) | GROSS<br>BETA,<br>DIS-<br>SOLVED<br>(PCI/L<br>AS<br>CS-137)<br>(03515) | GROSS BETA, DIS- SOLVED (PCI/L AS SR/ YT-90) (80050) | GROSS<br>BETA,<br>SUSP.<br>TOTAL<br>(PCI/L<br>AS<br>CS-137)<br>(03516) | GROSS<br>BETA,<br>SUSP.<br>TOTAL<br>(PCI/L<br>AS SR/<br>YT-90)<br>(80060) | RADIUM<br>226,<br>DIS-<br>SOLVED,<br>RADON<br>METHOD<br>(PCI/L)<br>(09511) | |-----------|-----------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------| | JUN<br>06 | 310 | <6 | 12 | 2.7 | 2.9 | 47 | 37 | 4.2 | 3.4 | 0.03 | # GRAND RIVER BASIN 227 # 06898000 THOMPSON RIVER AT DAVIS CITY, IA LOCATION.--Lat 40°38'25", long 93°48'29", in SE1/4 SE1/4 sec.35, T.68 N., R.26 W., Decatur County, Hydrologic Unit 10280102, on right bank 15 ft downstream from bridge on U.S. Highway 69 at Davis City, 2.6 mi upstream from Dickersons Branch, and 5.2 mi upstream from Iowa-Missouri State line. DRAINAGE AREA. -- 701 mi2. PERIOD OF RECORD. -- May 1918 to July 1925, July 1941 to current year. Monthly discharge only for some periods, published in WSP 1310. Prior to October 1918, published as "Grand River". REVISED RECORDS.--WSP 1240: 1918, 1920-21 (M), 1922-24, 1925 (M), 1946-47 (M). WSP 1440: Drainage area. WSP 1710: 1957. GAGE.--Water-stage recorder. Datum of gage is 874.04 ft above NGVD. May 14, 1918, to July 2, 1925, July 14, 1941, to Feb. 24, 1942, nonrecording gage, and Feb. 25, 1942, to Feb. 8, 1967, water-stage recorder at same site at datum 2.00 ft higher. REMARKS.--Estimated daily discharges: Oct. 5-23, Dec. 11-12, 16, 22, 28-30, Jan. 3, 8-9, Feb. 2-25, and June 3-5. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. National Weather Service Limited Automatic Remote Collector at station. AVERAGE DISCHARGE.--54 years (water years 1919-24,1942-89), 373 ft<sup>3</sup>/s, 7.23 in/yr, 270,200 acre-ft/yr; median of yearly mean discharges, 320 ft<sup>3</sup>/s, 6.2 in/yr 232,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 24,300 ft<sup>3</sup>/s June 10, 1974, gage height, 19.43 ft, from rating curve extended above 17,000 ft<sup>3</sup>/s on basis of velocity-area study; minimum daily discharge, 0.1 ft<sup>3</sup>/s June 25, 1956. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Aug. 8, 1885, reached a stage of 22.8 ft, datum in use prior to Feb. 9, 1967, from floodmark, discharge, 30,000 ft<sup>3</sup>/s, from rating curve extended as explained above. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 4,500 ft3/s and maximum (\*): | | | Discharge | Gage height | | | Discharge | Gage height | |---------|------|------------|---------------|-------------|-------------|----------------------|-------------| | Date | Time | $(ft^3/s)$ | (ft) | Date | Time | (ft <sup>3</sup> /s) | (ft) | | Sept. 9 | 1815 | *8,720 | <b>*</b> 9.76 | No other po | eak greater | than base discharge. | | Minimum daily discharge, 0.41 ft<sup>3</sup>/s Aug. 19-22. | | | DISCHAI | RGE, CUBIC | FEET PER | SECOND, | , water year<br>Mean values | OCTOBER | 1988 TO | SEPTEMBER | 1989 | | | |-----------------------------------------------------|-------------------------------------------|-------------------------------------------|------------------------------------------|------------------------------------------|--------------------------------------------------|---------------------------------------------|------------------------------------------|--------------------------------------------------|--------------------------------------------|-------------------------------------------------|---------------------------------------------------|------------------------------------------------------| | DAY | OCT | NOA | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | 6.4<br>6.5<br>7.0<br>6.2<br>5.4 | 4.5<br>5.5<br>7.4<br>11<br>16 | 12<br>12<br>11<br>10<br>8.3 | 7.3<br>6.4<br>5.9<br>6.0<br>6.4 | 217<br>27<br>4.0<br>3.2<br>3.4 | 5.7<br>5.6<br>7.2<br>11<br>21 | 13<br>12<br>12<br>12<br>11 | 11<br>15<br>18<br>24<br>24 | 51<br>34<br>29<br>25<br>22 | 41<br>23<br>15<br>13 | 3.4<br>2.8<br>2.6<br>8.3 | 18<br>8.2<br>4.9<br>5.5 | | 6<br>7<br>8<br>9<br>10 | 3.5<br>2.5<br>1.7<br>3.4<br>2.3 | 17<br>14<br>15<br>17<br>13 | 7.7<br>7.6<br>6.6<br>5.6<br>5.5 | 6.5<br>7.5<br>5.4<br>3.9<br>4.3 | 3.6<br>4.1<br>4.6<br>4.2<br>4.0 | 60<br>37<br>36<br>34<br>32 | 10<br>9.4<br>8.6<br>7.6<br>6.9 | 18<br>15<br>14<br>12<br>9.5 | 19<br>14<br>10<br>7.6<br>5.7 | 7.0<br>5.7<br>6.1<br>6.5<br>8.0 | 6.4<br>4.0<br>2.8<br>2.0<br>1.5 | 12<br>10<br>58<br>4690<br>4460 | | 11<br>12<br>13<br>14<br>15 | 1.5<br>.89<br>.80<br>.75<br>.68 | 8.3<br>13<br>27<br>8.3<br>8.9 | 4.8<br>4.9<br>5.0<br>5.7<br>5.6 | 4.8<br>4.9<br>4.8<br>4.6<br>4.2 | 9.9<br>8.0<br>6.0<br>5.4<br>5.1 | 370<br>705<br>320<br>173<br>113 | 6.8<br>6.8<br>6.4<br>6.6<br>6.4 | 7.8<br>6.5<br>5.7<br>4.9<br>4.4 | 4.9<br>4.5<br>5.8<br>12<br>8.1 | 59<br>19<br>8.3<br>7.5<br>6.8 | 1.4<br>1.2<br>.91<br>.68<br>.68 | 1980<br>664<br>379<br>270<br>209 | | 16<br>17<br>18<br>19<br>20 | 1.1<br>.86<br>1.0<br>1.3<br>1.2 | 8.1<br>41<br>60<br>40 | 4.8<br>5.4<br>5.0<br>5.4<br>7.1 | 4.1<br>4.3<br>4.5<br>4.7<br>5.5 | 4.8<br>4.5<br>4.6<br>4.8<br>5.0 | 77<br>54<br>35<br>29<br>24 | 6.8<br>6.9<br>7.2<br>7.4 | 3.6<br>3.0<br>5.2<br>8.4<br>9.3 | 6.1<br>4.6<br>5.6<br>5.0<br>3.7 | 4.7<br>6.3<br>9.8<br>7.1<br>6.0 | .62<br>.55<br>.49<br>.41 | 164<br>136<br>111<br>92<br>79 | | 21<br>22<br>23<br>24<br>25 | .86<br>1.1<br>1.3<br>1.6<br>1.3 | 23<br>36<br>26<br>18<br>13 | 7.9<br>7.0<br>7.7<br>9.0<br>8.5 | 5.4<br>4.9<br>5.1<br>5.8<br>7.7 | 5.2<br>4.9<br>4.3<br>4.6<br>4.9 | 19<br>17<br>16<br>16<br>16 | 7.5<br>7.1<br>8.1<br>7.0<br>7.2 | 9.8<br>11<br>8.2<br>6.1<br>52 | 2.9<br>2.5<br>2.3<br>2.1<br>1.7 | 5.2<br>13<br>29<br>17<br>11 | .41<br>.41<br>.75<br>3.0<br>3.0 | 68<br>58<br>47<br>39<br>35 | | 26<br>27<br>28<br>29<br>30<br>31 | .75<br>.60<br>1.7<br>1.7<br>1.5<br>2.9 | 18<br>16<br>12<br>11<br>9.6 | 7.7<br>9.2<br>7.4<br>6.8<br>7.5<br>7.7 | 8.1<br>7.5<br>9.5<br>15<br>16<br>21 | 5.2<br>5.3<br>5.8<br> | 16<br>14<br>15<br>16<br>15 | 7.1<br>6.9<br>11<br>11<br>8.0 | 83<br>33<br>44<br>75<br>96<br>87 | 2.4<br>72<br>184<br>143<br>74 | 7.9<br>5.5<br>5.0<br>7.4<br>9.8<br>5.1 | 2.8<br>10<br>33<br>176<br>108<br>28 | 31<br>28<br>26<br>23<br>22 | | TOTAL<br>MEAN<br>MAX<br>MIN<br>AC-FT<br>CFSM<br>IN. | 70.29<br>2.27<br>7.0<br>.60<br>139<br>.00 | 528.6<br>17.6<br>60<br>4.5<br>1050<br>.03 | 226.4<br>7.30<br>12<br>4.8<br>449<br>.01 | 212.0<br>6.84<br>21<br>3.9<br>421<br>.01 | 373.4<br>13.3<br>217<br>3.2<br>741<br>.02<br>.02 | 2323.5<br>75.0<br>705<br>5.6<br>4610<br>.11 | 252.1<br>8.40<br>13<br>6.4<br>500<br>.01 | 724.4<br>23.4<br>96<br>3.0<br>1440<br>.03<br>.04 | 764.5<br>25.5<br>184<br>1.7<br>1520<br>.04 | 385.7<br>12.4<br>59<br>4.7<br>765<br>.02<br>.02 | 417.52<br>13.5<br>176<br>.41<br>828<br>.02<br>.02 | 13739.6<br>458<br>4690<br>4.9<br>27250<br>.65<br>.73 | CAL YR 1988 TOTAL 29247.29 MEAN 79.9 MAX 1240 MIN .60 AC-FT 58010 CFSM .11 IN. 1.55 WTR YR 1989 TOTAL 20018.01 MEAN 54.8 MAX 4690 MIN .41 AC-FT 39710 CFSM .08 IN. 1.06 228 GRAND RIVER BASIN #### 06898400 WELDON RIVER NEAR LEON, IA LOCATION--Lat 40°41'45, long 93°38'07", in NE1/4 NE1/4 sec.17, T.68 N., R.24 W., Decatur County, Hydrologic Unit 10280102, on left bank 10 ft downstream from bridge on county highway A, 200 ft upstream from Unnamed Creek, 1.3 mi downstream from Brush Creek, and 6.5 mi southeast of post office at Leon. DRAINAGE AREA. -- 104 mi2. PERIOD OF RECORD. -- October 1958 to current year. GAGE. -- Water-stage recorder. Datum of gage is 906.26 ft above NGVD. REMARKS.--Estimated daily discharges: Nov. 28, 29, Dec. 21, 22, 28-31, Jan. 3-5, 8-10, 15-17, Feb. 1-16, Mar. 8, 9, Mar. 15 to Apr. 12, Apr. 15-17, July 11-14, 18, and Sept. 12-30. Records fair except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. AVERAGE DISCHARGE.--31 years, 68.4 ft<sup>3</sup>/s, 8.93 in/yr, 49,560 acre-ft/yr; median of yearly mean discharges, 59 ft<sup>3</sup>/s, 7.7 in/yr, 42,700 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 48,600 ft<sup>3</sup>/s Aug. 6, 1959, gage height, 25.27 ft, from rating curve extended above 5,600 ft<sup>3</sup>/s on basis of contracted-opening and flow-over-embankment measurement; no flow some years. EXTREMES OUTSIDE PERIOD OF RECORD. -- Stage and discharge of the flood of Aug. 6, 1959 are the greatest since at least 1919. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 4,500 ft3/s and maximum (\*): Discharge Gage height Date Time $(ft^3/s)$ (ft) Date Time $(ft^3/s)$ (ft) Sept. 9 0215 \*7,130 \*18.45 No other peak greater than base discharge. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 No flow Oct. 13, Apr. 22, May 16, 17, June 20-26, July 7-10, and Aug. 13-14. | | | | , | | , | EAN VALUE | S | | | | | | |-----------------------------------|----------------------------------------|------------------------------------------|-----------------------------------------|-----------------------------------------|----------------------------------------|---------------------------------------------------|-----------------------------------------|---------------------------------------------------|-------------------------------------------------|------------------------------------------|--------------------------------------------------|-------------------------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | .76<br>.09<br>.06<br>.22<br>.19 | .68<br>.60<br>.60<br>.83<br>.66 | .80<br>.80<br>.67<br>.52<br>.64 | .33<br>.72<br>.15<br>.10 | .45<br>.20<br>.09<br>.01<br>.03 | .60<br>.38<br>12<br>163<br>94 | .56<br>.46<br>.40<br>.33<br>.29 | 3.5<br>2.0<br>2.2<br>1.6<br>1.2 | 44<br>16<br>4.7<br>3.1<br>1.9 | .35<br>.13<br>.23<br>.12<br>.45 | 4.6<br>4.4<br>5.1<br>4.8<br>3.9 | 29<br>27<br>30<br>58<br>47 | | 6<br>7<br>8<br>9<br>10 | .27<br>.25<br>.36<br>1.0<br>.06 | .73<br>.74<br>.62<br>.92<br>1.9 | .67<br>1.4<br>.49<br>.44 | .68<br>1.2<br>.45<br>.14<br>.25 | .10<br>.16<br>.25<br>.15 | 36<br>17<br>5.4<br>2.9<br>17 | .26<br>.23<br>.60<br>.50 | .73<br>.53<br>.57<br>.45<br>.25 | 1.2<br>.87<br>.55<br>.33<br>.22 | .01<br>.00<br>.00<br>.00 | 3.1<br>2.4<br>1.8<br>1.6<br>1.1 | 44<br>46<br>711<br>2990<br>11 | | 11<br>12<br>13<br>14<br>15 | .03<br>.62<br>.00<br>.06<br>.10 | 1.2<br>1.9<br>1.6<br>2.2<br>1.9 | .20<br>.19<br>.34<br>.67<br>.26 | .34<br>.53<br>.33<br>.15<br>.30 | .44<br>.30<br>.15<br>.11 | 22<br>12<br>5.9<br>3.3<br>1.5 | .36<br>.30<br>.27<br>.15<br>.12 | .20<br>.19<br>.14<br>.11 | 3.1<br>3.7<br>1.5<br>.72<br>.31 | .10<br>2.0<br>1.2<br>.72<br>.41 | .58<br>.15<br>.00<br>.00 | .20<br>.15<br>.12<br>.10<br>.09 | | 16<br>17<br>18<br>19<br>20 | .07<br>.04<br>.10<br>.11<br>.27 | 2.8<br>3.6<br>1.4<br>.92<br>.63 | .21<br>.01<br>.08<br>.50 | . 23<br>. 26<br>. 29<br>. 35<br>. 33 | .10<br>.12<br>.17<br>.41<br>.55 | .80<br>.52<br>.70<br>.49<br>.80 | .10<br>.18<br>.41<br>.60<br>.52 | .00<br>.00<br>1.4<br>3.2 | .07<br>.11<br>.49<br>.17 | .88<br>.65<br>1.1<br>.53<br>.68 | .04<br>.06<br>.53<br>.78<br>1.7 | .08<br>.07<br>.07<br>.06<br>.06 | | 21<br>22<br>23<br>24<br>25 | .87<br>.25<br>.21<br>.32<br>.29 | .51<br>.51<br>.65<br>.62 | .39<br>.50<br>.66<br>1.1<br>.49 | .93<br>1.6<br>.76<br>.42<br>1.3 | .33<br>.23<br>.13<br>.11<br>.24 | .64<br>.52<br>.45<br>.40 | .09<br>.00<br>.05<br>.04<br>.09 | 12<br>21<br>27<br>38<br>76 | .00<br>.00<br>.00<br>.00 | . 54<br>. 53<br>. 74<br>. 84<br>. 62 | 1.7<br>1.9<br>9.8<br>19<br>27 | .05<br>.05<br>.05<br>.04 | | 26<br>27<br>28<br>29<br>30<br>31 | .18<br>.18<br>.16<br>.19<br>.38 | 2.9<br>1.3<br>.70<br>.58<br>.98 | .71<br>1.5<br>.30<br>.10<br>.15 | 1.2<br>.84<br>.93<br>1.5<br>.68<br>1.2 | .56<br>.93<br>.68<br> | .31<br>.33<br>.92<br>.80<br>.60 | .19<br>.25<br>1.2<br>.43<br>.61 | 43<br>17<br>63<br>147<br>23<br>6.1 | .00<br>.02<br>.10<br>.07<br>.17 | .63<br>.65<br>7.1<br>5.7<br>6.6<br>5.0 | 36<br>63<br>65<br>75<br>29<br>74 | .04<br>.04<br>.03<br>.03<br>.05 | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 8.02<br>.26<br>1.0<br>.00<br>16<br>.00 | 36.58<br>1.22<br>3.6<br>.51<br>73<br>.01 | 16.99<br>.55<br>1.5<br>.01<br>34<br>.01 | 18.82<br>.61<br>1.6<br>.10<br>37<br>.01 | 7.18<br>.26<br>.93<br>.01<br>14<br>.00 | 402.37<br>13.0<br>163<br>.31<br>798<br>.12<br>.14 | 10.00<br>.33<br>1.2<br>.00<br>20<br>.00 | 503.40<br>16.2<br>147<br>.00<br>998<br>.16<br>.18 | 83.40<br>2.78<br>44<br>.00<br>165<br>.03<br>.03 | 38.51<br>1.24<br>7.1<br>.00<br>76<br>.01 | 438.12<br>14.1<br>75<br>.00<br>869<br>.14<br>.16 | 3994.42<br>133<br>2990<br>.03<br>7920<br>1.28<br>1.43 | CAL YR 1988 TOTAL 2641.94 MEAN 7.22 MAX 304 MIN .00 AC-FT 5240 CFSM .07 IN. .95 WTR YR 1989 TOTAL 5557.81 MEAN 15.2 MAX 2990 MIN .00 AC-FT 11020 CFSM .15 IN. 1.99 CHARITON RIVER BASIN 229 #### 06903400 CHARITON RIVER NEAR CHARITON, IA CATION.--Lat 40°57'12", long 93°15'37", in SW1/4 NE1/4 sec.15, T.71 N., R.21 W., Lucas County, Hydrologic Unit 10280201, on right bank 15 ft downstream from bridge on county highway S43, 0.4 mi downstream from Wolf Creek and 5.0 mi southeast of Chariton. LOCATION .-- Lat 40°57'12", DRAINAGE AREA. -- 182 mi2. PERIOD OF RECORD. --October 1965 to current year. Occasional low-flow measurements, water years 1958-60, 1962, 1964. GAGE. -- Water-stage recorder. Datum of gage is 917.90 ft above NGVD (U.S. Army Corps of Engineers bench mark). REMARKS.--Estimated daily discharges: Oct. 8-11, 20-24, Nov. 4-25, Nov. 28 to Mar. 14, Mar. 23 to Apr. 27, Apr. 29, 30, May 7-17, 21-26, June 16, 17, July 15-17, July 21 to Aug. 1, Aug. 23, 27, Sept. 4-7, and Sept. 23. Records fair except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers data collection platform at station. AVERAGE DISCHARGE.--24 years, 113 ft<sup>3</sup>/s, 8. 92.0 ft<sup>3</sup>/s, 6.9 in/yr, 66,600 acre-ft/yr. 8.43 in/yr, 81,870 acre-ft/yr; median of yearly mean discharges, EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 16,600 ft<sup>3</sup>/s July 4, 1981, gage height, 23.14 ft; no flow at times during some years. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in March 1960 reached a stage of about 23 ft, discharge, about 15,000 ft<sup>3</sup>/s and flood of June 5, 1947 reached a stage of 21.65 ft, from floodmark, discharge, 11,000 ft<sup>3</sup>/s. A discharge of 0.08 ft<sup>3</sup>/s was measured on Oct. 30, 1963. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,600 ft<sup>3</sup>/s and maximum (\*): | | | Discharge | Gage height | | | Discharge | Gage height | |---------|------|------------|-------------|------|------|----------------------|-------------| | Date | Time | $(ft^3/s)$ | (ft) | Date | Time | (ft <sup>3</sup> /s) | (ft) | | Sept. 9 | 1445 | *1,200 | *15.01 | | | | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 No flow many days. | | | DISCHAR | GE, CUBIC | , FEE1 FER | SECOND, | ÆAN VALUE | KK OCTOBE | W 1900 I | ) SEPTEMBE. | K 1909 | | | |-----------------------------------|-----------------------------------------|----------------------------------------|------------------------------------------|----------------------------------------|----------------------------------------|-------------------------------------------|------------------------------------------|----------------------------------------------------|-------------------------------------------|-----------------------------------------|-----------------------------------------|----------------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | 1.3<br>.77<br>.45<br>.33<br>.25 | .00<br>.00<br>.00<br>.01 | .09<br>.05<br>.08<br>.07 | .12<br>.08<br>.07<br>.11<br>.19 | 1.2<br>.40<br>.15<br>.06 | .16<br>.13<br>.20<br>20 | .20<br>.10<br>.09<br>.08 | 1.4<br>2.4<br>1.1<br>.80<br>.79 | 36<br>57<br>54<br>28<br>12 | .58<br>.46<br>.18<br>.06 | .01<br>.00<br>.00<br>.00 | 2.1<br>1.2<br>1.1<br>.60<br>.40 | | 6<br>7<br>8<br>9<br>10 | .19<br>.14<br>.09<br>.05 | .01<br>.01<br>.01<br>.01 | .10<br>.08<br>.06<br>.05 | .25<br>.20<br>.12<br>.07<br>.09 | .08<br>.12<br>.10<br>.17<br>.22 | 11<br>14<br>16<br>11<br>8.0 | .07<br>.06<br>.09<br>.07 | .71<br>.45<br>.30<br>.19 | 6.8<br>3.2<br>1.4<br>1.1<br>.98 | .00<br>.00<br>.00<br>.00 | .00<br>.00<br>.00<br>.00 | .30<br>.40<br>8.9<br>904<br>512 | | 11<br>12<br>13<br>14<br>15 | .00<br>.00<br>.00<br>.00 | .01<br>.02<br>.03<br>.02<br>.04 | .03<br>.02<br>.03<br>.04 | .13<br>.17<br>.12<br>.13<br>.13 | .24<br>.23<br>.27<br>.25<br>.21 | 11<br>14<br>13<br>11<br>9.9 | .04<br>.03<br>.03<br>.02<br>.02 | .08<br>.05<br>.04<br>.03 | 1.4<br>2.0<br>6.2<br>3.1<br>1.1 | .10<br>.27<br>.18<br>.03<br>.02 | .00<br>.00<br>.00<br>.00 | 494<br>173<br>41<br>20<br>9.5 | | 16<br>17<br>18<br>19<br>20 | .00<br>.00<br>.00<br>.00 | .07<br>.04<br>.03<br>.02 | .02<br>.02<br>.05<br>.08<br>.11 | . 14<br>. 17<br>. 21<br>. 23<br>. 15 | .22<br>.20<br>.18<br>.18 | 7.3<br>5.3<br>4.5<br>3.5<br>2.8 | .01<br>.01<br>.04<br>.03 | .02<br>.01<br>.52<br>.90<br>1.0 | .70<br>.50<br>1.3<br>1.3 | .01<br>.01<br>.28<br>.19 | .00<br>.00<br>.00<br>.00 | 4.3<br>1.6<br>.41<br>.13<br>.27 | | 21<br>22<br>23<br>24<br>25 | .01<br>.02<br>.01<br>.01 | .02<br>.01<br>.01<br>.01 | .07<br>.08<br>.11<br>.15 | .11<br>.09<br>.17<br>.25<br>.27 | .19<br>.16<br>.15<br>.17 | 2.1<br>1.8<br>1.2<br>.90<br>.66 | .02<br>.02<br>.02<br>.02<br>.02 | .60<br>.20<br>.10<br>.30 | .97<br>.89<br>.65<br>.52<br>.69 | .04<br>.02<br>.08<br>.35<br>.22 | .00<br>.00<br>.70<br>.45 | .30<br>.27<br>.15<br>.04<br>.05 | | 26<br>27<br>28<br>29<br>30<br>31 | .00<br>.00<br>.00<br>.00<br>.00 | 1.9<br>2.9<br>1.2<br>.25<br>.35 | .13<br>.20<br>.15<br>.12<br>.14 | .23<br>.21<br>.17<br>.50<br>1.7<br>2.3 | .27<br>.22<br>.20 | .47<br>.35<br>.40<br>.30<br>.24 | .01<br>.01<br>.38<br>.25<br>.15 | .70<br>3.1<br>108<br>472<br>238<br>69 | .98<br>1.1<br>1.0<br>.97<br>.81 | .12<br>.07<br>.04<br>.02<br>.02 | .35<br>.10<br>.13<br>.18<br>.14 | .14<br>.12<br>.02<br>.07<br>.07 | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 3.65<br>.12<br>1.3<br>.00<br>7.2<br>.00 | 7.14<br>.24<br>2.9<br>.00<br>14<br>.00 | 2.55<br>.082<br>.20<br>.02<br>5.1<br>.00 | 8.88<br>.29<br>2.3<br>.07<br>18<br>.00 | 6.27<br>.22<br>1.2<br>.05<br>12<br>.00 | 198.41<br>6.40<br>27<br>.13<br>394<br>.04 | 2.04<br>.068<br>.38<br>.01<br>4.0<br>.00 | 903.93<br>29.2<br>472<br>.01<br>1790<br>.16<br>.18 | 227.86<br>7.60<br>57<br>.50<br>452<br>.04 | 3.47<br>.11<br>.58<br>.00<br>6.9<br>.00 | 3.23<br>.10<br>.87<br>.00<br>6.4<br>.00 | 2176.44<br>72.5<br>904<br>.02<br>4320<br>.40 | **CAL YR 1988** TOTAL 4300.63 MEAN 11.8 MAX 200 MIN .00 AC-FT 8530 CFSM .06 IN. .88 TOTAL 3543.87 MEAN 9.71 MAX 904 MIN .00 AC-FT 7030 CFSM .05 IN. .72 WTR YR 1989 # CHARITON RIVER BASIN # 06903700 SOUTH FORK CHARITON RIVER NEAR PROMISE CITY, IA LOCATION.--Lat 40°48'02", long 93°11'32", in SW1/4 SW1/4 sec.5, T.69 N., R.20 W., Wayne County, Hydrologic Unit 10280201, on right bank 20 ft downstream from bridge on county highway S50, 1.3 mi downstream from Jordan Creek and 4.3 mi northwest of Promise City. DRAINAGE AREA. -- 168 mi2. PERIOD OF RECORD. --October 1967 to current year. Occasional low-flow measurements, water years 1958-66, published as "near Bethlehem". Monthly discharge measurements for March 1965 to September 1967 available in files of Iowa City district office. GAGE. -- Water-stage recorder. Datum of gage is 913.70 ft above NGVD (U.S. Army Corps of Engineers bench mark). REMARKS.--Estimated daily discharges: Oct.1 to Apr. 26, Apr. 29 to May 23, June 1-10, and July 15 to Aug. 22. Records poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers satellite data collection platform at station. AVERAGE DISCHARGE.--22 years, 111 $ft^3/s$ , 8.97 in/yr, 80,420 acre-ft/yr; median of yearly mean discharges, 100 $ft^3/s$ , 8.1 in/yr, 72,400 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 28,000 ft<sup>3</sup>/s July 4, 1981, gage height, 29.95 ft; no flow at times during a few years. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Sept. 21, 1965, reached a stage of 25.5 ft, from floodmarks, discharge, about 18,000 ft<sup>3</sup>/s. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 2,000 ft3/s and maximum (\*): | | | Discharge | Gage height | | | Discharge | Gage height | |---------|------|------------|-------------|------|------|------------|-------------| | Date | Time | $(ft^3/s)$ | (ft) | Date | Time | $(ft^3/s)$ | (ft) | | Sept. 9 | 1230 | *1,770 | *12.40 | | | | | No flow July 9, 10, Aug. 14, and Aug. 18-22. | | | DISCHARG | E, CUBIC | FEET PER | SECOND, | WATER YEAR<br>EAN VALUES | ОСТОВЕ | R 1988 TO | SEPTEMBER | 1989 | | | |-----------------------------------|-----------------------------------------|------------------------------------------|-----------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|-------------------------------------------|-----------------------------------------------------|-------------------------------------------|-------------------------------------------|--------------------------------------------|------------------------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1<br>2<br>3<br>4<br>5 | .25<br>.20<br>.16<br>.14<br>.12 | .04<br>.03<br>.02<br>.01 | 1.4<br>.26<br>.60<br>.40 | .80<br>.64<br>.52<br>.45<br>.68 | 2.0<br>1.5<br>1.1<br>.80<br>.60 | .82<br>.70<br>.60<br>15<br>7.0 | 1.4<br>2.0<br>3.0<br>2.0<br>1.5 | 9.0<br>7.0<br>5.2<br>8.0<br>4.0 | 9.0<br>4.5<br>7.0<br>2.5<br>1.6 | .40<br>.62<br>.37<br>.25 | .50<br>.25<br>.19<br>1.0<br>.40 | 18<br>8.1<br>4.2<br>5.4<br>3.6 | | 6<br>7<br>8<br>9<br>10 | .11<br>.10<br>.09<br>.08<br>.33 | .03<br>.02<br>.01<br>.01 | .70<br>.40<br>.25<br>.19<br>.16 | .90<br>.70<br>.55<br>.45<br>.54 | 1.1<br>.90<br>.72<br>.64<br>.80 | 4.5<br>3.0<br>2.5<br>2.2<br>4.0 | 1.3<br>1.2<br>1.1<br>3.5<br>1.5 | 1.6<br>1.0<br>.60<br>.45 | 1.1<br>.86<br>1.3<br>.80<br>.60 | .07<br>.04<br>.03<br>.00 | .25<br>.16<br>.10<br>.06 | 2.9<br>3.1<br>15<br>1310<br>415 | | 11<br>12<br>13<br>14<br>15 | .22<br>.15<br>.10<br>.07 | .01<br>.04<br>.10<br>.25<br>.43 | .15<br>.14<br>.13<br>.25<br>.17 | .40<br>.34<br>.31<br>.31 | 1.0<br>1.3<br>1.6<br>1.0 | 8.0<br>5.6<br>4.0<br>3.0<br>2.4 | 1.2<br>1.0<br>.80<br>.70<br>.65 | .27<br>.21<br>.17<br>.14<br>.12 | 37<br>66<br>78<br>12<br>3.8 | .39<br>5.9<br>3.6<br>1.4<br>.30 | .03<br>.02<br>.01<br>.0 | 113<br>58<br>31<br>20<br>14 | | 16<br>17<br>18<br>19<br>20 | .05<br>.04<br>.03<br>.02<br>.20 | 1.5<br>.80<br>.48<br>.32<br>.27 | .12<br>.17<br>.22<br>.31<br>.45 | .40<br>.50<br>.80<br>1.2<br>.80 | .90<br>.72<br>.54<br>.47 | 1.9<br>2.5<br>1.8<br>1.6<br>1.9 | .58<br>.55<br>1.3<br>.80<br>.70 | .11<br>.10<br>15<br>7.0<br>3.0 | 1.8<br>1.2<br>1.5<br>1.3 | 1.0<br>.30<br>.18<br>7.0<br>3.5 | .02<br>.01<br>.0<br>.0 | 7.8<br>6.2<br>3.6<br>2.1 | | 21<br>22<br>23<br>24<br>25 | .09<br>.60<br>.42<br>.30<br>.22 | .24<br>.22<br>.20<br>.23<br>.90 | .30<br>.22<br>.18<br>1.8<br>1.3 | .60<br>.50<br>1.5<br>1.1<br>.83 | .40<br>.54<br>.47<br>.41<br>.63 | 1.7<br>1.8<br>2.0<br>1.7<br>1.5 | .60<br>.52<br>.48<br>.43<br>.38 | 1.5<br>1.0<br>.70<br>108<br>140 | 1.0<br>.61<br>.42<br>.24<br>.26 | 1.5<br>.80<br>.50<br>9.0<br>3.5 | .0<br>.0<br>3.1<br>1.2<br>.63 | 1.6<br>1.4<br>1.0<br>.69<br>.47 | | 26<br>27<br>28<br>29<br>30<br>31 | .15<br>.11<br>.08<br>.07<br>.06 | 2.0<br>6.0<br>3.0<br>2.0<br>3.5 | 1.2<br>2.0<br>.80<br>.60<br>.78 | 1.8<br>1.5<br>2.5<br>1.9<br>2.6<br>3.1 | .84<br>1.2<br>1.0 | 3.0<br>2.5<br>5.0<br>3.5<br>2.1<br>1.6 | .35<br>1.1<br>2.9<br>1.7<br>1.0 | 105<br>78<br>164<br>340<br>40<br>7.3 | .39<br>2.3<br>1.7<br>1.0<br>.59 | 1.5<br>.60<br>.40<br>.30<br>2.0<br>2.5 | .94<br>.89<br>18<br>102<br>110<br>45 | .28<br>.32<br>.27<br>.31<br>.25 | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 4.67<br>.15<br>.60<br>.02<br>9.3<br>.00 | 22.69<br>.76<br>6.0<br>.01<br>.45<br>.00 | 17.00<br>.55<br>2.0<br>.12<br>34<br>.00 | 29.57<br>.95<br>3.1<br>.31<br>.59<br>.01 | 24.69<br>.88<br>2.0<br>.40<br>.49<br>.01 | 99.42<br>3.21<br>15<br>.60<br>197<br>.02 | 36.24<br>1.21<br>3.5<br>.35<br>.72<br>.01 | 1048.82<br>33.8<br>340<br>.10<br>2080<br>.20<br>.23 | 241.67<br>8.06<br>78<br>.24<br>479<br>.05 | 48.07<br>1.55<br>9.0<br>.00<br>.95<br>.01 | 284.83<br>9.19<br>110<br>.00<br>565<br>.05 | 2058.59<br>68.6<br>1310<br>.25<br>4080<br>.41<br>.46 | CAL YR 1988 TOTAL 4035.91 MEAN 11.0 MAX 145 MIN .01 AC-FT 8010 CFSM .07 IN. .89 WTR YR 1989 TOTAL 3916.26 MEAN 10.7 MAX 1310 MIN .00 AC-FT 7770 CFSM .06 IN. .87 06903880 RATHBUN LAKE NEAR RATHBUN, IA 231 CATION.--Lat 40°49'30", long 92°53'33", in NW1/4 NE1/4 sec.35, T.70 N., R.18 W., Appanoose County, Hydrologic Unit 10280201, at control tower of Rathbun Dam, 1.8 mi north of Rathbun and 3.9 mi upstream from Walnut Creek and at mile 142.3. LOCATION .-- Lat 40°49'30". DRAINAGE AREA. -- 549 mi<sup>2</sup>. PERIOD OF RECORD. -- October 1969 to current year. GAGE. -- Water-stage recorder. Datum of gage is at NGVD. REMARKS.--Reservoir is formed by earthfill dam completed in 1969. Storage began in November 1969. Release is controlled by two hydraulically controlled slide gages, 6 ft wide and 12 ft high, into forechamber of an 11-ft diameter horseshoe conduit through the dam. No dead storage. Maximum design discharge through gates is 5,000 ft<sup>3</sup>/s. Uncontrolled notch spillway is concrete overflow section 500 ft in length, located about 3,000 ft west of the right abutment of the dam and provides emergency discharge into the adjacent drainage area of Little Walnut Creek. Uncontrolled notch spillway is at elevation 926 ft, contents 545,621 acre-ft, surface area, 20,974 acres. Conservation pool level is at elevation 904.0 ft, contents 199,830 acre-ft, surface area, 10,989 acres. Reservoir is used for flood control, low-flow augumentation, conservation and recreation. COOPERATION .-- Records provided by U.S. Army Corps of Engineers. EXTREMES FOR PERIOD OF RECORD.--Maximum daily contents, 514,000 acre-ft July 22, 23, 1982; maximum elevation, 924.46 ft July 22, 1982; minimum daily contents, 100 acre-ft Oct. 1-15, Nov. 17-21, 1969; minimum elevation, 855.40 ft Oct. 6-10, 1969. EXTREMES FOR CURRENT YEAR.--Maximum daily contents, 177,000 acre-ft Oct. 1; maximum elevation 901.90 ft Oct. 1; minimum daily contents, 156,000 acre-ft Aug. 22-23; minimum elevation, 899.76 ft Aug. 22-23. Capacity table (elevation, in feet, and contents, in acre-feet) | 860 | 150 | 880 | 31,900 | 905 | 211,000 | |-----|--------|-----|----------------|-----|---------| | 862 | 226 | 885 | <b>52</b> ,700 | 910 | 272,600 | | 865 | 950 | 890 | 80,300 | 915 | 345,000 | | 870 | 5.870 | 895 | 115,600 | 920 | 428,900 | | 875 | 17,000 | 900 | 158,800 | 925 | 524.900 | # RESERVOIR STORAGE (ACRE-FEET), WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 OBSERVATION AT 08:00 VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|----------------------------------------------------------|------------------------------------------------|------------------------------------------------|----------------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|----------------------------------------------------------|------------------------------------------------|------------------------------------------------|----------------------------------------------------------|------------------------------------------------| | 1<br>2<br>3<br>4<br>5 | 177000<br>177000<br>177000<br>177000<br>176000 | 171000<br>171000<br>170000<br>171000<br>171000 | 170000<br>170000<br>170000<br>170000<br>170000 | 168000<br>168000<br>168000<br>168000<br>168000 | 168000<br>167000<br>167000<br>167000<br>167000 | 166000<br>166000<br>166000<br>166000 | 166000<br>166000<br>166000<br>166000 | 164000<br>164000<br>164000<br>164000<br>164000 | 166000<br>166000<br>167000<br>166000<br>166000 | 164000<br>164000<br>164000<br>164000<br>163000 | 161000<br>160000<br>160000<br>160000<br>160000 | 159000<br>158000<br>158000<br>158000<br>158000 | | 6<br>7<br>8<br>9<br>10 | 176000<br>176000<br>176000<br>176000<br>175000 | 172000<br>170000<br>170000<br>170000<br>171000 | 170000<br>170000<br>170000<br>169000<br>169000 | 168000<br>168000<br>168000<br>168000<br>168000 | 167000<br>167000<br>167000<br>166000<br>166000 | 166000<br>166000<br>166000<br>166000 | 166000<br>165000<br>165000<br>165000<br>165000 | 164000<br>164000<br>164000<br>163000<br>163000 | 166000<br>166000<br>166000<br>166000<br>166000 | 163000<br>163000<br>163000<br>163000<br>162000 | 160000<br>160000<br>159000<br>159000<br>159000 | 158000<br>158000<br>159000<br>162000<br>163000 | | 11<br>12<br>13<br>14<br>15 | 175000<br>175000<br>175000<br>175000<br>174000 | 170000<br>170000<br>171000<br>171000<br>170000 | 169000<br>169000<br>169000<br>169000<br>169000 | 168000<br>167000<br>167000<br>167000<br>167000 | 166000<br>166000<br>166000<br>167000<br>167000 | 166000<br>166000<br>166000<br>166000<br>167000 | 165000<br>165000<br>165000<br>165000<br>165000 | 162000<br>162000<br>162000<br>162000<br>162000 | 166000<br>166000<br>166000<br>166000<br>166000 | 162000<br>163000<br>163000<br>163000<br>163000 | 159000<br>158000<br>158000<br>158000<br>158000 | 165000<br>167000<br>167000<br>168000<br>168000 | | 16<br>17<br>18<br>19<br>20 | 174000<br>174000<br>174000<br>174000<br>173000 | 172000<br>171000<br>171000<br>171000<br>171000 | 169000<br>169000<br>168000<br>168000<br>168000 | 167000<br>167000<br>167000<br>167000<br>167000 | 167000<br>166000<br>166000<br>166000<br>166000 | 166000<br>166000<br>166000<br>166000 | 165000<br>164000<br>164000<br>164000<br>164000 | 162000<br>162000<br>161000<br>162000<br>162000 | 165000<br>165000<br>165000<br>165000<br>165000 | 163000<br>162000<br>163000<br>163000<br>162000 | 158000<br>157000<br>157000<br>157000<br>157000 | 167000<br>167000<br>167000<br>167000<br>167000 | | 21<br>22<br>23<br>24<br>25 | 173000<br>173000<br>173000<br>173000<br>172000 | 170000<br>170000<br>170000<br>170000<br>170000 | 168000<br>168000<br>168000<br>168000<br>168000 | 167000<br>167000<br>167000<br>167000<br>167000 | 166000<br>166000<br>166000<br>166000 | 166000<br>166000<br>166000<br>166000 | 164000<br>164000<br>164000<br>164000<br>164000 | 162000<br>162000<br>162000<br>161000<br>162000 | 165000<br>165000<br>164000<br>164000<br>164000 | 162000<br>162000<br>161000<br>161000<br>161000 | 157000<br>156000<br>156000<br>157000<br>157000 | 167000<br>167000<br>167000<br>166000<br>166000 | | 26<br>27<br>28<br>29<br>30<br>31 | 172000<br>172000<br>172000<br>171000<br>171000<br>171000 | 170000<br>171000<br>171000<br>170000<br>170000 | 167000<br>168000<br>168000<br>168000<br>168000 | 167000<br>167000<br>167000<br>167000<br>167000<br>167000 | 166000<br>166000<br>166000 | 166000<br>166000<br>166000<br>166000<br>166000 | 164000<br>164000<br>164000<br>164000<br>164000 | 163000<br>162000<br>162000<br>163000<br>165000<br>166000 | 164000<br>165000<br>165000<br>164000<br>164000 | 161000<br>161000<br>161000<br>161000<br>161000 | 157000<br>158000<br>158000<br>159000<br>158000<br>159000 | 166000<br>165000<br>165000<br>165000<br>165000 | | MEAN<br>MAX<br>MIN | 174000<br>177000<br>171000 | 171000<br>172000<br>170000 | 169000<br>170000<br>167000 | 167000<br>168000<br>167000 | 166000<br>168000<br>166000 | 166000<br>167000<br>166000 | 165000<br>166000<br>164000 | 163000<br>166000<br>161000 | 165000<br>167000<br>164 <b>0</b> 00 | 162000<br>164000<br>161000 | 158000<br>161000<br>156000 | 164000<br>168000<br>158000 | MEAN 189000 MAX 218000 MIN 167000 MEAN 166000 MAX 177000 MIN 156000 CAL YR 1988 WTR YR 1989 # CHARITON RIVER BASIN # 06903900 CHARITON RIVER NEAR RATHBUN, IA LOCATION.--Lat 40°49'22", long 92°53'22", in SE1/4 NE1/4 sec.35, T.70 N., R.18 W., Appanoose County, Hydrologic Unit 10280201, on left bank 600 ft downstream from outlet of Rathbun Dam, 1.8 mi north of Rathbun and 3.7 mi upstream from Walnut Creek and at mile 142.1. DRAINAGE AREA . -- 549 mi 2. PERIOD OF RECORD. --October 1956 to current year. Monthly discharge only for some periods, published in WSP 1730. REVISED RECORDS. --WSP 1560: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 847.92 ft above NGVD. Prior to Nov. 16, 1960, nonrecording gage and Nov. 17, 1960, to Sept. 30, 1969, recording gage, at site 3.1 mi downstream at datum 4.65 ft lower. REMARKS.--Estimated daily discharges: Nov. 15-16, 27, Dec. 14-15, 27-28, Jan. 7-8, Feb. 2-3, June 25-28, July 30 to Aug. 2, Aug. 29 to Sept. 10, and 24-30. Records fair. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers gage-height telemeter at station. Flow regulated by Rathbun Reservoir (station 06903880) since Nov. 21, 1969. Records of discharge include diversion of: | Date | | Discharge | Date | Discharge | |------|------------|------------|-------------------|------------| | | | $(ft^3/s)$ | | $(ft^3/s)$ | | Oct. | 1 - May 15 | 9 | May 16 - Sept. 30 | 11 | The diversion goes from the reservoir through fish ponds on left bank downstream from dam. Diverted flow returns to stream 0.1 mi downstream from gage. Rathbun Regional Water Association permit No. 3663 allows withdrawal from Rathbun Dam discharge immediately downstream from gage for maximum rate of 4,200 gpm (9.36 ft<sup>3</sup>/s) and maximum quantity of 638 million gallons per year (1,955 acre-ft). AVERAGE DISCHARGE.--33 years, 336 ft<sup>3</sup>/s, 8.31 in/yr, (unadjusted) 243,400 acre-ft/yr; median of yearly mean discharges, 270 ft<sup>3</sup>/s, 6.7 in/yr, 196,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 21,800 ft<sup>3</sup>/s Mar. 31, 1960, gage height, 25.3 ft from flood-mark, site and datum then in use; no flow Oct. 26, 1977. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 320 ft<sup>3</sup>/s June 1, gage height, 5.98 ft; minimum daily discharge, 15 ft<sup>3</sup>/s Nov. 10. DISCHARGE CURIC FEET PER SECOND WATER VEAR OCTORER 1988 TO SEPTEMBER 1989 | | | DISCHAR | GE, CUBIC | FEET PER | ( SECOND,<br>MI | WATER YEA<br>EAN VALUES | AR OCTOBER | K 1988 TO | SEPTEMBER | K 1888 | | | |------------------|------|---------|-----------|----------|-----------------|-------------------------|------------|-----------|------------|----------|------|----------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 21 | 19 | 16 | 18 | 18 | 18 | 20 | 20 | 46 | 23 | 24 | 24 | | 2 | 21 | 19 | 16 | 18 | 18 | 18 | 20 | 20 | 23 | 23 | 24 | 24 | | 3 | 21 | 19 | 16 | 18 | 18 | 18 | 20 | 20 | 23 | 23 | 24 | 24 | | 2<br>3<br>4 | 21 | 19 | 16 | 18 | 18 | 18 | 20 | 20 | 23 | 23 | 24 | 24 | | 5 | 21 | 19 | 16 | 18 | 18 | 18 | 20 | 20 | 22 | 23 | 24 | 24<br>24 | | 6<br>7<br>8<br>9 | 21 | 19 | 16 | 18 | 18 | 18 | 19 | 20 | 21 | 23<br>23 | 24 | 24<br>24 | | 7 | 20 | 18 | 16 | 18 | 18 | 18 | 20 | 20 | 22 | 23 | 24 | 24 | | 8 | 19 | 16 | 16 | 18 | 18 | 18 | 20 | 20 | 22 | 23 | 24 | 24 | | 9 | 19 | 16 | 18 | 18 | 18 | 18 | 20 | 20 | <b>2</b> 3 | 23 | 24 | 24<br>24 | | 10 | 19 | 15 | 20 | 18 | 18 | 18 | 19 | 20 | 23 | 23 | 24 | 24 | | 11 | 19 | 16 | 20 | 18 | 18 | 18 | 20 | 21 | 23 | 23 | 24 | 24 | | 12 | 19 | 15 | 20 | 18 | 18 | 18 | 20 | 21 | 23 | 23 | 24 | 24 | | 13 | 19 | 16 | 20 | 18 | 18 | 18 | 20 | 21 | 23 | 23 | 24 | 24 | | 14 | 18 | 16 | 18 | 18 | 18 | 18 | 20 | 21 | 23 | 23 | 24 | 24 | | 15 | 19 | 16 | 17 | 18 | 18 | 18 | 20 | 21 | 23 | 24 | 24 | 24 | | 16 | 19 | 16 | 17 | 18 | 18 | 18 | 20 | 23 | 21 | 24 | 24 | 24 | | 17 | 19 | 16 | 18 | 18 | 18 | 18 | 20 | 23 | 23 | 24 | 24 | 24 | | 18 | 19 | 16 | 18 | 18 | 18 | 18 | 20 | 23 | 23 | 24 | 24 | 24 | | 19 | 19 | 16 | 18 | 18 | 18 | 18 | 20 | 23 | 21 | 24 | 24 | 24 | | 20 | 19 | 16 | 18 | 18 | 18 | 18 | 20 | 23 | 23 | 24 | 24 | 24 | | 21 | 19 | 16 | 18 | 18 | 18 | 18 | 20 | 23 | 23 | 24 | 24 | 24 | | 22 | 19 | 16 | 18 | 18 | 18 | 18 | 20 | 23 | 21 | 24 | 24 | 24 | | 23 | 19 | 16 | 18 | 18 | 18 | 19 | 20 | 23 | 23 | 24 | 24 | 24 | | 24 | 19 | 16 | 18 | 18 | 18 | 20 | 20 | 23 | 23 | 24 | 24 | 23<br>22 | | 25 | 19 | 16 | 18 | 18 | 18 | 20 | 20 | 23 | 23 | 24 | 24 | | | 26 | 19 | 16 | 18 | 18 | 18 | 20 | 20 | 23 | 23 | 24 | 24 | 22<br>22<br>22<br>22<br>22 | | 27 | 19 | 16 | 17 | 18 | 18 | 20 | 20 | 23 | 23 | 24 | 24 | 22 | | 28 | 19 | 16 | 17 | 18 | 18 | 20 | 20 | 23 | 23 | 24 | 24 | 22 | | 29 | 19 | 16 | 17 | 18 | | 20 | 20 | 23 | 23 | 24 | 24 | 22 | | 30<br>31 | 19 | 16 | 18 | 18 | | 20 | 20 | 23 | 23 | 24 | 24 | 22 | | 31 | 19 | | 18 | 18 | | 20 | | 29 | | 24 | 24 | | | TOTAL | 601 | 498 | 545 | 558 | 504 | 575 | 598 | 679 | 702 | 730 | 744 | 707 | | MEAN | 19.4 | 16.6 | 17.6 | 18.0 | 18.0 | 18.5 | 19.9 | 21.9 | 23.4 | 23.5 | 24.0 | 23.6 | | MAX | 21 | 19 | 20 | 18 | 18 | 20 | 20 | 29 | 46 | 24 | 24 | 24<br>22 | | MIN | 18 | 15 | 16 | 18 | 18 | 18 | 19 | 20 | 21 | 23 | 24 | 22 | | AC-FT | 1190 | 988 | 1080 | 1110 | 1000 | 1140 | 1190 | 1350 | 1390 | 1450 | 1480 | 1400 | CAL YR 1988 TOTAL 28243 MEAN 77.2 MAX 956 MIN 15 AC-FT 56020 WTR YR 1989 TOTAL 7441 MEAN 20.4 MAX 46 MIN 15 AC-FT 14760 233 CHARITON RIVER BASIN #### 06904010 CHARITON RIVER NEAR MOULTON, IA LOCATION.--Lat 40°41'30", long 92°46'15", in SE1/4 NE1/4 sec.14, T.68N., R.17W., Appanoose County, Hydrologic Unit 10280201, on right bank 6 ft downstream from bridge on county highway J45, 0.7 mi downstream from Hickory Creek, 5.0 mi west of Moulton, 8.0 mi upstream from Iowa-Missouri border, 20.8 mi downstream from Rathbun Dam, and at mile 121.5. DRAINAGE AREA. -- 740 mi2. PERIOD OF RECORD -- August 1979 to current year. GAGE--Water stage recorder. Datum of gage is 800.00 ft above NGVD (U.S. Army Corps of Engineers bench mark). REMARKS.--Estimated daily discharges: Dec. 7 to Jan. 17, Feb. 2 to Mar. 19, and April 7-9. Records good except those for estimated daily discharges, which are poor. Flow regulated by Rathbun Reservoir (station 06903880) 20.8 mi upstream. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain-gage and satellite data collection platform at station. AVERAGE DISCHARGE. -- 10 years, 553 ft3/s, 10.1 in/yr, 440,600 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 11,200 ft<sup>3</sup>/s July 16, 1982, gage height, 36.83 ft; minimum daily discharge, 14 ft<sup>3</sup>/s June 22-23, 27, and July 9, 1988. EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood in June 1947 reached a stage of about 45 ft, discharge unknown, from information by U.S. Army Corps of Engineers. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 2,690 ft<sup>3</sup>/s Sept. 9, gage height, 28.13 ft; minimum daily discharge, 16 ft3/s May 15. DISCHARGE CUBIC FEET PER SECOND WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | | | DISCHARGE | , CUBIC | FEET PER | SECOND,<br>ME | WATER YEAR<br>EAN VALUES | OCTOBER | 1988 10 | SEPTEMBER | 1989 | | | |------------------|----------------|----------------|----------------|----------------|----------------|--------------------------|----------------|----------------|----------------|----------------|----------------|----------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 2 | 26<br>26 | 26<br>26 | 17<br>18 | 20<br>20 | 21<br>20 | 20<br>21 | 22<br>23 | 26<br>27 | 62<br>82 | 27<br>26 | 19<br>18 | 71<br>50 | | 2<br>3<br>4<br>5 | 25<br>25<br>25 | 28<br>27<br>26 | 18<br>17<br>17 | 19<br>19<br>19 | 18<br>20<br>19 | 22<br>34<br>26 | 23<br>23<br>23 | 22<br>22<br>20 | 76<br>71<br>41 | 25<br>24<br>23 | 18<br>20<br>20 | 44<br>40<br>39 | | 6<br>7 | 25<br>25 | 26<br>26 | 17<br>17 | 20<br>19 | 20<br>21 | 20<br>23 | 23<br>23 | 19<br>18 | 31<br>27 | 23<br>23 | 18<br>20 | 37<br>34 | | 8<br>9 | 25 | 26 | 17 | 18 | 21 | 27 | 23 | 18 | 30 | 22 | 21 | 188 | | 9<br>10 | 24<br>23 | 22<br>22 | 17<br>22 | 20<br>22 | 20<br>21 | 35<br>42 | 23<br>23 | 22<br>18 | 40<br>35 | 21<br>21 | 21<br>21 | 2190<br>1430 | | 11 | 23 | 20 | 26 | 21 | 22 | 30 | 23 | 17 | 47 | 21 | 21<br>21 | 360 | | 12<br>13 | 21<br>19 | 20<br>25 | 31<br>27 | 25<br>23 | 20<br>21 | 24<br>22 | 23<br>22 | 19<br>17 | 83<br>165 | 36<br>27 | 21 | 115<br>69 | | 14 | 23 | 21 | 23 | 25 | 23 | 28 | 23 | 17 | 214 | 23 | 20 | 56 | | 15 | 22 | 28 | 20 | 21 | 21 | 23 | 23 | 16 | 73 | 22 | 20 | 50 | | 16 | 23 | 49 | 22 | 28 | 20 | 26 | 23 | 18 | 43 | 23 | 19 | 46<br>45 | | 17<br>18 | 24<br>22 | 26<br>19 | 24<br>23 | 22<br>20 | 20<br>19 | 23<br>19 | 23<br>23 | 19<br>29 | 34<br>32 | 23<br>23 | 19<br>19 | 45<br>44 | | 19 | 19 | 18 | 34 | 28 | 20 | 17 | 23 | 42 | 31 | 23 | 21 | 42 | | 20 | 23 | 18 | 29 | 22 | 20 | 27 | 24 | 33 | 26 | 21 | 25 | 37 | | 21 | 25 | 17 | 24 | 30 | 21 | 22 | 24 | 25 | 24 | 21 | 23 | 31 | | 22<br>23 | 26<br>27 | 18<br>18 | 26 | 27<br>20 | 22<br>18 | 18<br>18 | 23<br>23 | 24<br>23 | 23<br>21 | 20<br>22 | 23<br>26 | 29<br>28 | | 23<br>24 | 26 | 17 | 23<br>21 | 20<br>20 | 19 | 19 | 23 | 136 | 22 | 21 | 33 | 27 | | 25 | 26 | 17 | 23 | 20 | 22 | 22 | 23 | 262 | 39 | 20 | 28 | 27 | | <b>2</b> 6 | 24 | 21 | 21 | 20 | 25 | 23 | 21 | 101 | 49 | 19 | 27 | 27 | | 27<br>28 | 24 | <b>2</b> 6 | 20 | 23 | 21 | 22 | 20 | 51 | 187<br>58 | 18<br>18 | 36<br>37 | 27<br>26 | | 26<br>29 | 25<br>26 | 20<br>18 | 21<br>20 | 22<br>27 | 22 | 27<br>27 | 21<br>23 | 194<br>514 | 35 | 19 | 308 | 25<br>25 | | 30 | 27 | 18 | 20 | 26 | | 23 | 22 | 161 | 30 | 47 | 329 | 25<br>26 | | 31 | 27 | | 20 | 23 | | 22 | | 77 | | 25 | 105 | | | TOTAL | 751 | 689 | 675 | 689 | 577 | 752 | 682 | 2007 | 1731 | 727 | 1377 | 5260 | | MEAN<br>MAX | 24.2<br>27 | 23.0<br>49 | 21.8 | 22.2 | 20.6 | 24.3<br>42 | 22.7<br>24 | 64.7<br>514 | 57.7<br>214 | 23.5<br>47 | 44.4<br>329 | 175<br>2190 | | MIN | 27<br>19 | 49<br>17 | 34<br>17 | 30<br>18 | 25<br>18 | 42<br>17 | 24<br>20 | 16 | 214 | 18 | 18 | 2190 | | AC-FT | 1490 | | 1340 | 1370 | 1140 | 1490 | 1350 | 3980 | 3430 | 1440 | 2730 | 10430 | | | | | | | | | | | | | | | TOTAL 34314 MEAN 93.8 MAX 1200 MIN 14 AC-FT 68060 TOTAL 15917 MEAN 43.6 MAX 2190 MIN 16 AC-FT 31570 CAL YR 1988 WTR YR 1989 #### Crest-stage partial-record stations The following table contains annual maximum discharge for crest-stage stations. A crest-stage is a device which will register the peak stage occurring between inspections of the gage. A stage-discharge relation for each gage is developed from discharge measurements made by indirect measurements of peak flow or by current meter. The date of the maximum discharge is not always certain but is usually determined by comparison with nearby continuous-record stations, weather records, or local inquiry. Only the maximum discharge for each water year is given. Information on some lower floods may have been obtained, but is not published herein. The years given in the period of record represent water years up to the current year for which the annual maximum has been determined. | Station<br>no. | Station name | Location | Orainage<br>area<br>(mi2) | Period<br>of<br>record | Ann<br>Date | nual maxim<br>Gage<br>height<br>(feet) | Dis-<br>charge<br>(ft <sup>3</sup> /s) | |------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------|-------------|----------------------------------------|----------------------------------------| | | | Upper Iowa River Basin | | | | | | | 05387500 | Upper Iowa River<br>at Decorah, Ia. | Lat 43°18'19", long 91°47'48", in NE1/4 sec. 16, T.98N., R.8 W., Winneshiek County, on right bank 1,200 ft upstream from bridge on U.S. Highway 52 (city route) in Decorah. | 511 | 1951- | 03-12-89 | 6.70 | 2,240 | | 05388310 | Waterloo Creek<br>near Dorches-<br>ter, Ia. | Lat 43°27'04", long 91°30'18", in NW1/4 sec.25, T.100 N., R.6 W., Allamakee County, on State Highway 76, 1.4 mi south of Dorchester. | 43.6 | 1966- | 03-12-89 | 699,55(b) | (+) | | | | Wexford Creek Basin | | | | | | | 053884 <b>00</b> | Wexford Creek near<br>Harpers Ferry,<br>Ia. | Lat 4°16'22", long 91°08'00", in SE1/4<br>sec.25, T.98 N., R.3 W., Allamakee<br>County, at bridge, 5 mi north<br>of Harpers Ferry on county high-<br>way X52. | 11.9 | 1953- | 03-12-89 | 6.35(b) | (+) | | | | Turkey River Basin | | | | | | | 05411530 | North Branch Tur-<br>key River near<br>Cresco, Ia. | Lat 43°22'15", long 92°12'49", in NW1/4 sec.25, T.99 N., R.12.W, Howard County, at bridge on state highway 9, 5 mi west of Cresco. | 19.5 | 1966- | 03-12-89 | 88.06 | 130 | | 05411700 | Crane Creek near<br>Lourdes, Ia. | Lat 43°14'57", long 92°18'32", in SE1/4<br>NW1/4 sec.6, T.97 N., R.12 W., Howard<br>County, at bridge on State Highway 272,<br>1 mi southwest of Lourdes. | 75.8 | 1951- | 1989 | (a) | <210 | | | | Little Maquoketa River Basin | | | | | | | 05414350 | Little Maqouketa<br>River near Graf,<br>Ia. | Lat 42°30'09", long 90°51'50", in SE1/4 sec.20, T.89 N., R.1 E., Dubuque County, at bridge on county highway, 300 ft downstream from Illinois Central railroad bridge, 0.5 mi northeast of Graf. | 39.6 | 1951- | 1989 | (a) | <1,200 | | 05414400 | Middle Fork Little<br>Maquoketa River<br>near Rickards-<br>ville, Ia. | Lat 42°33'38", long 90°51'35", in SE1/4 sec.32, T.90 N., R.1 E., Dubuque County, at bridge on county highway, 2 mi southeast of Rickardsville. | 30.2 | 1951- | 03-13-89 | 15.77(b) | (+) | | 05414450 | North Fork Little<br>Maquoketa River<br>near Rickards-<br>ville, Ia. | Lat 42°35'09", long 90°51'20", near NW corner sec.28, T.90 N., R.1 E., Dubuque County, at bridge on county highway, 1 mi northeast of Rickardsville. | 21.6 | 1951- | 03-13-89 | 6.25(b) | (+) | | 05414500 | Little Maquoketa<br>River near<br>Durango, Ia. | Lat 42°33'18", long 90°44'46", in NW1/4<br>NE1/4 sec. 5, T.89 N., R.2 E., Dubuque<br>County, on left bank 10 ft upstream from<br>bridge on county highway, 300 ft upstream<br>from Cloie Branch, 1.7 mi east of Durango<br>5.6 mi northwest of court house at Dubuque<br>and 6.4 mi upstream from mouth. | | 1934- | 03-13-89 | 11.49(b) | (+) | | 05414600 | Little Maquoketa<br>River tributary<br>at Dubuque, Ia. | Lat 42°32'33", long 90°41'38", near NW corner sec. 11, T.89 N., R.2 E, Dubuque County at bridge on State Highway 386, near north city limits of Dubuque. | 1.54 | 1951- | 09-09-89 | 10.73 | 122 | | | | | | | | nual maxim | | |-------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------|----------------------|--------------------------|----------------------------------------| | Station no. | Station name | Location | Drainage<br>area<br>(mi2) | Period<br>of<br>record | Date | Gage<br>height<br>(feet) | Dis-<br>charge<br>(ft <sup>3</sup> /s) | | | | Maquoketa River Basin | | | | | | | 05417530 | Plum Creek at<br>Earlville, Ia. | Lat 42°28'13", long 91°14'53", in NE1/4 sec.1, T.88 N., R.4 W., Delaware County, at bridge on U.S. Highway 20, 1.5 mi southeast of Earlville. | 41.1 | 1966- | 03-13-89 | 86.29(b) | (+) | | 05417590 | Kitty Creek near<br>Langworthy, Ia. | Lat 42°12'04", long 91°12'27", in NW1/4 sec.4, T.85 N., R.3 W., Jones County, at bridge on U.S. Highway 151, 1 mi northeast of Langworthy. | 14.4 | 1966- | 03-13-89 | 85.77(b) | (+) | | | | Wapsipinicon River Basin | | | | | | | 05420600 | Little Wapsipini-<br>con River trib-<br>utary near Rice-<br>ville, Ia. | Lat 43°21'31", long 92°29'08", near S1/4 corner sec.27, T.99 N., R.14 W., Howard County, at culvert on county highway, 3.5 mi east of Riceville. | 0.90 | 1953- | 1989 | (a) | <5 | | 05420620 | Little Wapsipini-<br>con River near<br>Acme, Ia. | Lat 43°19'37", long 92°29'07", near N1/4 corner sec.10, T.98 N., R.14 W., Howard County, at bridge on county highway, 1 mi north of Acme. | 7.76 | 1953- | 1989 | (a) | <92 | | 05420640 | Little Wapsipini-<br>con River at<br>Elma, Ia. | Lat 43°14'30", long 92°27'04", in NW1/4 sec.12, T.97 N., R.14 W., Howard County, at bridge on county highway B17, near west city limits of Elma. | 37.3 | 1953- | 1989 | (a) | <430 | | 05420650 | Little Wapsipini-<br>con River near<br>New Hampton, Ia. | Lat 43°03'58", long 92°23'38", in NW1/4 sec.9, T.95 N., R.13 W., Chickasaw County, at bridge on U.S. Highway 18, 4 m west of New Hampton. | 95.0<br>i | 1966- | 1989 | (a) | <420 | | 05420690 | East Fork Wapsi-<br>pinicon River<br>near New Hampton,<br>Ia. | Lat 43°05'11", long 92°18'22", in SE1/4 sec.31, T.96 N., R.12 W., Chickasaw County, at bridge on U.S. Highway 63, 2 mi north of New Hampton. | 30.3 | 1966- | 1989 | (a) | <480 | | 05420850 | Little Wapsipini-<br>con River near<br>Oran, Ia. | Lat 42°42'53", long 92°02'29", near NW corner sec.9, T.91 N., R.10 W., Fayette County at bridge on State Highway 3, 2 mi northeast of Oran. | 94.1 | 1966- | 03-10-89<br>09-09-89 | | (+)<br>430 | | 05420855 | Buck Creek near<br>Oran, Ia. | Lat 42°42′53", long 92°07′33", in NE1/4 sec.10, T.91 N., R.11 W., Bremer County, at bridge on State Highway 3, 2.5 mi northwest of Oran. | 37.9 | 1966- | 03-10-89 | 86.98(b) | (+) | | 05421100 | Pine Creek tribu-<br>tary near Winth-<br>rop, Ia. | Lat 42°29'17", long 91°47'10", in SW1/4 sec.27, T.89 N., R.8 W., Buchanan County, at culvert on county highway, 2.5 mi northwest of Winthrop. | | 1953- | 1989 | (a) | <10 | | 05421200 | Pine Creek near<br>Winthrop, Ia. | Lat 42°28'11", long 91°47'01", in SW/4 sec.34, T.89 N., R.8 W., Buchanan County, at railroad bridge, 500 ft upstream from U.S. Highway 20, and 2.5 mi northwest of Winthrop. | 28.3 | 1950- | 1989 | (a) | <320 | | 05421300 | Pine Creek tribu-<br>tary No. 2 at<br>Winthrop, Ia. | Lat 42°28'06", long 91°44'33", at N1/4 corner sec.2, T.88 N., R.8 W., Buchanan County, at culvert on U.S. Highway 20, near west city limits of Winthrop. | 0.704 | 1953- | 09-09-89 | 6.50 | 140 | | 05421550 | Buffalo Creek<br>above Winthrop,<br>Ia. | Lat 42°29'51", long 91°43'42", near NE corner sec.25, T.89 N., R.8 W., Buchanan County, at bridge on county highway W45, 1.5 mi northeast of Winthrop. | 68.2 | 1957- | 03-10-89 | 16.93(b) | (+) | | 05421600 | Buffalo Creek near<br>Winthrop, Ia. | Lat 42°28'07", long 91°43'04", in NE1/4 sec.1, T.88 N., R.8 W., Buchanan County, at bridge on U.S. Highway 20, 1 mi east of Winthrop. | 71.4 | 1953- | 03-10-89 | 87.33(b) | (+) | | 05421890 | Silver Creek at<br>Welton, Ia. | Lat 41°54'54", long 90°36'00", in NW1/4 sec.15, T.82 N., R.3 E., Clinton County, at bridge on U.S. Highway 61, at north edge of Welton. | 9.03 | 1966- | 1989 | (a) | <270 | | | | _ | | _ | Ar | mual maxi | | |-------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------|----------------------|--------------------------|----------------------------------------| | Station no. | Station name | Location | rainage<br>area<br>(mi <sup>2</sup> ) | Period<br>of<br>record | Date | Gage<br>height<br>(feet) | Dis-<br>charge<br>(ft <sup>3</sup> /s) | | | | Iowa River Basin | | | | | | | 05448400 | Westmain drainage<br>ditch 1 & 2 near<br>Britt, Ia. | Lat 43°06'09", long 93°47'04", in SW1/4 sec.27, T.96 N., R.25 W., Hancock County, at bridge on U.S. Highway 18, near east city limits of Britt. | 21.2 | 1966- | 1989 | (a) | <53 | | 05448600 | East Branch Iowa<br>River above<br>Hayfield, Ia. | Lat 43°09'21", long 93°41'21", near S1/4 corner sec.4, T.96 N., R.24 W., Hancock County, at bridge on county highway, 1.5 mi southeast of Hayfield. | 2.23 | 1953- | 1989 | (+) | (+) | | 05448700 | East Branch Iowa<br>River near<br>Hayfield, Ia. | Lat 43°10'50", long 93°39'20", in NW1/4 sec.35, T.97 N., R.24 W., Hancock County, at bridge on county highway B20, 2 mi east of Hayfield. | 7.94 | 1952- | 1989 | (a) | (+) | | 05448800 | East Branch Iowa<br>River near<br>Garner, Ia. | Lat 43°06'17", long 93°37'20", near center sec.25, T.96 N., R.24 W., Hancock County, at bridge on U.S. Highway 18, 1.2 mi west of Garner. | 45.1 | 1952- | 1989 | (a) | (+) | | 05448900 | East Branch Iowa<br>River tributary<br>near Garner, Ia. | Lat 43°06'18", long 93°39'29", near E1/4 corner sec.27, T.96 N., R.24 W., Hancock County, at culvert on U.S. Highway 18, 2.1 mi west of Garner. | 5.98 | 1952- | 1989 | (a) | (+) | | 05451955 | Stein Creek near<br>Clutier, Ia. | Lat 42°04'46", long 92°18'00", in NE1/4 sec.24, T.84 N., R.13 W., Tama County, at bridge on State Highway 318, 5 mi east of Clutier. | 23.4 | 1971- | 03-10-89<br>05-24-89 | 72.38(b)<br>71.12 | 300<br>320 | | 05453200 | Price Creek at Amana, Ia. | Lat 41°48'18", long 91°52'23", in SE1/4 sec.22, T.81 N., R.9 W., Iowa County, at bridge on State Highway 149, near north edge of Amana. | 29.1 | 1966- | 09-08-89 | 84.98 | (+) | | 05453600 | Rapid Creek below<br>Morse, Ia. | Lat 41°43'45", long 91°25'38", near NE corner sec.21, T.80 N., R.5 W., Johnson County, at bridge on county highway, 1.5 mi southeast of Morse. | 8.12 | 1951- | 03-09-89 | 17.57(b) | (+) | | 05453750 | | <pre>Lat 41°43'23", long 91°26'16", in W1/2 sec. 21, T.80 N., R.5 W., Johnson County, at bridge on county highway, 2 mi southwest of Morse.</pre> | 15.2 | 1951- | 03-09-89 | 22.28(b) | (+) | | 05453850 | Rapid Creek trib-<br>utary No. 3 near<br>Oasis, Ia. | Lat 41°42'33", long 91°27'14", near center sec. 29, T.80 N., R.5 W., Johnson County, at bridge on county highway, 3.5 mi west of Oasis. | 1.62 | 1951- | 1989 | (a) | (+) | | 05453900 | Rapid Creek trib-<br>utary near Oasis,<br>Ia. | Lat 41°41'14", long 91°26'37", near SW corner sec.33, T.80 N., R.5 W., Johnson County, at bridge on county highway X16, 3 mi southwest of Oasis. | 0.97 | 1951- | 1989 | (a) | (+) | | 05453950 | Rapid Creek trib-<br>utary near Iowa<br>City, Ia. | Lat 41°41'56", long 91°28'39", in NW1/4 sec.31, T.80 N., R.5 W., Johnson County, at bridge on county highway, 4 mi northeast of Iowa City. | 3.43 | 1951- | 1989 | (a) | (+) | | 05455140 | North English Riv-<br>er near Montezuma<br>Ia. | Lat 41°38'45", long 92°34'20", in SW1/4, sec.14, T.79 N., R.15 W., Poweshiek County, at bridge on county highway, 5.0 mi northwest of Montezuma. | 31.0 | 1972- | 1989 | (a) | (+) | | 05455200 | North English Riv-<br>er near Guernsey,<br>Ia.<br>(discontinued) | Lat 41°38'47", long 92°23'47", near SW corner sec.17, T.79 N., R.13 W., Poweshiek County, at bridge on county highway V21, 2.2 mi west of Guernsey. | 68.7 | 1953- | 1989 | (+) | (+) | | 05455210 | North English River at Guernsey, Ia. | Lat 41°38'42", long 92°21'28", at NW corner sec.22, T.79 N., R.13 W., Poweshiek County at bridge on State Highway 21, 1 mi southwest of Guernsey. | | 1960,<br>1966- | 1989 | (a) | <2,000 | | Station no. | Station name | Location | Drainage<br>area<br>(mi <sup>2</sup> ) | Period<br>of<br>record | Date | nnual maxi<br>Gage<br>height<br>(feet) | mum<br>Dis-<br>charge<br>(ft <sup>3</sup> /s) | |-------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------|---------------|----------------------------------------|-----------------------------------------------| | | | Iowa River BasinContinued | | | | | | | 05455230 | Deep River at Deep<br>River, Ia. | Lat 41°35'29", long 92°21'18", in SW1/4 sec.3, T.78 N., R.13 W., Poweshiek County, at bridge on State Highway 21, 1 mi northeast of Deep River. | 30.5 | 1960,<br>1966- | 09-08-89 | 79.77 | (+) | | 05455300 | South English Riv-<br>er near Barnes<br>City, Ia.<br>(discontinued) | Lat 41°31'26", long 92°27'56", near NW corner sec.34, T.78 N., R.14 W., Poweshi County, at bridge on county highway, 1 m. north of Barnes City. | | 1953- | 19 <b>8</b> 9 | (+) | (+) | | 05455550 | Bulgers run near<br>Riverside, Ia. | Lat 41°29'02", long 91°37'36", in SE1/4 sec.11, T.77 N., R.7 W., Washington County, at bridge on State Highway 22, 2.5 mi west of Riverside. | 6.31 | 1965- | 06-01-89 | 85.60 | (+) | | 05457440 | Deer Creek near<br>Carpenter, Ia. | Lat 43°24'54", long 92°59'05", at NW cornersec.9, T.99 N., R.18 W., Mitchell County at bridge on State Highway 105, 1.5 mi east of Carpenter. | r 91.6 | 1966- | 1989 | (a) | <1,450 | | 05458560 | Beaverdam Creek<br>near Sheffield,<br>Ia. | Lat 42°56'11", long 93°12'09", at NW corner sec.27, T.94 N., R.20 W., Cerro Gordo County, at bridge on U.S. Highway 65, 3 mi north of Sheffield. | 123 | 1966- | 1989 | (a) | <650 | | 05459010 | Elk Creek at Kensett, Ia. | Lat 43°22'18", long 93°12'37", in NE1/4 sec.28, T.99 N., R.20 W., Worth County, at bridge on U.S. Highway 65, 1 mi north of Kensett. | 58.1 | 1966- | 1989 | (a) | <180 | | 05459490 | Spring Creek near<br>Mason City, Ia. | Lat 43°12'48", long 93°12'38", in SE1/4 sec.16, T.97 N., R.20 W., Cerro Gordo County, at bridge on U.S. Highway 65, 4 mi north of Mason City. | 29.3 | 1966- | 1989 | (a) | <115 | | 0546010 <b>0</b> | Willow Creek near<br>Mason City, Ia. | Lat 43°08'55", long 93°16'07", near center sec.12, T.96 N., R.21 W., Cerro Gordo County, at bridge on U.S. Highway 18, 3. mi west of Mason City. | | 1966- | 03-14-89 | 89.01 | 415 | | 05462750 | Beaver Creek trib-<br>utary near Apling<br>ton, Ia. | Lat 42°34'40", long 92°50'49", in NW1/4 - sec.27, T.90 N., R.17 W., Butler County, at bridge on U.S. Highway 20, 2 mi east of Aplington. | 11.6 | 1966- | 1989 | (a) | <100 | | 05463 <b>0</b> 90 | Black Hawk Creek<br>at Grundy Center,<br>Ia. | Lat 42°22'10", long 92°46'05", in NW1/4 sec.7, T.87 N., R.16 W., Grundy County, at bridge on State Highway 14, at north edge of Grundy Center. | 56.9 | 19 <b>66</b> - | 1989 | (a) | <78 | | 05464145 | Twelve Mile Creek<br>near Traer, Ia. | Lat 42°13'50", long 92°27'56", in SE1/4 sec.27, T.86 N., R.14 W., Tama County, at bridge on U.S. Highway 63, 2.5 mi north of Traer. | 43.8 | 1966- | 03-10-89 | 85.84(b) | (+) | | 05464310 | Pratt Creek near<br>Garrison, Ia. | Lat 42°10'53", long 92°11'10", in SE1/4 sec.12, T.85 N., R.12 W., Benton County at bridge on U.S. Highway 218, 3.5 mi northwest of Garrison. | 23.4 | 1966- | c1988<br>1989 | (a)<br>(a) | <740<br><740 | | 05464318 | East Blue Creek at<br>Center Point, Ia. | Lat 42°12'44", long 91°47'21", in SW1/4 sec.33, T.86 N., R.8 W., Linn County, at bridge on State Highway 150, 1.5 mi north of Center Point. | 17.6 | 1966- | 1989 | (a) | (+) | | 05464880 | Otter Creek at Wilton, Ia. | Lat 41°36'17", long 91°02'08", in NE1/4 sec.35, T.79 N., R.2 W., Cedar County, at bridge on State Highway 38, 1.5 mi northwest of Wilton. | 10.7 | 1966- | 1989 | (a) | (+) | | 05465150 | North Fork Long<br>Creek at Ains-<br>worth, Ia. | Lat 41°16'51", long 91°32'16", in SW1/4 sec.22, T.75 N., R.6 W., Washington County, at bridge on U.S. Highway 218, 1 mi southeast of Ainsworth. | 30.2 | 1951,<br>1965- | 09-02-89 | 86.03 | 270 | | | | | | | | nual max | | |---------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------|----------|--------------------------|----------------------------------------| | Station no. | Station name | Location | Drainage<br>area<br>(mi <sup>2</sup> ) | Period<br>of<br>record | Date | Gage<br>height<br>(feet) | Dis-<br>charge<br>(ft <sup>3</sup> /s) | | | | Skunk River Basin | | | | | | | 05469860 | Mud Lake drainage<br>ditch 71 in<br>Jewell, Ia. | Lat 42°18'52", long 93°38'23", in SW1/4 sec.27, T.87 N., R.24 W., Hamilton County, at bridge on U.S. Highway 69, in Jewell. | 65.4 | 1966- | 1989 | (a) | <270 | | 05469990 | Keigley Branch<br>near Story City,<br>Ia. | Lat 42°09'01", long 93°37'13", in NW1/4 sec.26, T.85 N., R.24 W., Story County, at bridge on U.S. Highway 69, 3 mi south of Story City. | 31.0 | 1966- | 1989 | (a) | <245 | | 05472090 | North Skunk River<br>near Baxter, Ia. | Lat 41°49'13", long 93°03'41", in NE1/4 sec.21, T.81 N., R.19 W., Jasper County, at bridge on State Highway 223, 4.5 mi east of Baxter. | 52.2 | 1966- | 1989 | (a) | <840 | | 05472290 | Sugar Creek near<br>Searsboro, Ia.<br>(discontinued) | Lat 41°34'26", long 92°44'20", at E1/4 corner sec.7, T.78 N., R.16 W., Poweshiel County, at bridge on State Highway 225, 1.8 mi west of Searsboro. | 52.7<br>k | 1966- | 1989 | (+) | (+) | | 054 <b>72</b> 39 <b>0</b> | Middle Creek near<br>Lacey, Ia. | Lat 41°25'17", long 92°39'04", near N1/4 corner sec.1, T.76 N., R.16 W., Mahaska County, at bridge on U.S. Highway 63, 1.5 mi northwest of Lacey. | 23.0 | 1966- | 05-24-89 | 86.54 | 1,060 | | 05472445 | Rock Creek at Sig-<br>ourney, Ia.<br>(discontinued) | Lat 41°20'12", long 92°13'20", in NE1/4 sec.3, T.75 N., R.12 W., Keokuk County, at bridge on State Highway 92, near west edge of Sigourney. | 26.3 | 1966- | 1989 | (+) | (+) | | 054 <b>73300</b> | Cedar Creek near<br>Batavia, Ia.<br>(discontinued) | Lat 41°00'34", long 92°07'06", in SW1/4 sec.27, T.72 N., R.11 W., Jefferson County, at bridge on U.S. Highway 34, 2.5 mi northeast of Batavia. | 252 | 1966- | 1989 | (+) | (+) | | | | Des Moines River Basin | | | | | | | 05480930 | White Fox Creek at<br>Clarion, Ia. | Lat 42°43'55", long 93°42'26", in NW1/4 sec.5, T.91 N., R.24 W., Wright County, at bridge on State Highway 3, 1.5 mi east of Clarion. | 13.3 | 1966- | 1989 | (a) | <68 | | 05481510 | Bluff Creek at Pi-<br>lot Mound, Ia. | Lat 42°09'59", long 94°01'15", in NW 1/4 sec.20, T.85 N., R.27 W., Boone County, at bridge on State Highway 329, at northwest edge of Pilot Mound. | 23.5 | 1966- | 1989 | (a) | <250 | | 05481680 | Beaver Creek at<br>Beaver, Ia. | Lat 42°02'04", long 94°08'46", in NE1/4 sec.6, T.83 N., R.28 W., Boone County, at bridge on U.S. Highway 30, at southwest edge of Beaver. | 38.5 | 1966- | 1989 | (a) | <120 | | 05481690 | West Beaver Creek<br>at Grand Junction<br>Ia. | Lat 42°01'56", long 94°12'38", in NE1/4, sec.3, T.83 N., R.29 W., Greene County, at bridge on U.S. Highway 30, near east edge of Grand Junction. | 12.6 | 1966- | 1989 | (a) | <67 | | 05482600 | Hardin Creek at Farnhamville, Ia. | Lat 42°16'01", long 94°25'10", near NE corner sec.14, T.86 N., R.31 W., Calhoun County, at bridge on State Highway 175, near west city limits of Farnhamville. | 43.7 | 1952- | 1989 | (a) | <87 | | 05482800 | Happy Run at<br>Churdan, Ia. | Lat 42°10'16", long 94°29'39", in SW1/4 sec.17, T.85 N., R.31 W., Greene County, at bridge on county highway, 1 mi northwest of Churdan. | 7. <b>5</b> 8 | 1952- | 1989 | (a) | <25 | | 05482900 | Hardin Creek near<br>Farlin, Ia. | Lat 42°05'34", long 94°25'39", near N1/4 corner sec.14, T.84 N., R.31 W., Greene County, at bridge on county highway, 1.5 mi northeast of Farlin. | 101 | 1951- | 1989 | (a) | <430 | | 05483318 | Brushy Fork Creek<br>near Templeton,<br>Ia. | Lat 41°56'45", long 94°52'45", in NW1/4 sec.1, T.82 N., R.35 W., Carroll County, at bridge on U.S. Highway 71, 4 mi northeast of Templeton. | 45.0 | 1966- | 07-08-89 | 78.43 | (+) | | 05483349 | Middle Raccoon<br>River tributary<br>at Carroll, Ia. | Lat 42°02'30", long 94°52'43", in NW1/4 sec.36, T.84 N., R.35 W., Carroll County, at bridge on U.S. Highway 71, 1.5 mi south of Carroll. | 6.58 | 1966- | 1989 | (+) | (+) | | | | | | | Annu | al maximu | | |-------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------|-------------------|--------------------------|----------------------------------------| | Station<br>no. | Station name | Location | Drainage<br>area<br>(mi <sup>2</sup> ) | Period<br>of<br>record | Date | Gage<br>height<br>(feet) | Dis-<br>charge<br>(ft <sup>3</sup> /s) | | | | Des Moines River BasinContinued | | | | | | | 05487350 | South Otter Creek<br>tributary near<br>Woodburn, Ia. | Lat 41°02'48", long 93°35'26", near SW corner sec.11, T.72 N., R.24 W., Clarke County, at bridge on county highway, 2 mi north of Woodburn. | 0.71 | 1955- | 1989 | (+) | (+) | | 05487800 | White Breast Creek<br>at Lucas, Ia. | Lat 41°01'24", long 93°27'56", in NE1/4 sec.23, T.72 N., R.23 W., Lucas County, at bridge on U.S. Highway 65, near south city limits of Lucas. | 128 | 1953- | 1989 | (+) | (+) | | 05488620 | Coal Creek near<br>Albia, Ia. | Lat 41°01'02", long 92°50'46", in SW1/4 sec.20, T.72 N., R.17 W., Monroe County, at bridge on U.S. Highway 34, 2 mi southwest of Albia. | 13.5 | 1966- | 09-09-89 | 80.19 | 980 | | 05489150 | Little Muchakinock<br>Creek at Oska-<br>loosa, Ia.<br>(discontinued) | Lat 41°15'58", long 92°38'33", in SE1/4 sec.25, T.75 N., R.16 W., Mahaska County, at bridge on State Highway 137, at south edge of Oskaloosa. | 9.12 | 1966- | 1989 | (+) | (+) | | 05489350 | South Avery Creek<br>near Blakesburg,<br>Ia. | Lat 41°00'59", long 92°37'32", in SE1/4 sec.19, T.72 N., R.15 W., Wapello County, at bridge on U.S. Highway 34, 3.5 mi north of Blakesburg. | 33.1 | 1965- | 09-09-89 | 82. <b>69</b> | 3,300 | | 05489490 | Bear Creek at<br>Ottumwa, Ia. | Lat 41°00'43", long 92°27'54", in NW1/4 sec.27, T.72 N., R.14 W., Wapello County, at bridge on U.S. Highway 34, near west edge of Ottumwa. | 22.9 | 1965- | 09-09-89 | 86.77 | 1,900 | | | | Fox River Basin | | | | | | | 05494110 | South Fox Creek<br>near West Grove,<br>Ia. | Lat 40°43'31", long 92°36'16", in SE1/4 sec.32, T.69 N., R.15 W., Davis County, at bridge on State Highway 2, 2.4 mi west of West Grove. | 12.2 | 1965- | 1989 | (a) | (+) | | | | Big Sioux River Basin | | | | | | | 06483410 | Otter Creek north<br>of Sibley, Ia.<br>(discontinued) | Lat 43°27'41", long 95°44'29", at NE corner sec.25, T.100 N., R.42 W., Osceola County, at bridge on county highway L40, 4 mi north of Sibley. | 11.9 | 1952- | 1989 | (+) | (+) | | 06483430 | Otter Creek at<br>Sibley, Ia.<br>(discontinued) | Lat 43°24'14", long 95°46'10", near N1/4 corner sec.14, T.99 N., R.42 W., Osceola County, at bridge on county highway A22, 1 mi northwest of Sibley. | 29.9 | 1952- | 1989 | (+) | (+) | | 06483440 | Dawson Creek near<br>Sibley, Ia. | Lat 43°23'23", long 95°42'53", near NW corner sec.20, T.99 N., R.41 W., Osceola County, at culvert on county highway A30 2 mi southeast of Sibley. | | 195 <b>2</b> - | 05 <b>-2</b> 4-89 | 4.87 | (+) | | 06483460 | Otter Creek near<br>Ashton, Ia.<br>(discontinued) | Lat 43°20'07", long 95°45'43", in SE1/4 sec.2, T.98 N., R.42 W., Osceola County, at bridge on county highway L36, 2 mi northeast of Ashton. | 88.0 | 1952- | 1989 | (+) | (+) | | 06483495 | Burr Oak Creek<br>near Perkins,<br>Ia. | Lat 43°14'43", long 96°10'38", in SE1/4 sec.5, T.97 N., R.45 W., Sioux County, at bridge on U.S. Highway 75, 4 mi north of Perkins. | 30. <b>9</b> | 1966- | 03-12-89 | 85,66(b) | ) (+) | | | | Perry Creek Basin | | | | | | | 06599800 | Perry Creek near<br>Merrill, Ia. | Lat 42°43'16", long 96°20'33", in NW1/4 sec.12, T.91 N., R.47 W., Plymouth County, at bridge on county highway C44, 5 mi west of Merrill. | 8.17 | 1953- | 03-09-89 | 7.19 | (+) | | 0659 <b>99</b> 50 | Perry Creek near<br>Hinton, Ia. | Lat 42°37'57", long 96°22'13", in NE1/4 sec.15, T.90 N., R.47 W., Plymouth County, at bridge on county highway, 4 mi west of Hinton. | 30.8 | 1953- | 1989 | (+) | (+) | | | | | | | , | | | | | | | _ | | Ar | nual maxi | | |------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------|--------------|--------------------------|----------------------------------------| | Station no. | Station name | Location | Drainage<br>area<br>(mi <sup>2</sup> ) | Period<br>of<br>record | Date | Gage<br>height<br>(feet) | Dis-<br>charge<br>(ft <sup>3</sup> /s) | | | | Floyd River Basin | | | | | | | 06600030 | Little Floyd River<br>near Sanborn, Ia. | Lat 43°11'10", long 95°43'30", in NE1/4 sec.31, T.97 N., R.41 W., O'Brien County at bridge on U.S. Highway 18, 3.5 mi west of Sanborn. | 8.44 | 1966- | 1989 | (a) | (+) | | | <i>i</i> - | Monona-Harrison Ditch Basin | | | | | | | 06601480 | | Lat 42°48'28", long 95°53'21", in NW1/4 sec.11, T.92 N., R.43 W., Plymouth County, at bridge on State Highway 3, 4.2 mi east of Remsen. | 12.9 | 1966- | 03-10-89 | 92.48(b) | (+) | | 06602190 | Elliott Creek at<br>Lawton, Ia. | Lat 42°28'30", long 96°11'22", in NW1/4 sec.3, T.88 N., R.46 W., Woodbury County, at bridge on U.S. Highway 20, at west edge of Lawton. | 34.8 | 1966- | 09-07-89 | 82.47 | 2,100 | | | | Little Sioux River Basin | | | | | | | 06604510 | Ocheyedan River<br>near Ocheyedan,<br>Ia. | Lat 43°25'58", long 95°36'41", in NE1/4 sec.6, T.99 N., R.40 W., Osceola County, at bridge on State Highway 9, 4 mi northwest of Ocheyedan. | 73.5 | 1966- | 1989 | (a) | (+) | | 06605340 | Prairie Creek near<br>Spencer, Ia. | Lat 43°05'16", long 95°09'40", in SE1/4 sec. 36, T.96 N., R.37 W., Clay County, at bridge on U.S. Highway 71, 4 mi south of Spencer. | 22.3 | 1966- | 1989 | (a) | <160 | | 0660 <b>5750</b> | Willow Creek near<br>Cornell, Ia. | Lat 42°58'21", long 95°09'40", in SE1/4 sec. 12, T.94 N., R.37 W., Clay County, at bridge on U.S. Highway 71, 2 mi northwest of Cornell. | 78.6 | 1966- | <b>198</b> 9 | (a) | <340 | | 06605890 | Waterman Creek at<br>Hartley, Ia. | Lat 43°11'06", long 95°30'43", in NE1/4 sec.36, T.97 N., R.40 W., O'Brien County, at bridge on U.S. Highway 18, 1.8 mi west of Hartley. | 28.7 | 1966- | 03-08-89 | 84.33(b) | (+) | | 06606790 | Maple Creek near<br>Alta, Ia. | Lat 42°44'56", long 95°22'16", in NE1/4<br>sec. 31, T. 92 N., R.38 W., Buena Vista<br>County, at bridge on State Highway 3,<br>6 mi northwest of Alta. | 15.5 | 1966- | 1989 | (a) | <32 | | 06607197 | Simmons Creek near<br>Mapleton, Ia. | Lat 42°10'09", long 95°48'42", in SE1/4 sec.14, T.85 N., R.43W., Monona County, at bridge on county road E16, 1 mi west, of Mapleton. | | 1989- | 05-29-89 | 16.23 | (+) | | | | Soldier River Basin | | | | | | | 06608450 | Jordan Creek at<br>Moorhead, Ia. | Lat 41°54'59", long 95°51'33", in NW1/4 sec.16, T.82 N., R.43 W., Monona County, at bridge on State Highway 183, at southwest corner of Moorhead. | 30.1 | 1966- | 1989 | (a) | (+) | | | | Boyer River Basin | | | | | | | 06609560 | Willow Creek near<br>Soldier, Ia. | Lat 41°55'17", long 95°42'05", near S1/4 corner sec.11, T.82 N., R.42 W., Monona County, at bridge on State Highway 37, 6 mi southeast of Soldier. | 29.1 | 1966- | 1989 | (+) | (+) | | | | Mosquito Creek Basin | | | | | | | 06610510 | Moser Creek near<br>Earling, Ia. | Lat 41°46'35", long 95°26'55", in NE1/4 sec.1, T.80 N., R.40 W., Shelby County, at bridge on State Highway 37, 1.5 mi west of Earling. | 21.6 | 1966- | 09-08-89 | 82.75 | 5,300 | | 06610600 | Mosquito Creek at<br>Neola, Ia. | Lat 41°26'36", long 95°36'42", in NE1/4 sec.25, T.77 N., R.42 W., Pottawattamie County, at bridge on county highway, 0.5 mi south of Neola. Prior to 04-19-63, gage located 0.9 miles upstream D.A. 128 mi <sup>2</sup> . | 131 | 1952- | 09-08-89 | 26.64 | 7,900 | | | | Nishnabotna River Basin | | | | | | | 06807418 | Graybill Creek<br>near Carson, Ia. | Lat 41°13'57", long 95°22'51", in NW1/4 sec.7, T.74 N., R.39 W., Pottawattamie County, at bridge on State Highway 92, 2 mi east of Carson. | 45.9 | 1966- | 1989 | (a) | (+) | | | | | | | nnual maxi | imum | | |-------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------|------------|--------------------------|----------------------------------------| | Station no. | Station name | Location | Drainage<br>area<br>(mi <sup>2</sup> ) | Period<br>of<br>record | Date | Gage<br>height<br>(feet) | Dis-<br>charge<br>(ft <sup>3</sup> /s) | | | | Nishnabotna River BasinContinu | ed | | | | | | 06807470 | Indian Creek near<br>Emerson, Ia. | Lat 41°01'50", long 95°22'51", in NW1/4 sec.19, T.72 N., R.39 W., Montgomery County, at bridge on U.S. Highway 34, 1 mi east of Emerson. | 37.3 | 1966- | 09-08-89 | 88.09 | 1,740 | | 068 <b>0772</b> 0 | Middle Silver<br>Creek near<br>Avoca, Ia.<br>(discontinued) | Lat 41°28'33", long 95°28'06", near N1/4 corner sec.17, T.77 N., R.40 W., Pott-awattamie County, at bridge on State Highway 83, 7 mi west of Avoca. | 3.21 | 1955- | 1989 | (+) | (+) | | 06807760 | Middle Silver<br>Creek near<br>Oakland, Ia. | Lat 41°19'28", long 95°33'19", near E1/4 corner sec. 4, T.75., R.41 W., Pottawattamie County, at bridge on county highway, 8.5 mi northwest of Oakland. | 25.7 | 1953- | 09-08-89 | 11.53 | 950 | | 06807780 | Middle Silver<br>Creek at<br>Treynor, Ia. | Lat 41°14'37", long 95°36'53", near NE corner sec. 1, T.74 N., R.42 W., Pott-awattamie County, at bridge on county highway L55, 1 mi north of Treynor. | 42.7 | 1953- | 09-08-89 | 5.75 | 1,100 | | 06808880 | Bluegrass Creek<br>at Audubon, Ia. | Lat 41°42'46", long 94°55'43", in NW1/4 sec.28, T.80 N., R.35 W., Audubon County, at bridge on U.S. Highway 71, near south edge of Audubon. | 15.4 | 1966- | 09-08-89 | 83.61 | (+) | | | | Tarkio River Basin | | | | | | | 06811760 | Tarkio River near<br>Elliot, Ia. | Lat 41°06'06", long 95°06'09", near NE corner sec.28, T.73 N., R.37 W., Montgomery County, at bridge on county highway, 4.5 mi southeast of Elliot. | 10.7 | 1952- | 09-08-89 | 10.32 | (+) | | 06811800 | East Tarkio Creek<br>near Stanton, Ia. | Lat 41°04'48", long 95°05'34", in W1/2 sec 34, T.73 N., R.37 W., Montgomery County, at bridge on county highway H24, 7 mi north of Stanton. | . 4.66 | 1952- | 09-08-89 | 7.92 | 510 | | 06811820 | Tarkio River trib-<br>utary near Stan-<br>ton, Ia. | Lat 41°02'38", long 95°05'55", near NE corner sec.16, T.72 N., R.37 W., Montgomery County, at box culvert on county highway H63, 4 mi north of Stanton. | 0.67 | 1952- | 1989 | (+) | (+) | | 06811875 | Snake Creek near<br>Yorktown, Ia. | Lat 40°44'33", long 95°07'46", in NW1/4 sec.32, T.69 N., R.37 W., Page County, at bridge on State Highway 2, 1.5 mi northeast of Yorktown. | 9.10 | 1966- | 09-08-89 | 91.62 | 1,700 | | | | Nodaway River Basin | | | | | | | 06816290 | West Nodaway River<br>at Massena, Ia. | Lat 41°14'44", long 94°45'27", in E1/2 sec.33, T.75 N., R.34 W., Cass County, at bridge on State Highway 148, at southeast corner of Massena. | 23.4 | 1966- | 09-08-89 | 79.62 | 2,450 | | | | Platte River Basin | | | | | | | 06818 <b>59</b> 8 | Platte River near<br>Stringtown, Ia.<br>(discontinued) | Lat 40°58'44", long 94°29'39", in SE1/4 sec.2, T.71 N., R.32 W., Adams County, at bridge on U.S. Highway 34, 3.8 mi east of Stringtown. | 51.7 | 1966- | 1989 | (+) | (+) | | 06819110 | Middle Branch 102<br>River near Gra-<br>vity, Ia. | Lat 40°49'40", long 94°44'18", in SE1/4 sec.27, T.70 N., R.34 W., Taylor County, at bridge on State Highway 148, 4.8 mi north of Gravity. | 33.5 | 1966- | 09-09-89 | 80.78 | 4,600 | | | | Chariton River Basin | | | | | | | 06903980 | Chariton River<br>near Udell, Ia | Lat 40°46'53", long 92°50'12", in NE1/4 sec. 17, T.69 N., R.17 W., Appanoose County, at bridge on county highway 5.0 mi west of Udell. | 631 | 1972- | 1989 | (a) | (+) | | 06903990 | Cooper Creek at<br>Centerville, Ia. | Lat 40°45'02", long 92°51'36", in NW1/4 sec. 30, T.69 N., R.17 W., Appanoose County, at bridge on State Highway 5, at north edge of Centerville. | 47.8 | 1966- | 05-29-89 | 68.34 | 345 | Not determined. Peak stage did not reach bottom of gage. Ice affected. Revised. Less than. <sup>+</sup> a b c < Discharge measurements in the following table were made at special study and miscellaneous sites throughout the Roberts Creek Basin (tributary to the Turkey River Basin). | Stream | Location | Drainage<br>area<br>(mi <sup>2</sup> ) | Period<br>of<br>Record | Measu:<br>Date | rements<br>Discharge<br>(ft <sup>3</sup> /s) | |------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------|----------------------------------------------------------------------------------|----------------------------------------------------| | | Roberts Creek Ba | sin | | | | | Hatchery Creek | Lat 42°57'34", Long 91°30'12" in SW 1/4<br>NW1/4 sec. 13, T.94 N., R.6 W., Clayton<br>County, Hydrologic Unit 07060004, at<br>bridge on township road 0.8 mi S of<br>county road B60, 1.0 mi SE of Gunder | 1.28 | 1988-89 | 08-17-89 | 0.09 | | Hatchery Creek | Lat 42°56'47", long 91°28'59", in NW1/4<br>NW1/4 sec. 19, T.94 N., R.5 W., Clayton<br>County, Hydrologic Unit 07060006, at<br>bridge on farm road 0.9 mi SW of county<br>road B60, approximately 2.5 mi SE of<br>Gunder. | 2.84 | 1988-89 | 08-17-89 | 0.01 | | Hatchery Creek | Lat 42°56'29", long 91°27'37", in NE1/4, SW1/4 sec. 20, T.94 N., R.5 W., Clayton County, Hydrologic Unit 07060004, at bridge on township road 0.6 mi S of county road B60, approximately 2 mi N of Big Spring. | 1.36 | 1988-89 | 08-17-89 | 0.08 | | Hatchery Creek | Lat 42°56'06", long 91°28'06", in NW1/4<br>NW1/4 sec. 29, T.94 N., R.5 W., Clayton<br>County, Hydrologic Unit 070600004, at<br>culvert under towship road 1.3 mi S of<br>county road B60, 1.7 mi N of Big Spring. | 1.85 | 1988-89 | 08-17-89 | 0.03 | | Hatchery Creek | Lat 42°55'36", long 91°28'06", in NE1/4<br>SE1/4 sec. 30, T.94 N., R.5 W., Clayton<br>County, Hydrologic Unit 07060004, at<br>bridge on township road 2.25 mi W of<br>county road X16, 1.2 mi N of Big Spring. | 7.02 | 1988-89 | 08-17-89 | 0.13 | | Hatchery Creek | Lat 42°54'46", long 91°28'53", in NE1/4<br>SW1/4 sec. 31, T.94 N., R.5 W., Clayton<br>County, Hydrologic Unit 07060004, at<br>bridge on Dept. of Natural Resources<br>hatchery road 0.25 mi SE of township<br>road, 0.6 mi W of Big Spring. | 8.80 | 1988-89 | 08-17-89 | 0.00 | | Roberts Creek | Lat 43°03'27", long 91°34'40", in NE1/4<br>SE1/4 sec. 8, T.95 N., R.6 W., Clayton<br>County, Hydrologic Unit 07060004, at<br>bridge on county road W62, 1.75 mi S of<br>Postville. | 2.28 | 1988-89 | 08-16-89 | 0.01 | | West Branch Roberts<br>Creek | Lat 43°02'44", long 91°33'00", in SE1/4<br>NE1/4 sec. 16, T.95 N., R.6 W., Clayton<br>County, Hydrologic Unit 07060004, at<br>mouth 0.1 mi upstream of county road<br>W64, 3.0 mi SE of Postville | 4.14 | 1988-89 | 08-16-89 | 0.31 | | Roberts Creek | Lat 43°02'40", long 91°32'53", in SE1/4<br>NE1/4 sec. 16, T.95 N., R.6 W., Clayton<br>County, Hydrologic Unit 07060004, at<br>bridge on county road W64 1.5 mi S of<br>State Highway 52, 3.0 mi SE of<br>Postville. | 11.1 | 1988-89 | 08-16-89 | 0.91 | | Roberts Creek | Lat 43°02'11", long 91°32'16", in SW1/4<br>SE1/4 sec. 15, T.95 N., R.6 W., Clayton<br>County, Hydrologic Unit 07060004, at<br>bridge on county road 0.5 mi E of<br>county W64, approximately 3.75 mi SE of<br>Postville. | 13.2 | 1988-89 | 07-05-89<br>08-16-89 | 0.67<br>1.0 | | Roberts Creek | Lat 43°00'57", long 91°30'42", in SE1/4<br>NW1/4 sec. 25, T.95 N., R.6 W., Clayton<br>County, Hydrologic Unit 07060004, at<br>bridge on county road 2.0 mi E of<br>county road W64, 4.4 mi SW of Luana. | 15.9 | 1988-89 | 08-16-89 | 0.57 | | Roberts Creek | Lat 42°59'08", long 91°30'02", in SE1/4<br>NW1/4 sec. 1, T.94 N., R.6 W., Clayton<br>County, Hydrologic Unit 07060004, at<br>bridge on county road B58, 1.0 mi NE of<br>Gunder. | 18.2 | 1988-89 | 07-07-89<br>08-16-89 | 0.94<br>1.1 | | Deer Creek | Lat 43°00'04", long 91°32'54", in NE1/4<br>SE1/4 sec. 28, T.95 N., R.6 W., Clayton<br>County, Hydrologic Unit 07060004, at<br>bridge on country road B54, 5 mi south<br>of Postville. | 1.11 | 1988-89 | 01-04-89<br>02-02-89<br>03-07-89<br>03-10-89<br>03-12-89<br>04-03-89<br>05-02-89 | 0.22<br>0.24<br>0.31<br>3.8<br>6.4<br>0.32<br>0.25 | | Stream | Location | Drainage<br>area<br>(mi <sup>2</sup> ) | Period<br>of<br>Record | Measu<br>Date | rements<br>Discharge<br>(ft <sup>3</sup> /s) | |-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------|----------------------|----------------------------------------------| | | Roberts Creek BasinC | ontinued | | | | | Deer Creek | Lat 42°59'08", long 91°30'25", in SW1/4 NW1/4 sec. 1, T.94 N., R.6 W., Clayton County, Hydrologic Unit 070500004, at bridge on county road B58, 0.3 mi upstream of mouth, 1.0 mi N of Gunder. | 5.56 | 1988-89 | 07-07-89<br>08-16-89 | 0.08<br>0.08 | | Roberts Creek | Lat 42°58'30", long 91°28'58", in NE1/4<br>NW1/4 sec. 7, T.94 N., R.5 W., Clayton<br>County, Hydrologic Unit 07060004, at<br>bridge on township road, 0.8 mi NE from<br>county road B60, approximately 1.5 mi E<br>of Gunder | 26.0 | 1988-89 | 08-16-89 | 1.2 | | Roberts Creek | Lat 42°58'06", long 91°28'05", in SW1/4<br>SW1/4 sec. 8, T.94 N., R.5 W., Clayton<br>County, Hydrologic Unit 07060004, at<br>bridge on dead end township road 4.0 mi<br>N of Big Spring. | 28.8 | 1988-89 | 08-16-89 | 1.1 | | Roberts Creek | Lat 42°57'35", long 91°27'22", in SW1/4<br>NE1/4 sec. 17, T.94 N., R.5°°., Clayton<br>County, Hydrologic Unit 07060004, at<br>bridge on township road 0.7 mi N of<br>county road B60, 3.0 mi NE of Big<br>Spring. | 30.4 | 1988-89 | 08-16-89 | 0.74 | | East Fork Silver<br>Creek | Lat 43°02'40", long 91°26'20", in NW1/4<br>SE1/4 sec. 16, T.95 N., R.5 W., Clayton<br>County, Hydrologic Unit 07060004, at box<br>culvert on township road 2.0 mi W of<br>State Highway 52 and 18, approximately<br>2.5 mi W of Monona. | 3.05 | 1988-89 | 08-16-89 | 0.08 | | East Fork Silver<br>Creek | Lat 43°02'40", long 91°26'06", in NE1/4<br>SW1/4 sec. 16, T.95 N., R.5 W., Clayton<br>County, Hydrologic Unit 07060004, at<br>steel culvert on township road 2.2 mi W<br>of State Highway 52 and 18, 2.7 mi W of<br>Monona. | 0.28 | 1988-89 | 08-16-89 | 1.0 | | East Fork Silver<br>Creek | Lat 43°02'03", long 91°27'30", in NW1/4<br>NE1/4 sec. 20, T.95 N., R.5 W., Clayton<br>County, Hydrologic Unit 07060004, at<br>bridge on county road X16, 1.4 mi N of<br>county road, 1.8 mi S of Luana. | 4.28 | 1988-89 | 08-05-89<br>08-16-89 | 1.3 | | Unnamed Creek<br>(05412070) | Lat 43°02'24", long 91°28'07", in SE1/4 sec.18, T.95 N., R.5 W., Clayton County, Hydrologic Unit 07060004, on right upstream bank at culvert on the northsouth gravel road between county road W70 and county road X16, 0.8 mi S of State Highway 52 and 18 and approximately 1.6 mi S of Luana. | 1.15 | 1986-89 | 08-18-89 | 0.00 | | East Fork Silver<br>Creek | Lat 43°00'54", long 91°27'30", in NE1/4<br>SW1/4 sec. 29, T.95 N., R.5 W., Clayton<br>County, Hydrologic Unit 07060004, at<br>box culvert on county road B56 0.56 mi<br>upstream from mouth, 3.1 mi S of Luana. | 9.5 | 1988-89 | 08-16-89 | 0.00 | | Silver Creek | Lat 43°02'10", long 91°30'33", in SE1/4<br>SE1/4 sec. 14, T.95 N., R.5 W., Clayton<br>County, Hydrologic Unit 07060004, at<br>bridge on township road 2.0 mi E of<br>county road W64, 3.3 mi SW of Luana. | 1.36 | 1988-89 | 08-17-89 | 0.00 | | Silver Creek | Lat 43°02'01", long 91°29'49", in SW1/4<br>SE1/4 sec. 13, T.95 N., R.6 W., Clayton<br>County, Hydrologic Unit 07060004, at<br>bridge on township road 0.5 mi W of<br>county road W70, 2.75 mi SW of Luana. | 0.70 | 1988-89 | 08-17-89 | 0.00 | | Silver Creek<br>(05412060) | Lat 43°01'19", long 91°29'21", in NE1/4 sec. 25, T.95 N., R.6 W., Clayton County, Hydrologic Unit 07060004, on right upstream bank of bridge on county road W70, 2.3 mi S of State Highway 52 and 18, 3.2 mi S of Luana. | 4.39 | 1986-89 | 08-17-89 | 0.05 | | Silver Creek | Lat 43°00'49", long 91°27'44", in NE1/4<br>SW1/4 sec. 29, T.95 N., R.5 W., Clayton<br>County, Hydrologic Unit 07060004, at<br>concrete box culvert on county road B56,<br>3.2 mi S of Luana. | 5.59 | 1988-89 | 08-17-89 | 0.06 | | Stroom | Landita | Drainage | Period | | rements | |-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------| | Stream | Location | area<br>(mi <sup>2</sup> ) | of<br>Record | Date | Discharge<br>(ft <sup>3</sup> /s) | | | Roberts Creek BasinCo | ontinued | | | | | Silver Creek | Lat 43°00'02", long 91°26'53", in SW1/4 NW1/4 sec. 33, T.95 N., R.5 W., Clayton County, Hydrologic Unit 07060004, at bridge on township road 0.5 mi W of county road X16, 3.8 mi NE of Gunder. | 17.3 | 1988-89 | 08-16-89 | 0.00 | | Silver Creek | Lat 43°01'40", long 91°25'10", in NW1/4<br>SE1/4 sec. 22, T.95 N., R.5 W., Clayton<br>County, Hydrologic Unit 07060004, at<br>steel culvert on township road 2.1 mi<br>SE of Monona, 2.9 mi N of county road<br>B58. | 1.13 | 1988-89 | 08-16-89 | 0.00 | | Silver Creek | Lat 42°59'16", long 91°27'12", in SW1/4<br>NE1/4 sec. 5, T.94 N., R.5 W., Clayton<br>County, Hydrologic Unit 07060004, at<br>bridge on towship road 0.75 mi W of<br>county road X16, 3.2 mi NE of Gunder. | 25.2 | 1988-89 | 08-16-89 | 0.01 | | Silver Creek | Lat 42°58'24", long 91°26'30", in SE1/4<br>NW1/4 sec. 9, T.94 N., R.5 W., Clayton<br>County, Hydrologic Unit 07060004, at<br>bridge on township road 0.15 mi W of<br>county road X16, 3.0 mi E of Gunder. | 8.8 | 1988-89 | 07-07-89<br>08-16-89 | 0.00<br>0.00 | | Roberts Creek | Lat 42°57'36", long 91°26'03", in SE1/4<br>NW1/4 sec. 16, T.94 N., R.5 W., Clayton<br>County, Hydrologic Unit 07060004, at<br>bridge on county road X16, 0.8 mi N of<br>county road B60, 3.8 mi NE of Big Sprin | 61.8 | 1988-89 | 05-01-89<br>05-18-89<br>06-06-89<br>06-27-89<br>07-24-89<br>08-01-89<br>08-16-89<br>09-06-89 | 6.2<br>2.8<br>1.9<br>3.3<br>0.91<br>0.81<br>0.48<br>2.1 | | Roberts Creek | Lat 42°57'33", long 91°25'10", in SW1/4 NE1/4 sec. 15, T.94 N., R.5 W., Clayton County, Hydrologic Unit 07060004, at bridge on township road 0.9 mi N of county road B60, 2.7 mi NW of St. Olaf. | 63.6 | 1988-89 | 08-16-89 | 0.20 | | Roberts Creek | Lat 42°57'06", long 91°24'34", in SW1/4 SW1/4 sec. 14, T.94 N., R.5 W., Clayton County, Hydrologic Unit 07060004, at bridge on county road B60, 2.6 mi W of Farmersburg. | 64.3 | 1988-89 | 08-16-89 | 0.27 | | Roberts Creek | Lat 42°57'24", long 91°23'58", in NE1/4<br>SW1/4 sec. 14, T.94 N., R.5 W., Clayton<br>County, Hydrologic Unit 07060004, at<br>bridge on farm road 1000 ft S of county<br>road B60, 1.8 mi W of Farmersburg. | 65.2 | 1988-89 | 08-16-89 | 0.00 | | Roberts Creek | Lat 42°56'41", long 91°22'26", in SE1/4<br>NW1/4 sec. 24, T.94 N., R.5 W., Clayton<br>County, Hydrologic Unit 07060004, under<br>high voltage power line 1000 ft W of<br>township road, 1.0 mi SW of Farmersburg. | 66.6 | 1988-89 | 08-16-89 | 0.00 | | Roberts Creek | Lat 42°57'10", long 91°23'28", in SE1/4<br>SE1/4 sec. 14, T.94 N., R.5 W., Clayton<br>County, Hydrologic Unit 07060004, on<br>private property 1.7 mi N of St. Olaf. | 66.0 | 1988-89 | 08-16-89 | 0.00 | | Roberts Creek<br>(05412100) | Lat 42°55'49", long 91°23'03", in NW1/4 sec. 25, T.94 N., R.5 W., Clayton County, Hydrologic Unit 07060004, on left downstream bank at bridge on road X28, 0.1 mi N of county road B65, on north edge of St. Olaf. | 70.7 | 1957-77<br>1986-89 | 08-16-89 | 0.00 | | Howard Creek | Lat 42°57'44", long 91°22'09", in NW1/4<br>NW1/4 sec. 18, T.94 N., R.4 W., Clayton<br>County, Hydrologic Unit 07060004, at<br>bridge on county road X28 in Farmersburg,<br>downstream of the mouth of an unnamed<br>creek. | 13.8 | 1988-89 | 08-17-89 | 0.14 | | Howard Creek | Lat 42°56'48", long 91°22'23", in NE1/4<br>NE1/4 sec. 24, T.94 N., R.5 W., Clayton<br>County, Hydrologic Unit 07060004, at<br>bridge on county road X28, 0.9 mi S of<br>Farmersburg. | 17.8 | 1988-89 | 04-04-89<br>08-17-89 | 0.46<br>0.07 | Discharge measurements in the following table were made at special study and miscellaneous sites throughout the Cedar River Basin. | Stream | Location | Drainage<br>area<br>(mi <sup>2</sup> ) | Period<br>of<br>record | Measu<br>Date | Discharge<br>(ft <sup>3</sup> /s) | |----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------|----------------------------------|-----------------------------------| | | Cedar River Basin | | | | | | Cedar River at<br>Cedar Rapids<br>(05464500) | Lat 41°58'14", long 91°40'01", in SE1/4 NW1/4 sec.28. T.83 N., R.7 W., Linn County, Hydrologic Unit 07080205, on right bank 400 ft upstream from bridge on Eight Ave. in Cedar Rapids, 2.7 mi upstream from Prairie Creek, and at mile 112.7 upstream from mouth of Iowa River. | 6,510 | 1902-88 | 09-20-89<br>09-20-89<br>09-21-89 | 601<br>617<br>576 | | Prairie Creek | Lat 41°56'59", long 91°38'22", in SE1/4 SE1/4 SE1/4 sec. 34, T.83 N., R.7 W., Linn County, Hydrologic Unit 07080205, at bridge, near S edge of Cedar Rapids. | 216 | | 09-20-89 | 39 | | Indian Creek | Lat 41°58'02", long 91°34'52", in SE1/4<br>NE1/4 SE1/4 sec. 30, T.83 N., R.6 W.,<br>Linn County, Hydrologic Unit 07080205,<br>at bridge, 5 mi E of Cedar Rapids. | 93.0 | 1989 | 09-20-89 | 3.4 | | Big Creek | Lat 41°56'30", long 91°32'41", in SE1/4<br>SW1/4 NE1/4 sec. 4, T.82 N., R.6 W.,<br>Linn County, Hydrologic Unit 07080206,<br>at bridge, on Hwy 13, 1 mi W of Bertram. | 111 | 1989 | 09-20-89 | 7.8 | | Pleasant Run Creek | Lat 41°55'53", long 91°33'42", in SE1/4 NE1/4 NE1/4 sec 8, T.82 N., R.6 W., Linn County, Hydrologic Unit 07080206, at bridge, 2 mi W of Bertram. | 7.33 | 1989 | 09-20-89 | 0.32 | | Spring Creek | Lat 41°53'00", long 91°25'31", in SE1/4<br>SE1/4 SE1/4 sec. 28, T.82 N., R.5 W.,<br>Linn County, Hydrologic Unit 07080206,<br>at bridge, 3.5 mi S of Mt. Vernon | 11.0 | 1989 | 09-20-89 | 1.9 | | Clear Creek | Lat 41°53'12", long 91°19'33", in SW1/4<br>NW1/4 NW1/4 sec. 28, T.82 N., R.4 W.,<br>Cedar County, Hydrologic Unit 07080206,<br>at bridge, 5.3 mi SW of Mechanicsville. | 6.67 | 1989 | 09-20-89 | 0.85 | | Clear Creek | Lat 41°51'13", long 91°23'08", in SE1/4<br>SE1/4 SE1/4 sec. 2, T.81 N., R.5 W.,<br>Johnson County, Hydrologic Unit 07080206,<br>at bridge, 1.1 mi N of Sutliff. | 22.4 | 1989 | 09-20-89 | 3.1 | | Coon Creek | Lat 41°49'27", long 91°21'51", in SW1/4<br>SW1/4 NW1/4 sec. 18, T.81 N., R.4 W.,<br>Cedar County, Hydrologic Unit 07080206,<br>at bridge, 2.3 mi SE of Sutliff. | 7.60 | 1989 | 09-20-89 | 0.66 | | Baldwin Creek | Lat 41°48'42", long 91°18'26", in NW1/4, SW1/4 NW1/4 sec.22, T.81 N., R.4 W., Cedar County, Hydrologic Unit 07080206, at bridge, 2.2 mi N of Cedar Bluff. | 10.9 | 1989 | 09-20-89 | 1.8 | | Mill Creek | Lat 41°48'31", long 91°23'50", in NE1/4 NE1/4 SW1/4 sec. 23, T.81 N., R.5 W., Johnson County, Hydrologic Unit 07080206, at bridge, 5.5 mi E of Solon. | 7.65 | 1989 | 09-20-89 | 0.35 | | Cedar River at<br>Cedar Bluff | Lat 41°47'10", long 91°18'39", in NW1/4 NE1/4 NE1/4 sec. 33, T.81 N., R.4 W., Cedar County, Hydrologic Unit 07080206, at bridge, near W edge of Cedar Bluff. | 70 | 1989 | 09-20-89<br>09-21-89<br>09-21-89 | 756<br>740<br>730 | | Gower Creek | Lat 41°46'32", long 91°19'44", in NW1/4<br>SE1/4 SE1/4 sec. 32, T.81 N., R.4 W.,<br>Cedar County, Hydrologic Unit 07080206,<br>at bridge, 1.7 mi SW of Cedar Bluff. | 6.2 | 1989 | 09-21-89 | 0.01 | | Unnamed Creek | Lat 41°45'44", long 91°14'22", in SE1/4 NE1/4 SW1/4 sec. 6, T.80 N., R.3 W., Cedar County, Hydrologic Unit 07080206, at bridge, 0.5 mi SE of Cedar Bluff. | | 1989 | 09-21-89 | 0.17 | | Stream | Location | Drainage<br>area<br>(mi <sup>2</sup> ) | Period<br>of<br>record | Measu<br>Date | rements<br>Discharge<br>(ft <sup>3</sup> /s) | |--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------|----------------------------------|----------------------------------------------| | | Cedar River BasinCont | inued | | | | | Nickoloson Creek | Lat 41°44'53", long 12°17'14", in SW1/4<br>SW1/4 NW1/4 sec. 11, T.80 N., R.4 W.,<br>Cedar County, Hydrologic Unit 07080206,<br>at bridge, 3.4 mi NW of Cedar Valley. | 18.3 | 1989 | 09-21-89 | 0.69 | | Rock Run | Lat 41°43'11", long 91°11'04", in NW1/4<br>NE1/4 SW1/4 sec. 22, T.80 N., R.3 W.,<br>Cedar County, Hydrologic Unit 07080206,<br>at bridge, 5.3 mi SE of Cedar Valley. | 23.3 | 1989 | 09-21-89 | 1.2 | | Unnamed Creek | Lat 41°42'35", long 91°13'55", in NE1/4<br>SE1/4 NE1/4 sec. 30, T.80 N., R.3 W.,<br>Cedar County, Hydrologic Unit 07080206,<br>at bridge, 2.1 miles south of Cedar Valley. | | 1989 | 09-21-89 | 0.51 | | Rock Creek<br>(05464800) | Lat 41°40'40", long 91°09'52", in NW1/4 sec. 2, T.79 N., R.3 W., Cedar County, Hydrologic Unit 07080206, at bridge, 0.5 mi NW of Rochester. | 63.4 | 1988-89 | 09-21-89 | 6.5 | | Pee Dee Creek | Lat 41°39'12", long 91°09'04", in SW1/4<br>NW1/4 NW1/4 sec. 13, T.79 N., R.3 W.,<br>Cedar County, Hydrologic Unit 07080206,<br>at bridge, 2.3 mi S of Rochester. | 5.02 | 1989 | 09-21-89 | 0.20 | | Crooked Creek | Lat 41°39'00", long 91°07'06", in SE1/4<br>SW1/4 NE1/4 sec. 18, T.79 N., R.2 W.,<br>Cedar County, Hydrologic Unit 07080206, at<br>bridge on Highway 38, 2.8 mi SE of Rochester | 18.4 | 1989 | 09-21-89 | 1.8 | | Sugar Creek | Lat 41°36'43", long 91°04'13", in NE1/4<br>NW1/4 NW1/4 sec. 34, T.79 N., R.2 W.,<br>Cedar County, Hydrologic Unit 07080206,<br>at bridge, 4.1 mi N of Wilton. | 98.4 | 1989 | 09-21-89 | 4.8 | | Sugar Creek | Lat 41°33'59", long 91°04'56", in NE1/4<br>NW1/4 NE1/4 sec. 16, T.78 N., R.2 W.,<br>Muscatine County, Hydrologic Unit 07080206,<br>at bridge, 0.6 mi S of Moscow. | 222 | 1989 | 09-21-89 | 22 | | Cedar River at<br>Moscow | Lat 41°34'36", long 91°05'15", center of NE1/4 SE1/4 NW1/4 sec. 9, T.78 N., R.2 W., Muscatine County, Hydrologic Unit 07080206, 0.2 mi N of railroad bridge in Moscow. | 7484 | 1989 | 09-20-89<br>09-21-89<br>09-21-89 | 798<br>740<br>756 | | Little Mosquito<br>Creek | Lat 41°32'02", long 91°05'11", in SW1/4<br>NW1/4 NE1/4 sec. 28, T.78 N., R.2 W.,<br>Muscatine County, Hydrologic Unit 07080206,<br>at bridge, 3.0 mi S of Moscow. | 17.8 | 1989 | 09-21-89 | 0.96 | | Wapsinonoc Creek | Lat 41°28'53", long 91°16'33", in SW1/4<br>SE1/4 SE1/4 sec. 11, T.77 N., R.4 W<br>Muscatine County, Hydrologic Unit 07080206,<br>at bridge on Highway 6, 1.7 mi E of Nichols. | 189.0 | 1989 | 07-24-88 | 14 | | Crane Creek | Lat 41°26'42", long 91°11'42", in SE1/4<br>SE1/4 NE1/4 sec. 28, T.77 N., R.3 W.,<br>Muscatine County, Hydrologic Unit 07080206,<br>at bridge, 4.0 mi SE of Adams. | | 1989 | 09-22-89 | 0.49 | | Smith Run | Lat 41°24'58", long 91°15'36", in SW1/4<br>SW1/4 NE1/4 sec. 1, T.76 N., R.4 W.,<br>Muscatine County, Hydrologic Unit 07080206,<br>at bridge, 3.2 mi N of Cranston. | 9.67 | 1989 | 07-24-88 | 0.25 | | Cedar River at<br>Conesville<br>(05465000) | Lat 41°24'36", long 91°17'06", in SW1/4<br>SW1/4 sec.2, T.76 N., R.4 W., Muscatine<br>County Hydrologic Unit 07080206, on right<br>bank 10 ft down stream from bridge on count;<br>highway G28, 3.4 mi NE of Conesville, 5.2 m<br>downstream from Wapsinonoc Creek, 10.7 mi<br>upstream from mouth, and at mile 39.8<br>upstream from mouth of Iowa River. | | 1939-89 | 09-20-89<br>09-21-89<br>09-22-89 | 925<br>934<br>954 | | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | |-----------------|--------------|-----------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------|---------------------|----------------------|-----------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------| | | 053882 | 250 | UPPER IO | WARNR DO | RCHESTER IA (LAT 4: | 3 25 16N | LONG 091 | 30 31W) | | | OCT 1988 | 1408 | 121 | 9.0 | 494 | MAY 1989 | 0030 | 232 | 15.0 | 485 | | NOV 29 | 0910 | 131 | | | 12<br>JUN | 0930 | | 15.0 | 360 | | JAN 1989<br>10 | 1200 | 109 | 1.0 | 539<br>242 | 29<br>AUG | 0930 | 137 | 22.5<br>28.5 | 295 | | MAR | | | 0.5 | _ | 02<br>SEP | 1630 | 100 | | 475 | | 01<br>APR | 1115 | 109 | 0.0 | 590 | 15 | 0945 | 166 | 15.5 | 4/3 | | 10 | 1357 | 205 | 7.0 | 555 | | | | | | | OCT 1000 | 05411600 | 1 | TURKEY RIV | ER AT SPIL | LVILLE, IOWA (LAT | 43 12 281 | LONG 091 | . 56 56W) | | | OCT 1988 | 0920 | 12 | 8.0 | 507 | MAY 1989<br>12 | 1205 | 38 | 18.0 | 550 | | NOV<br>29 | 1200 | 11 | 0.5 | 587 | JUN<br>28 | 2000 | 14 | 28.0 | 462 | | JAN 1989 | 1500 | 12 | 0.5 | 615 | AUG<br>02 | 1900 | 8.0 | 29.5 | 435 | | APR<br>11 | 0930 | 27 | 4.0 | 535 | SEP<br>14 | 1545 | 16 | 21.0 | 535 | | | | | | | | | | | | | 000 1000 | 03 | 5412060 | SILV | ER CREEK 6 | LUANA (LAT 43 01 : | 19N LONG | 091 29 21 | .W) | | | OCT 1988 | 1055 | 0.14 | 7.0 | 757 | MAR 1989<br>11 | 1710 | 147 | 1.0 | 280 | | NOV<br>03 | 0920 | 0.19 | 6.5 | 714 | 12<br>14 | 120 <b>5</b><br>1530 | 6.5<br>47 | 1.0<br>0.5 | 335<br>330 | | 28<br>JAN 1989 | 1330 | 0.29 | 1.5 | 727 | APR<br>06 | 1500 | 0.25 | 15.5 | 705 | | 09<br>MAR | 1430 | 0.14 | 4.0 | 758 | MAY<br>10 | 1305 | 0.21 | 19.0 | 685 | | 07<br>10 | 1350<br>1640 | 0.11<br>80 | 1.0<br>1.0 | 770<br>245 | JUN<br>28 | 1715 | 0.12 | 30.5 | 705 | | 11 | 1105 | 8.1 | 1.0 | 330 | AUG<br>03 | 0940 | 0.04 | 23.0 | 860 | | | | | | | | | | | | | | 0541207 | 70 | UNNAMED T | RIBUTARY A | T LUANA, IA (LAT 4: | 3 02 24N | LONG 091 | 28 07W) | | | MAR 1989<br>10 | 1200 | | 0.0 | 219 | MAR 1989<br>11 | 1045 | | 0.0 | 244 | | 10 | 1740 | | 0.5 | 195 | 11<br>12 | 1510<br>1315 | | . 0.0 | 160<br>220 | | | 05412 | 2100 | ROBERTS | C AB ST. | OLAF, IOWA (LAT 42 | 55 49N I | ONG 091 2 | 3 03W) | | | NOV 1988 | | | | | APR 1989 | | | | | | 03<br>28 | 1140<br>1117 | 1.2<br>4.2 | 7.0<br>1.0 | 704<br>758 | 06<br>May | 1325 | 1.1 | 8.5 | 700 | | JAN 1989<br>09 | 1050 | 0.50 | 0.0 | 867 | 10<br>SEP | 1140 | 2.0 | 14.0 | 620 | | FEB<br>28 | 1616 | 0.89 | 0.0 | 730 | 12 | 1515 | 0.13 | 14.0 | 560 | | MAR<br>15 | 0853 | 122 | 0.0 | 330 | | | | | | | | | | | | | | | | | | | 054125 | 500 | TURKEY R | IVER AT GA | RBER, IOWA (LAT 42 | 44 24N I | ONG 091 1 | 15 42W) | | | OCT 1988<br>11 | 1355 | 156 | 13.5 | 543 | MAY 1989<br>10 | 0935 | 346 | 12.0 | 555 | | NOV 23 | 0955 | 196 | 2.0 | 594 | ์<br>บัน<br>27 | 1430 | 201 | 27.0 | 545 | | FEB 1989<br>28 | 1440 | 207 | 0.0 | 540 | AUG<br>01 | 1430 | 113 | 28.0 | 502 | | APR<br>06 | 1050 | 340 | 7.0 | 465 | SEP 13 | 1945 | 275 | 17.0 | 600 | | | 05418 | | | | FULTON IA (LAT 42 | | | | | | OCT 1988 | 05410 | | | n nı | MAY 1989 | 1641 | | , | | | 07<br>NOV | 1215 | 116 | 10.0 | 635 | 09<br>JUN | 1105 | 135 | 13.0 | 610 | | 22.<br>JAN 1989 | 1245 | 126 | 2.5 | 633 | 27<br>AUG | 0830 | 105 | 21.5 | 595 | | 05<br>FEB | 1145 | 126 | 1.0 | 648 | 01<br>SEP | 0815 | 90 | 21.5 | 530 | | 28<br>APR | 1015 | 133 | 0.0 | 250 | 12 | 1500 | 145 | 18.0 | 625 | | 05 | 1230 | 142 | 16.0 | 635 | | | | | | | | | | PIL | OCELLANEOL | 12 MVIEW-GOVETII DU | IIA | | | | |-----------------------|--------------|-----------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------|---------------------|--------------|-----------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------| | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | | | 05418500 | MAQ | UOKETA RI | VER NEAR M | MAQUOKETA, IOWA (LA | T 42 05 ( | 5N LONG 0 | 90 38 04W | ) | | OCT 1988 | | | | | JUN 1989 | | | | | | 07<br>NOV | 0930 | 207 | 8.5 | 588 | 26<br>JUL | 2000 | 372 | 25.0 | 542 | | 22<br>APR 1989 | | 370 | 3.0 | 610 | 31<br>Sep | 1830 | 390 | 27.0 | 425 | | 05<br>MAY | 1000 | 475 | 8.5 | 575 | 12 | 1050 | 518 | 18.0 | 490 | | 09 | 0920 | 478 | 13.0 | 553 | | | | | | | | 05420500 | MI | SSISSIPPI | RIVER AT | CLINTON, IOWA (LAT | 41 46 5 | N LONG 09 | 0 15 04W) | | | OCT 1988 | 1000 | 07/00 | 10.0 | 222 | AUG_1989 | 1115 | 20200 | 27.0 | 450 | | 04<br>MAR_1989 | 1230 | 27400 | 19.0 | 380 | 23 | 1115 | 20200 | 27.0 | 430 | | 27 | 1500 | 49200 | 6.0 | 410 | | | | | | | | 05420560 | WA | PSIPINICO | N RIVER NE | AR ELMA, IOWA (LAT | 43 14 34 | N LONG 09 | 2 31 48W) | | | OCT 1988<br>04 | 0905 | 1.3 | 9.0 | 410 | MAY 1989<br>01 | 1355 | 38 | 11.0 | 540 | | NOV 08 | 1010 | 6.2 | 5.0 | 430 | JUN 14 | 0915 | 5.4 | 17.0 | 430 | | JAN 1989<br>13 | 1100 | 4.6 | 0.0 | 550 | <b>J</b> ՄL<br>25 | 1110 | 8.2 | 29.0 | 500 | | FEB 14 | 1320 | 5.2 | 0.0 | 390 | AUG<br>29 | 1110 | 14 | 25.0 | 390 | | | | | | | | | | | | | | 05421000 | WAP | SIPINICON | R AT INDE | PENDENCE, IOWA (LA | T 42 27 4 | 9N LONG 0 | 91 53 42W | ) | | OCT 1988 | 1310 | 22 | 13.5 | 408 | MAY 1989<br>10 | 1330 | 210 | 16.5 | 410 | | NOV 25 | 1045 | 70 | 4.0 | 370 | JUN<br>29 | 1315 | 36 | 27.5 | 450 | | JAN 1989 | 0910 | 39 | 1.0 | 543 | AUG<br>03 | 1415 | 28 | 28.0 | 430 | | MAR<br>01 | 1630 | 36 | 1.5 | 550 | SEP<br>15 | 1330 | 201 | 17.5 | 500 | | APR<br>11 | 1315 | 183 | 9.0 | 435 | | | | | | | | 05422000 | WAP | SIPINICON | RIVER NEA | AR DE WITT, IOWA (L | AT 41 46 | 01N LONG | 090 32 051 | M) | | OCT 1988<br>06 | 1255 | 147 | 11.5 | 412 | MAY 1989<br>08 | 1345 | 647 | 0.0 | 410 | | NOV 21 | 1615 | 244 | 3.0 | 402 | JUN 26 | 1700 | 253 | 26.5 | 408 | | JAN 1989<br>04 | 1500 | 170 | 0.5 | 596 | JUL<br>31 | 1545 | 140 | 29.0 | 440 | | FEB<br>27 | 1500 | 240 | 0.0 | 550 | SEP<br>18 | 1700 | 657 | 21.5 | 450 | | APR<br>04 | 1430 | 748 | 9.0 | 400 | | | | | | | | 05 | 422470 | CROW ( | C AT BETTE | NDORF IA (LAT 41 3 | 3 03N LO | iG 090 27 | 15W) | | | OCT_1988 | | 0 17 | | 500 | MAY 1989 | 1005 | 1 / | 10.0 | 785 | | 06<br>NOV<br>21 | 0950 | 0.17 | 8.0 | 582 | 08<br>Jun | 1005<br>1200 | 1.4<br>0.94 | 12.0<br>27.0 | 570 | | JAN 1989 | 1010 | 0.63 | 2.0 | 524 | 26<br>JUL | | 0.79 | 26.0 | 620 | | 04<br>FEB<br>27 | 0915<br>0950 | 0.74 | 0.5 | 862 | 31<br>SEP | 1220<br>1300 | 3.6 | 19.5 | 800 | | APR 04 | 1005 | 0.63<br>1.4 | 0.0<br>8.0 | 725<br>815 | 18 | 1300 | 3.0 | 19.3 | 800 | | 04 | 1003 | 1.4 | 0.0 | 815 | | | | | | | | 0544 | 9500 | IOWA RI | VER NEAR R | OWAN, IOWA (LAT 42 | 45 36N I | ONG 093 3 | 7 23W) | | | OCT 1988 | 0955 | 15 | 14.0 | 500 | JUN 1989<br>13 | 0940 | 17 | 19.0 | 670 | | NOV<br>07<br>JAN 1989 | 0855 | 19 | 3.0 | 500 | JUL<br>24 | 1025 | 14 | 26.0 | 625 | | 19 | 1225 | 14 | 0.0 | 610 | SEP<br>06 | 1335 | 19 | 24.0 | 560 | | MAY<br>02 | 1010 | 92 | 10.0 | 860 | | | | | | | | | | | | | | | | | | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | |-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------| | | 05451700 | TI | BER CREEK | NEAR MARSHA | LLTOWN, IOWA (LAT | 42 00 2 | 25N LONG 0 | 92 51 15W | ) | | APR 1989 | 1055 | 1050 | 5.0 | 560 | JUL 1989 | 1420 | 1.1 | 30.0 | 660 | | MAY<br>23 | 1040 | 2.2 | 19.0 | 690 | AUG<br>16 | 1125 | 2.4 | 21.0 | 580 | | | 05451900 | | RICHLAND ( | CREEK NEAR E | IAVEN, IOWA (LAT 4 | 1 53 581 | N LONG 092 | 28 27W) | | | OCT 1988 | 1120 | 0.40 | 11 0 | 1.05 | APR_1989 | 1000 | 1.5 | 10.0 | 505 | | 04<br>NOV<br>07 | 1120<br>1415 | 0.49 | 11.0<br>5.0 | 465<br>478 | 25<br>JUN<br>07 | 1000<br>1315 | 1.5<br>0.78 | 19.0<br>24.0 | 505<br>540 | | DEC 19 | 1225 | 0.51 | 2.0 | 510 | JUL 18 | 1300 | 5.4 | 23.0 | 335 | | JAÑ 1989<br>30 | 1200 | 23 | 1.0 | 277 | AUĞ<br>28 | 1250 | 7.3 | 20.0 | 325 | | MAR<br>14 | 1115 | 5.0 | 2.0 | 395 | SEP 09 | 1500 | 70 | 17.5 | 480 | | | | | | | | | | | | | OC# 1000 | 05452 | 000 | SALT CR | EEK NR ELBER | ON, IOWA (LAT 41 | 57 51N 1 | LONG 092 1 | .8 47W) | | | OCT 1988 | 0930 | 5.1 | 9.0 | 491 | APR 1989<br>25 | 0830 | 10 | 20.0 | 550 | | NOV<br>07<br>DEC | 0955 | 6.8 | 3.0 | 574 | JUN<br>07 | 0945 | 6.7 | 20.0 | 590 | | 19<br>FEB 1989 | 0930 | 3.9 | 0.0 | 555 | JUL<br>18<br>AUG | 1430 | 6.0 | 23.0 | 505 | | 06<br>MAR | 1330 | 13 | 0.0 | 580 | 28 | 1015 | 7.8 | 21.0 | 430 | | 13 | 1350 | 48 | 2.0 | 350 | | | | | | | | 0545300 | ^ | DIC PEAD | יים ביצע איד זאר | ODA TOUA (TAT A1 | 44 58N | TONG 192 | 10 5561 | | | | 0343300 | U | DIG DEWK | SKEEK AT DAY | ORA, IOWA (LAT 41 | 77 3011 | DOMO USE | 10 3347 | | | OCT_1988 | | | | | JUN 1989 | | | | 040 | | 05<br>NOV | 0830 | 2.7 | 9.0 | 684 | JUN 1989<br>06<br>JUL | 1110 | 5.4 | 0.0 | 840<br>550 | | 05<br>NOV<br>09<br>DEC | 0830<br>0915 | 2.7<br>3.9 | 9.0<br>5.0 | 684<br>835 | JUN 1989<br>06<br>JUL<br>18<br>AUG | 1110<br>0940 | 5.4<br>13 | 0.0<br><b>22</b> .5 | 550 | | 05<br>NOV<br>09<br>DEC<br>20<br>JAN 1989 | 0830<br>0915<br>0945 | 2.7<br>3.9<br>4.6 | 9.0<br>5.0<br>0.0 | 684<br>835<br>647 | JUN 1989<br>06<br>JUL<br>18<br>AUG<br>29<br>SEP | 1110<br>0940<br>1015 | 5.4<br>13<br>6.0 | 0.0<br>22.5<br>20.0 | 550<br>1470 | | 05<br>NOV<br>09<br>DEC<br>20<br>JAN 1989<br>31<br>APR | 0830<br>0915<br>0945<br>1120 | 2.7<br>3.9<br>4.6<br>50 | 9.0<br>5.0<br>0.0<br>2.0 | 684<br>835<br>647<br>375 | JUN 1989<br>06<br>JUL<br>18<br>AUG<br>29 | 1110<br>0940 | 5.4<br>13 | 0.0<br><b>22</b> .5 | 550 | | 05<br>NOV<br>09<br>DEC<br>20<br>JAN 1989<br>31 | 0830<br>0915<br>0945 | 2.7<br>3.9<br>4.6 | 9.0<br>5.0<br>0.0 | 684<br>835<br>647 | JUN 1989<br>06<br>JUL<br>18<br>AUG<br>29<br>SEP | 1110<br>0940<br>1015 | 5.4<br>13<br>6.0 | 0.0<br>22.5<br>20.0 | 550<br>1470 | | 05<br>NOY<br>09<br>DEC<br>20<br>JAN 1989<br>31<br>AFR<br>25 | 0830<br>0915<br>0945<br>1120 | 2.7<br>3.9<br>4.6<br>50<br>5.5 | 9.0<br>5.0<br>0.0<br>2.0<br>22.0 | 684<br>835<br>647<br>375<br>1180 | JUN 1989<br>06<br>JUL<br>18<br>AUG<br>29<br>SEP<br>09 | 1110<br>0940<br>1015<br>1115 | 5.4<br>13<br>6.0<br>974 | 0.0<br>22.5<br>20.0<br>19.0 | 550<br>1470 | | 05<br>NOV<br>09<br>DEC<br>20<br>JAN 1989<br>31<br>APR<br>25 | 0830<br>0915<br>0945<br>1120<br>1300 | 2.7<br>3.9<br>4.6<br>50<br>5.5 | 9.0<br>5.0<br>0.0<br>2.0<br>22.0 | 684<br>835<br>647<br>375<br>1180 | JUN 1989<br>06<br>JUL<br>18<br>AUG<br>29<br>SEP<br>09 | 1110<br>0940<br>1015<br>1115 | 5.4<br>13<br>6.0<br>974 | 0.0<br>22.5<br>20.0<br>19.0 | 550<br>1470 | | 05<br>NOV 09<br>DEC 20<br>JAN 1989<br>31<br>APR 25<br>OCT 1988<br>05<br>NOV 08 | 0830<br>0915<br>0945<br>1120<br>1300 | 2.7<br>3.9<br>4.6<br>50<br>5.5 | 9.0<br>5.0<br>0.0<br>2.0<br>22.0 | 684<br>835<br>647<br>375<br>1180<br>VER AT MAREN | JUN 1989<br>06<br>JUL<br>18<br>AUG<br>29<br>SEP<br>09 | 1110<br>0940<br>1015<br>1115 | 5.4<br>13<br>6.0<br>974<br>LONG 092 0 | 0.0<br>22.5<br>20.0<br>19.0 | 550<br>1470<br>390 | | 05 NOV 09 Jec 20 JAN 1989 31 AFR 25 OCT 1988 05 NOV 08 DEC 21 | 0830<br>0915<br>0945<br>1120<br>1300<br>05453<br>1040<br>1000 | 2.7<br>3.9<br>4.6<br>50<br>5.5<br>100<br>90<br>94<br>92 | 9.0<br>5.0<br>0.0<br>2.0<br>22.0<br>IOWA RIV<br>11.0<br>3.0 | 684<br>835<br>647<br>375<br>1180<br>VER AT MAREN<br>520<br>590 | JUN 1989<br>06<br>JUL<br>18<br>AUG<br>29<br>SEP<br>09<br>IGO, IOWA (LAT 41<br>FEB 1989<br>14<br>MAR<br>13<br>APR | 1110<br>0940<br>1015<br>1115<br>48 41N 1 | 5.4<br>13<br>6.0<br>974<br>LONG 092 0 | 0.0<br>22.5<br>20.0<br>19.0<br>3 42W) | 550<br>1470<br>390 | | 05 NOV 09 DEC 20 JAN 1989 31 APR 25 OCT 1988 05 NOV 08 DEC 21 JAN 1989 | 0830<br>0915<br>0945<br>1120<br>1300<br>05453<br>1040<br>1000<br>0945<br>0950 | 2.7<br>3.9<br>4.6<br>50<br>5.5<br>100<br>90<br>94<br>92<br>98 | 9.0<br>5.0<br>0.0<br>2.0<br>22.0<br>IOWA RIV<br>11.0<br>3.0<br>0.0 | 684<br>835<br>647<br>375<br>1180<br>VER AT MAREN<br>520<br>590<br>770<br>740 | JUN 1989 06 JUL 18 AUG 29 SEP 09 IGO, IOWA (LAT 41 FEB 1989 14 MAR 13 APR 24 JUN 08 | 1110<br>0940<br>1015<br>1115<br>48 41N 1 | 5.4<br>13<br>6.0<br>974<br>LONG 092 0<br>188<br>2460 | 0.0<br>22.5<br>20.0<br>19.0<br>3 42W)<br>0.0 | 550<br>1470<br>390<br>622<br>220 | | 05 NOV 09 1989 31 APR 25 OCT 1988 05 NOV 08 DEC 21 JAN 1989 05 | 0830<br>0915<br>0945<br>1120<br>1300<br>05453<br>1040<br>1000<br>0945<br>0950 | 2.7<br>3.9<br>4.6<br>50<br>5.5<br>100<br>90<br>94<br>92<br>98<br>76<br>135 | 9.0<br>5.0<br>0.0<br>2.0<br>22.0<br>IOWA RIV<br>11.0<br>3.0<br>0.0<br>0.0 | 684<br>835<br>647<br>375<br>1180<br>VER AT MAREN<br>520<br>590<br>770<br>740<br>760<br>488 | JUN 1989 06 106 18 AUG 29 SEP 09 IGO, IOWA (LAT 41 FEB 1989 14 MAR 13 APR 24 JUN 08 JUL 19 | 1110<br>0940<br>1015<br>1115<br>48 41N 1<br>1045<br>0950<br>1145 | 5.4<br>13<br>6.0<br>974<br>LONG 092 0<br>188<br>2460<br>24 | 0.0<br>22.5<br>20.0<br>19.0<br>33 42W)<br>0.0<br>1.0<br>16.0 | 550<br>1470<br>390<br>622<br>220<br>525 | | 05 NOV DEC JAN 1989 31 APR 25 OCT 1988 05 NOV DEC 21 29 JAN 1989 05 12 12 12 | 0830<br>0915<br>0945<br>1120<br>1300<br>05453<br>1040<br>1000<br>0945<br>0950<br>0945<br>1000<br>1000 | 2.7<br>3.9<br>4.6<br>50<br>5.5<br>100<br>90<br>94<br>92<br>98<br>76<br>135<br>128<br>238 | 9.0<br>5.0<br>0.0<br>2.0<br>22.0<br>IOWA RIV<br>11.0<br>3.0<br>0.0<br>0.0<br>0.0 | 684<br>835<br>647<br>375<br>1180<br>VER AT MAREN<br>520<br>590<br>770<br>740<br>760<br>488<br>632<br>305 | JUN 1989 06 JUL 18 AUG 29 SEP 09 IGO, IOWA (LAT 41 FEB 1989 14 MAR 13 APR 24 JUN 08 JUL | 1110<br>0940<br>1015<br>1115<br>48 41N 1<br>1045<br>0950<br>1145<br>1215 | 5.4<br>13<br>6.0<br>974<br>LONG 092 0<br>188<br>2460<br>24<br>358 | 0.0<br>22.5<br>20.0<br>19.0<br>3 42W)<br>0.0<br>1.0<br>16.0<br>23.0 | 550<br>1470<br>390<br>622<br>220<br>525<br>565 | | 05 NOV 09 20 JAN 1989 31 APR 25 OCT 1988 05 NOV 08 DEC 29 JAN 1989 05 19 | 0830<br>0915<br>0945<br>1120<br>1300<br>05453<br>1040<br>1000<br>0945<br>0950 | 2.7<br>3.9<br>4.6<br>50<br>5.5<br>100<br>90<br>94<br>92<br>98<br>76<br>135<br>128 | 9.0<br>5.0<br>0.0<br>2.0<br>22.0<br>IOWA RIV<br>11.0<br>3.0<br>0.0<br>0.0 | 684<br>835<br>647<br>375<br>1180<br>VER AT MAREN<br>520<br>590<br>770<br>740<br>760<br>488<br>632 | JUN 1989 06 JUL 18 AUG 29 SEP 09 IGO, IOWA (LAT 41 FEB 1989 14 MAR 13 APPR 24 JUN 08 JUL 19 AUG | 1110<br>0940<br>1015<br>1115<br>48 41N 1<br>1045<br>0950<br>1145<br>1215<br>0945 | 5.4<br>13<br>6.0<br>974<br>LONG 092 0<br>188<br>2460<br>24<br>358<br>250 | 0.0<br>22.5<br>20.0<br>19.0<br>3 42W)<br>0.0<br>1.0<br>16.0<br>23.0<br>23.0 | 550<br>1470<br>390<br>622<br>220<br>525<br>565<br>430 | | O5 NOV DEC 20 JAN 1989 31 APR 25 OCT 1988 05 NOV DEC 21 JAN 1989 05 JAN 1989 05 12 12 19 | 0830<br>0915<br>0945<br>1120<br>1300<br>05453<br>1040<br>1000<br>0945<br>0950<br>0945<br>1000<br>1000 | 2.7<br>3.9<br>4.6<br>50<br>5.5<br>100<br>90<br>94<br>92<br>98<br>76<br>135<br>128<br>238<br>1080 | 9.0<br>5.0<br>0.0<br>2.0<br>22.0<br>IOWA RIV<br>11.0<br>3.0<br>0.0<br>0.0<br>0.0<br>0.0 | 684<br>835<br>647<br>375<br>1180<br>VER AT MAREN<br>520<br>590<br>770<br>740<br>760<br>488<br>632<br>305<br>320 | JUN 1989 06 JUL 18 AUG 29 SEP 09 IGO, IOWA (LAT 41 FEB 1989 14 MAR 13 APR 24 JUN 08 JUL 19 AUG 29 | 1110<br>0940<br>1015<br>1115<br>48 41N 1<br>1045<br>0950<br>1145<br>1215<br>0945<br>1320 | 5.4<br>13<br>6.0<br>974<br>LONG 092 0<br>188<br>2460<br>24<br>358<br>250<br>157 | 0.0<br>22.5<br>20.0<br>19.0<br>33 42W)<br>0.0<br>1.0<br>16.0<br>23.0<br>23.0<br>21.0 | 550<br>1470<br>390<br>622<br>220<br>525<br>565<br>430 | | 05 NOV 09 JAN 1989 31 APR 25 OCT 1988 05 DEC 21 JAN 1989 05 19 26 31 | 0830<br>0915<br>0945<br>1120<br>1300<br>05453<br>1040<br>1000<br>0945<br>0950<br>0945<br>1000<br>1030<br>0845 | 2.7<br>3.9<br>4.6<br>50<br>5.5<br>100<br>90<br>94<br>92<br>98<br>76<br>135<br>128<br>238<br>1080 | 9.0<br>5.0<br>0.0<br>2.0<br>22.0<br>IOWA RIV<br>11.0<br>3.0<br>0.0<br>0.0<br>0.0<br>0.0 | 684<br>835<br>647<br>375<br>1180<br>VER AT MAREN<br>520<br>590<br>770<br>740<br>760<br>488<br>632<br>305<br>320 | JUN 1989 06 106 18 AUG 29 SEP 09 IGO, IOWA (LAT 41 FEB 1989 14 MAR 13 AFR 24 JUN 08 JUL 19 AUG 29 VILLE, IOWA (LAT 4 | 1110<br>0940<br>1015<br>1115<br>48 41N 1<br>1045<br>0950<br>1145<br>1215<br>0945<br>1320<br>1 40 361 | 5.4<br>13<br>6.0<br>974<br>LONG 092 0<br>188<br>2460<br>24<br>358<br>250<br>157 | 0.0<br>22.5<br>20.0<br>19.0<br>3 42W)<br>0.0<br>1.0<br>16.0<br>23.0<br>23.0<br>21.0 | 550<br>1470<br>390<br>622<br>220<br>525<br>565<br>430<br>560 | | 05 NOV DEC 21 25 OCT 1988 05 NOV DEC 21 29 JAN 1989 05 12 19 26 31 | 0830<br>0915<br>0945<br>1120<br>1300<br>05453<br>1040<br>1000<br>0945<br>0950<br>0945<br>1000<br>1030<br>0845 | 2.7<br>3.9<br>4.6<br>50<br>5.5<br>100<br>90<br>94<br>92<br>98<br>76<br>135<br>128<br>238<br>1080 | 9.0<br>5.0<br>0.0<br>2.0<br>22.0<br>IOWA RIV<br>11.0<br>3.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.5<br>1.0 | 684<br>835<br>647<br>375<br>1180<br>VER AT MAREN<br>520<br>590<br>770<br>740<br>760<br>488<br>632<br>305<br>320 | JUN 1989 06 JUL 18 AUG 29 SEP 09 IGO, IOWA (LAT 41 FEB 1989 14 MAR 24 JUN 08 JUL 19 AUG 29 VILLE, IOWA (LAT 46 FEB 1989 01 09 MAR | 1110<br>0940<br>1015<br>1115<br>48 41N 1<br>1045<br>0950<br>1145<br>1215<br>0945<br>1320<br>1 40 361 | 5.4<br>13<br>6.0<br>974<br>LONG 092 0<br>188<br>2460<br>24<br>358<br>250<br>157 | 0.0<br>22.5<br>20.0<br>19.0<br>33 42W)<br>0.0<br>1.0<br>16.0<br>23.0<br>23.0<br>21.0 | 550<br>1470<br>390<br>622<br>220<br>525<br>565<br>430<br>560 | | 05 NOV DEC 25 OCT 1988 05 NOV DEC 21 29 JAN 1989 05 12 12 131 OCT 1988 05 NOV DEC 13 | 0830<br>0915<br>0945<br>1120<br>1300<br>05453<br>1040<br>1000<br>0945<br>0950<br>0945<br>1000<br>1030<br>0845<br>0545430<br>1420<br>1130<br>1155 | 2.7<br>3.9<br>4.6<br>50<br>5.5<br>100<br>90<br>94<br>92<br>98<br>76<br>135<br>128<br>238<br>1080<br>0 | 9.0<br>5.0<br>0.0<br>2.0<br>22.0<br>IOWA RIV<br>11.0<br>3.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.5<br>1.0<br>CLEAR CREI | 684<br>835<br>647<br>375<br>1180<br>VER AT MAREN<br>520<br>590<br>770<br>740<br>760<br>488<br>632<br>305<br>320<br>EK NR CORALV | JUN 1989 06 JUL 18 AUG 29 SEP 09 IGO, IOWA (LAT 41 FEB 1989 14 MAR 24 JUN 08 JUL 19 AUG 29 VILLE, IOWA (LAT 4 FEB 1989 01 09 MAR 14 APR | 1110<br>0940<br>1015<br>1115<br>48 41N 1<br>1045<br>0950<br>1145<br>1215<br>0945<br>1320<br>1 40 361<br>1405<br>1005<br>1640 | 5.4<br>13<br>6.0<br>974<br>LONG 092 0<br>188<br>2460<br>24<br>358<br>250<br>157<br>N LONG 091<br>27<br>1.9 | 0.0<br>22.5<br>20.0<br>19.0<br>33 42W)<br>0.0<br>16.0<br>23.0<br>21.0<br>. 35 55W) | 550<br>1470<br>390<br>622<br>220<br>525<br>565<br>430<br>560 | | 05 NOV 09 20 JAN 1989 31 APR 25 OCT 1988 05 NOV 08 JAN 1989 05 12 13 CCT 1988 05 12 19 19 26 31 | 0830<br>0915<br>0945<br>1120<br>1300<br>05453<br>1040<br>1000<br>0945<br>0950<br>0945<br>1000<br>1030<br>0845<br>0545430<br>1420<br>1130 | 2.7<br>3.9<br>4.6<br>50<br>5.5<br>100<br>90<br>94<br>92<br>98<br>76<br>135<br>128<br>238<br>1080<br>0 | 9.0<br>5.0<br>0.0<br>2.0<br>22.0<br>IOWA RIV<br>11.0<br>3.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0 | 684<br>835<br>647<br>375<br>1180<br>VER AT MAREN<br>520<br>590<br>770<br>740<br>760<br>488<br>632<br>305<br>320<br>EK NR CORALV | JUN 1989 06 18 AUG 29 SEP 09 IGO, IOWA (LAT 41 FEB 1989 14 MAR 13 APR 24 JUN 08 JUL 19 AUG 29 VILLE, IOWA (LAT 4: FEB 1989 01 09 MAR 14 APR 25 JUN | 1110<br>0940<br>1015<br>1115<br>48 41N 1<br>1045<br>0950<br>1145<br>1215<br>0945<br>1320<br>1 40 361<br>1405<br>1640<br>1520 | 5.4<br>13<br>6.0<br>974<br>LONG 092 0<br>188<br>2460<br>24<br>358<br>250<br>157<br>N LONG 091<br>27<br>1.9<br>12 | 0.0<br>22.5<br>20.0<br>19.0<br>3 42W)<br>0.0<br>1.0<br>16.0<br>23.0<br>21.0<br>. 35 55W)<br>0.0<br>0.0<br>2.0<br>24.0 | 550<br>1470<br>390<br>622<br>220<br>525<br>565<br>430<br>560<br>450<br>785<br>560<br>775 | | O5 NOV DEC 21 JAN 1989 O5 DEC 25 OCT 1988 O5 NOV DEC 21 29 19 26 NOV OCT 1988 O5 19 26 19 26 31 OCT 1988 O5 19 20 21 21 22 23 DEC 13 29 JAN 1989 O5 | 0830<br>0915<br>0945<br>1120<br>1300<br>05453<br>1040<br>1000<br>0945<br>0950<br>0945<br>1000<br>1030<br>0845<br>0545430<br>1420<br>1130<br>1155<br>1245<br>1220 | 2.7<br>3.9<br>4.6<br>50<br>5.5<br>100<br>90<br>94<br>92<br>98<br>76<br>135<br>128<br>238<br>1080<br>0 | 9.0<br>5.0<br>0.0<br>2.0<br>22.0<br>IOWA RIV<br>11.0<br>3.0<br>0.0<br>0.0<br>0.0<br>0.5<br>1.0<br>CLEAR CRED | 684<br>835<br>647<br>375<br>1180<br>VER AT MAREN<br>520<br>590<br>770<br>740<br>760<br>488<br>632<br>305<br>320<br>EK NR CORALV<br>600<br>752<br>580<br>815<br>1200 | JUN 1989 06 106 18 AUG 29 SEP 09 IGO, IOWA (LAT 41 FEB 1989 14 MAR 13 APR 24 JUN 08 JUL 19 AUG 29 VILLE, IOWA (LAT 4: FEB 1989 01 09 MAR 14 APR 25 JUN 09 JUL OPR 14 APR 25 JUN 09 JUL OPR 14 APR 25 JUN 09 JUL | 1110<br>0940<br>1015<br>1115<br>48 41N 1<br>1045<br>0950<br>1145<br>1215<br>0945<br>1320<br>1 40 361<br>1405<br>1005<br>1640<br>1520<br>1245 | 5.4<br>13<br>6.0<br>974<br>LONG 092 0<br>188<br>2460<br>24<br>358<br>250<br>157<br>N LONG 091<br>27<br>1.9<br>12<br>12<br>8.0 | 0.0<br>22.5<br>20.0<br>19.0<br>33 42W)<br>0.0<br>16.0<br>23.0<br>23.0<br>21.0<br>0.0<br>0.0<br>2.0<br>24.0 | 550<br>1470<br>390<br>622<br>220<br>525<br>565<br>430<br>560<br>785<br>560<br>775<br>880 | | 05 NOV DEC JAN 1989 31 APR 05 08 08 DEC 29 JAN 1989 05 12 19 12 19 26 31 OCT 1988 05 NOV DEC 21 29 12 19 20 JAN 1989 | 0830<br>0915<br>0945<br>1120<br>1300<br>05453<br>1040<br>1000<br>0945<br>0950<br>0945<br>1000<br>1030<br>0845<br>0545430<br>1420<br>1130<br>1155<br>1505<br>1245 | 2.7<br>3.9<br>4.6<br>50<br>5.5<br>100<br>90<br>94<br>92<br>98<br>76<br>135<br>128<br>238<br>1080<br>0 | 9.0<br>5.0<br>0.0<br>2.0<br>22.0<br>IOWA RIV<br>11.0<br>3.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.5<br>1.0<br>CLEAR CREI<br>12.0<br>6.0<br>0.0<br>0.0 | 684<br>835<br>647<br>375<br>1180<br>VER AT MAREN<br>520<br>590<br>770<br>740<br>760<br>488<br>632<br>305<br>320<br>EK NR CORALV<br>600<br>752<br>580<br>815<br>1200 | JUN 1989 06 18 AUG 29 SEP 09 IGO, IOWA (LAT 41 FEB 1989 14 MAR 13 APR 24 JUN 08 JUL 19 AUG 29 VILLE, IOWA (LAT 4 FEB 1989 01 MAR 14 APR 25 JUN 09 | 1110<br>0940<br>1015<br>1115<br>48 41N 1<br>1045<br>0950<br>1145<br>1215<br>0945<br>1320<br>1 40 361<br>1405<br>1640<br>1520 | 5.4<br>13<br>6.0<br>974<br>LONG 092 0<br>188<br>2460<br>24<br>358<br>250<br>157<br>N LONG 091<br>27<br>1.9<br>12 | 0.0<br>22.5<br>20.0<br>19.0<br>3 42W)<br>0.0<br>1.0<br>16.0<br>23.0<br>21.0<br>. 35 55W)<br>0.0<br>0.0<br>2.0<br>24.0 | 550<br>1470<br>390<br>622<br>220<br>525<br>565<br>430<br>560<br>450<br>785<br>560<br>775 | ## MISCELLANEOUS WATER-QUALITY DATA | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | |----------------|----------|-----------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------|----------------------|----------|-----------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------| | | 054545 | 500 | IOWA RIVE | ER AT IOWA | CITY, IOWA (LAT 41 | 39 24N | LONG 091 | 32 27W) | | | OCT_1988 | | | | | APR 1989 | | | | | | NOV<br>NOV | 1130 | 150 | 11.0 | 540 | 26<br>Jun | 0930 | 203 | 17.0 | 490 | | DEC | 0835 | 160 | 6.0 | 525 | JUL 3 | 1100 | 616 | 22.0 | 600 | | FEB 1989 | 1232 | 115 | 3.0 | 540 | AUG | 1023 | 158 | 23.0 | 460 | | 01<br>MAR | 1125 | 1620 | 1.0 | 411 | 31 | 1425 | 215 | 21.0 | 500 | | 16 | 1500 | 1990 | 2.0 | 500 | | | | | | | | 0545510 | 00 | OLD MANS C | CR NR IOWA | CITY, IOWA (LAT 41 | 36 25N | LONG 091 | 36 40W) | | | OCT 1988<br>06 | 0905 | 1.2 | 9.0 | 440 | APR 1989<br>26 | 1120 | 7.6 | 21.0 | 600 | | МОV<br>09 | 1315 | 18 | 6.0 | 533 | JUN<br>14 | 1255 | 12 | 18.0 | 425 | | DEC<br>20 | 1230 | 2.3 | 0.5 | 544 | JUL<br>20 | 1150 | 23 | 23.0 | 310 | | MAR 1989<br>14 | 1420 | 18 | 2.0 | 365 | AUG<br>30 | 1445 | 3.4 | 22.0 | 600 | | | 054555 | 500 | FNCI TSH E | אר אר אר אר | ALONA, IOWA (LAT 41 | 27 5QN | IONG 001 | 42 56W) | | | OCT 1988 | 054555 | 500 | LAOLIDII F | TVER HI K | MAR 1989 | Z/ 38N | LONG USI | 4 <u>2</u> 30N) | | | 13<br>NOV | 1250 | 3.5 | 10.0 | 475 | 16<br>APR | 1115 | 61 | 2.0 | 333 | | 16<br>DEC | 1320 | 13 | 6.0 | 550 | 26<br>JUN | 1530 | 15 | 26.0 | 548 | | 21<br>FEB 1989 | 1320 | 10 | 0.0 | 550 | 13<br>AUG | 1000 | 66 | 20.0 | 440 | | 01 | 1340 | 141 | 0.0 | 270 | 25 | 0955 | 20 | 21.0 | 400 | | | 0545570 | 00 | IOWA RIVER | NEAR LONE | E TREE, IOWA (LAT 4) | 1 25 151 | N LONG 091 | 28 25W) | | | OCT 1988 | 1445 | 181 | 13.0 | 525 | APR 1989<br>26 | 1307 | 334 | 24.0 | 512 | | DEC | 1000 | 165 | 0.0 | 600 | JUN<br>13 | 1207 | 826 | 22.0 | 450 | | FEB 1989<br>02 | 0930 | 1620 | 1.0 | 570 | JUL | 1250 | 176 | 28.0 | 560 | | MAR<br>16 | 1200 | 2690 | 1.5 | 420 | AUG<br>25 | 1200 | 195 | 22.0 | 530 | | | 05457700 | | TO DIVE | AT CHADIT | ES CITY, IOWA (LAT | 63 በ3 A4 | SN TONG 00 | ን ልበ ኃላພነ | | | OCT 1988 | 03437700 | , | LDM RIVE | NI CHARLE | JUN 1989 | 40 00 4. | DN LONG 03 | 2 40 2011) | | | 03<br>NOV | 1630 | 147 | 16.0 | 530 | 13<br>JUL | 1730 | 155 | 21.0 | 580 | | 08<br>FEB 1989 | 1335 | 143 | 6.0 | 590 | 28<br>AUG | 1030 | 134 | 26.0 | 340 | | 14<br>MAY | 1610 | 144 | 0.0 | 590 | 29 | 1420 | 184 | 27.0 | 400 | | 03 | 1600 | 534 | 15.0 | 580 | | | | | | | | 05458000 | LI | TTLE CEDAR | R RIVER NEA | AR IONIA, IOWA (LAT | 43 02 0 | OSN LONG O | 92 30 05W | ) | | OCT 1988<br>04 | 1100 | 12 | 9.0 | 450 | MAR 1989<br>21 | 0900 | 66 | 0.0 | 530 | | NOV<br>08 | 1150 | 13 | 6.0 | 470 | MAY<br>03 | 1440 | 80 | 18.0 | 530 | | DEC<br>16 | 1330 | 26 | 0.0 | 600 | JUN<br>14 | 1055 | 18 | 17.0 | 460 | | JAN 1989 | 0905 | 10 | 0.0 | 690 | JUL<br>25 | 0850 | 19 | 25.0 | 450 | | FEB<br>14 | 1450 | 23 | 1.0 | 490 | AUG<br>29 | 1245 | 5.5 | 26.0 | 425 | | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | |------------------|----------------------|-----------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------|------------------|--------------|-----------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------| | | 05458500 | ס | CEDAR RIV | ER AT JANESVIL | LE, IOWA (LAT 4 | 2 38 54N | LONG 092 | 27 54W) | | | OCT 1988 | 1715 | 202 | 14.0 | 470 | FEB 1989<br>07 | 1140 | 314 | 0.0 | 570 | | <b>NOV</b><br>09 | 1145 | 176 | 7.0 | 560 | 09<br>13 | 1110<br>1315 | 248<br>268 | 0.0<br>0.0 | 540<br>540 | | DEC<br>14 | 1120 | 205 | 0.0 | 710 | 16<br>24 | 1045<br>1150 | 219<br>166 | 0.0<br>0.0 | 580<br>610 | | 19<br>JAN 1989 | 1255 | 179 | 2.0 | 700 | MAR<br>16 | 1340 | 3180 | 1.0 | 220 | | 03<br>12<br>16 | 1200<br>1335<br>1030 | 192<br>139<br>164 | 0.0<br>0.0<br>0.0 | 530<br>680<br>680 | MAY<br>05<br>JUN | 1500 | 743 | 12.5 | 580 | | 20<br>24 | 1045<br>1110 | 235<br>210 | 1.0<br>0.0 | 630<br>560 | 14<br>JUL | 1415 | 21 <b>2</b> | 20.0 | 450 | | 26 | 1205 | 230 | 0.0 | 600 | 28<br>AUG | 1445 | 204 | 31.0 | 360 | | | | | | | 30 | 0825 | 109 | 23.0 | 460 | | 05 | 458900 | WEST | FORK CEDAL | R RIVER AT FIN | CHFORD, IOWA (L | AT 42 37 | 50N LONG | 092 32 2 | 4W) | | OCT 1988 | 1525 | 24 | 15.0 | 480 | MAY 1989<br>05 | 1245 | 160 | 13.0 | 650 | | NOV<br>09 | 1015 | 27 | 7.0 | 520 | JUN<br>14 | 1305 | 65 | 20.0 | 580 | | JAN 1989<br>20 | 1425 | 39 | 0.0 | 500 | JUL<br>24 | 1205 | 31 | 30.5 | 530 | | FEB<br>15<br>MAR | 1145 | 54 | 0.0 | 660 | AUG<br>30 | 1000 | 13 | 22.0 | 470 | | 21 | 1500 | 350 | 1.0 | 490 | | | | | | | | 05459500 | W | INNEBAGO R | IVER AT MASON | CITY, IOWA (LAT | 43 09 5 | 4n LONG 0 | 93 11 33W | ) | | OCT 1988<br>03 | 1420 | 28 | 15.0 | 1030 | MAY 1989<br>02 | 1520 | 127 | 13.0 | 860 | | NOV 07 | 1350 | 22 | 4.0 | 690 | JUN<br>13 | 1455 | 23 | 20.5 | 1040 | | JAN 1989<br>13 | 1310 | 17 | 0.0 | 1100 | JUL 24 | 1530 | 41 | 27.5 | 525 | | FEB 14 | 1100 | 30 | 0.0 | 1300 | AUG<br>22 | 1145 | 3.9 | 28.0 | 705 | | MAR<br>20 | 1335 | 163 | 1.0 | 545 | | | | | | | | 05462000 | SH | ELL ROCK R | IVER AT SHELL | ROCK, IOWA (LAT | 42 39 1 | ON LONG O | 92 35 46W | ) | | OCT 1988 | 1345 | 142 | 12.0 | 580 | MAY 1989<br>05 | 1030 | 409 | 13.5 | 680 | | NOV<br>08 | 1525 | 120 | 5.0 | 710 | JUN 14 | 1120 | 142 | 19.5 | 620 | | JAN 1989<br>12 | 1640 | 113 | 0.0 | 630 | JUL<br>28 | 1230 | 116 | 28.0 | 500 | | FEB<br>15 | 0955 | 123 | 0.0 | 750 | AUG<br>22 | 1440 | 60 | 28.0 | 520 | | MAR<br>13<br>21 | 1430<br>1315 | 1700<br>827 | 2.5<br>1.0 | 310<br>500 | | | | | | | | 05463000 | В | EAVER CREEI | K AT NEW HARTF | ORD, IOWA (LAT | 42 30 50 | n Long 09 | 2 37 55W) | | | OCT 1988<br>05 | 1055 | 6.2 | 9.0 | 600 | MAY 1989<br>05 | 1145 | 53 | 14.0 | 560 | | <b>09</b> | 0845 | 10 | 6.0 | 600 | JUN 15 | 1115 | 20 | 20.0 | 560 | | JAN 1989<br>16 | 1355 | 3.3 | 0.0 | 575 | JUL 24 | 1430 | 8.3 | 30.5 | 480 | | FEB<br>15 | 1310 | 12 | 0.0 | 620 | AUG<br>30 | 1120 | 3.8 | 25.0 | 410 | | | 05463500 | 1 | BLACK HAWK | CREEK AT HUDS | ON, IOWA (LAT 4 | 2 24 28N | LONG 092 | 27 47W) | | | OCT 1988<br>05 | 0900 | 6.5 | 7.5 | 680 | APR 1989 | 1220 | 19 | 9.0 | 560 | | уол<br>09 | 1330 | 11 | 8.0 | 670 | JUL<br>25 | 0925 | 4.9 | 26.0 | 600 | | JAN 1989<br>12 | 1100 | 6.0 | 0.0 | 760 | AUG 30 | 1415 | 1.6 | 25.0 | 740 | | FEB 13 | 1100 | 13 | 0.0 | 670 | -2 | - : | 2.2 | | | | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | |----------------------|----------------------|-----------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------|-----------------------|----------------------|-----------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------| | | 054640 | 000 | CEDAR RIV | ZER AT WATE | RLOO, IOWA (LAT 42 | 29 44N | LONG 092 | 20 03W) | | | JAN 1989<br>27 | 1145 | 580 | 1.5 | 550 | AUG 1989<br>24 | 1025 | 320 | 24.5 | 392 | | | 05464500 | ) ( | CEDAR RIVE | R AT CEDAR | RAPIDS, IOWA (LAT | 41 58 1 | 4N LONG 09 | 1 40 01W) | | | OCT 1988<br>07<br>28 | 1020<br>1130 | 629<br>582 | 13.0<br>7.0 | 400<br>462 | MAY 1989<br>31<br>JUL | 1200 | 1130 | 21.5 | 455 | | NOV<br>30<br>DEC | 1030 | 855 | 1.0 | 638 | 27<br>SEP | -1350 | 623<br>643 | 30.5<br>23.5 | 435<br>396 | | 28.<br>JAN 1989 | 1020 | 579 | 0.0 | 645 | 06<br>20<br>20 | 1015<br>1009<br>1824 | | 22.5<br>21.5 | 422 | | 24<br>MAR | 1135 | 727 | 1.0 | 575 | 20<br>20<br>21 | 1845<br>1359 | | 21.5<br>22.5 | 395<br>392<br>390 | | 29<br>APR | 1100 | 5730 | 10.0 | 368 | 21 | 1400 | | 22.5 | 392 | | 27 | 1230 | 1530 | 22.0 | 408 | | | | | | | | 05465000 | ) ( | CEDAR RIVER | R NEAR CONE | SVILLE, IOWA (LAT | 1 24 3 | 5N LONG 09 | 1 17 06W) | | | OCT 1988 | 2215 | -4.5 | | | APR 1989 | | | 20.0 | | | 14<br>NOV | 0945 | 715 | 11.0 | 600 | 26<br>Jun | 1010 | 2490 | 20.0 | 450<br>605 | | FEB 1989 | 1145 | 10 <b>7</b> 0<br><b>214</b> 0 | 5.0 | 625 | 13<br>SEP | 1415 | 1500 | 23.0 | 505 | | 02<br>MAR<br>16 | 1215<br>08 <b>55</b> | 5720 | 0.5<br>2.0 | 445<br>285 | 22 | 1200 | | 18.0 | 303 | | 10 | 0033 | 3720 | 2.0 | 205 | | | | | | | | 05470000 | ) 8 | SOUTH SKUN | RIVER NEA | R AMES, IOWA (LAT | 2 04 0 | 5N LONG 09 | 3 37 02W) | | | NOV 1988<br>07 | 1420 | 2.1 | 13.0 | 750 | MAY 1989<br>23 | 1455 | 6.7 | 24.0 | 890 | | JAN 1989 | 1330 | 4.3 | 2.0 | 950 | JUL<br>07 | 1015 | 12 | 29.0 | 740 | | APR<br>19 | 1010 | 1010 | 9.5 | 790 | | | | | | | | 0547 | 70500 | SQUAW ( | CREEK AT AM | ES, IOWA (LAT 42 0: | 21N L | ONG 093 37 | 45W) | | | JAN 1989 | 1116 | 1.0 | | 0/0 | JUN_1989 | 1045 | 255 | 22.0 | 495 | | 19<br>APR | 1115<br>0840 | 1.2<br>5.6 | 5.0 | 940 | 27<br>JUL<br>07 | 1045 | 255<br>11 | 23.0<br>31.0 | 750 | | 19 | 0040 | 3.0 | 9.5 | 710 | 07 | 1245 | 11 | 31.0 | 730 | | | 054712 | 200 | INDIAN CE | REEK NEAR M | INGO, IOWA (LAT 41 | 48 17N | LONG 093 | 18 26W) | | | OCT 1988 | 1025 | 0.91 | 10.0 | 550 | APR 1989<br>27 | 1220 | 6.2 | 24.0 | 1000 | | NOV<br>14 | 1155 | 5.9 | 6.5 | 1200 | JUN<br>08 | 1450 | 12 | 22.5 | 800 | | DEC 21 | 0850 | 1.7 | 0.0 | 500 | JUL<br>13 | 1125 | 1.2 | 26.5 | 590 | | MAR 1989<br>10<br>16 | 1340<br>1115 | 433<br>27 | 1.0<br>3.0 | 260<br>550 | AUG<br>31 | 1140 | 3.2 | 26.0 | 640 | | | 5471500 | | | | SKALOOSA, IOWA (LA) | . 41 21 | 19N LONG | 092 39 31 | <b>√</b> ) | | OCT 1988 | | | | | APR 1989 | | | | | | 04<br>NOV | 1230 | 24 | 13.0 | 580 | 24<br>Jun_ | 1200 | 79 | 19.0 | 710 | | 08<br>DEC | 1150 | 35 | 5.0 | 590 | ງນ <u>ເ</u> ຼ | 1320 | 296 | 26.0 | 440 | | 19<br>FEB 1989 | 1000 | 14 | 0.0 | 920 | 17<br>AUG | 1010 | 101 | 24.0 | 430 | | 07<br>MAR | 1005 | 58 | 0.0 | 600 | 28 | 1155 | 129 | 24.5 | 410 | | 23 | 1520 | 156 | 9.0 | 580 | | | | | | | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | |----------------|--------------|-----------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------|--------------------------|--------|-----------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------| | 05 | 472500 | NOR: | th skunk r | IVER NEAR SIGOURN | EY, IOWA (LAT | 41 18 | 03N LONG | 092 12 16 | M) | | OCT_1988 | 1005 | | 7.6 | E 7 E | APR 1989 | 0040 | 28 | 16 5 | 570 | | 13<br>NOV | 1005 | 8.0 | 7.5 | 575 | 24<br>JUN 05 | 0940 | | 16.5 | | | DEC | 1025 | 17 | 5.0 | 600 | 05<br>JUL_ | 1020 | 103 | 21.0 | 340 | | JAN 1989 | 1020 | 9.0 | 0.0 | 675 | AUG | 0910 | 23 | 21.0 | 310 | | 30<br>MAR | 0930 | 80 | 0.0 | 390 | 28 | 0915 | 351 | 24.0 | 240 | | 21 | 1035 | 58 | 4.0 | 440 | | | | | | | OCT 1988 | 0547340 | 00 | CEDAR CR | NR OAKLAND MILLS, | | 55 001 | N LONG 091 | . 40 00W) | | | 12<br>NOV | 1330 | 1.3 | 17.5 | 430 | APR 1989<br>26 | 1445 | 7.5 | 24.0 | 925 | | 16<br>DEC | 1015 | 18 | 9.0 | 860 | JUN<br>02<br>JUL | 0830 | 80 | 20.0 | 279 | | 20<br>FEB 1989 | 1245 | 5.0 | 1.5 | 850 | 06 | 1355 | 17 | 30.0 | 462 | | 01<br>MAR | 1130 | 16 | 2.0 | 615 | AUG<br>24 | 1245 | 491 | 23.0 | 330 | | 22 | 1015 | 14 | 2.5 | 600 | | | | | | | 0 | 5476500 | DE | S MOINES R | IVER AT ESTHERVIL | LE, IOWA (LAT | 43 23 | 51N LONG | 094 50 38 | W) | | OCT 1988 | 1020 | 8.3 | 9.0 | 1150 | APR 1989<br>24 | 1045 | 79 | 13.0 | 840 | | NOV<br>08 | 1200 | 13 | 4.0 | 2000 | JUN<br>07 | 0915 | 58 | 22.0 | 950 | | JAN 1989<br>25 | 1335 | 5.9 | 1.0 | 1650 | JUL<br>19 | 1500 | 110 | 24.0 | 960 | | MAR<br>01 | 0950 | 4.5 | 0.0 | 1630 | AUG<br>31 | 1645 | 14 | 28.0 | 1250 | | 28 | 1215 | 812 | 3.5 | 440 | | | | | | | | 05476750 | D: | ES MOINES | RIVER AT HUMBOLDT | , IOWA (LAT 4 | 2 43 1 | ZN LONG 09 | 4 13 06W) | | | OCT_1988 | | | | | APR 1989 | | | | | | 05<br>DEC | 1730 | 71 | 13.0 | 620 | 27<br>JUN_ | 1200 | 299 | 17.0 | 680 | | 02<br>30 | 1045<br>1045 | 80<br>56 | 1.0<br>2.0 | 650<br>860 | 05 | 1230 | 151 | 23.0 | 520 | | FEB 1989 | 1305 | 46 | 1.0 | 800 | 17<br>AUG | 1230 | 81 | 25.0 | 850 | | MAR<br>23 | 1240 | 31 | 4.0 | 780 | 23 | 1215 | 34 | 27.0 | 890 | | 0547900 | 0 | EAST FO | RK DES MOI | NES RIVER AT DAKO | TA CITY, IOWA | LAT | 42 43 26N | LONG 094 | 11 30 | | OCT 1988<br>05 | 1515 | 28 | 12.5 | 740 | APR 1989<br>27 | 1000 | 236 | 19.0 | 640 | | JAN 1989<br>19 | 1410 | 23 | 1.0 | 980 | JUN 05 | 0955 | 103 | 22.5 | 780 | | FEB 27 | 1120 | 24 | 0.0 | 920 | JUL 17 | 1030 | 42 | 27.0 | 910 | | MAR 23 | 1030 | 16 | 1.0 | 760 | AUG 23 | 1030 | 18 | 27.5 | 790 | | 20 | 1000 | 10 | 1.0 | 700 | 20 | 1000 | 10 | 27.3 | 700 | | 0<br>NOV 1988 | 5480500 | DE | s moines R | IVER AT FORT DODG | E, IOWA (LAT<br>APR 1989 | 42 30 | 22n Long ( | 94 12 04W | ) | | 14<br>DEC | 1225 | 135 | 7.0 | 750 | 28<br>JUN | 1200 | 730 | 18.0 | 640 | | 13<br>19 | 1000<br>0930 | 112<br>101 | 1.0<br>0.0 | 900<br>1000 | 05<br>AUG | 1550 | 371 | 23.5 | 560 | | FEB 1989 | 1410 | 143 | 2.0 | 910 | 23 | 1430 | 72 | 28.0 | 710 | | 27 | 0815 | 91 | 0.0 | 650 | | | | | | | | 5481000 | В | OONE RIVER | NEAR WEBSTER CIT | • | 42 26 | 01N LONG ( | 93 48 <b>12W</b> | ) | | OCT 1988<br>31 | 1020 | 15 | 9.0 | 850 | JUL 1989<br>03 | 1105 | 89 | 3.0 | 570 | | APR 1989<br>21 | 1035 | 48 | 18.0 | 750 | AUG<br>14 | 1320 | 28 | 25.0 | 580 | | | | | | | | | | | | | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | |----------------|----------|-----------------------------------------------------------------------|-------------|--------------------------------------------------------------|--------------------|--------------|-----------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------| | | 05481300 | D | ES MOINES R | IVER NR | STRATFORD, IOWA ( | LAT 42 15 0 | OAN LONG 0 | 93 59 52W) | ) | | OCT 1988 | | | | | JUL_1989 | | | | | | APR_1989 | 1245 | 108 | 10.0 | 760 | AUG 03 | 1310 | 405 | 30.0 | 550 | | 27<br>MAY | 1035 | 917 | 20.0 | 680 | 18 | 0950 | 187 | 24.0 | 620 | | 30 | 1145 | 1250 | 25.0 | 670 | | | | | | | | 05481950 | ) | BEAVER CRE | EK NEAR | GRIMES, IOWA (LAT | | LONG 093 | 44 08W) | | | NOV 1988 | 0845 | 0.10 | 7.0 | 860 | MAY 1989<br>23 | 0825 | 20 | 21.0 | 570 | | APR 1989<br>12 | 1400 | 4.6 | 5.0 | 630 | JUL<br>07 | 1335 | 12 | 32.0 | 660 | | | | | | | | | | - <b>-</b> | | | | 05482135 | N | ORTH RACCOO | N RIVER | NR NEWELL, IOWA ( | | LEN LONG 0 | 95 02 42W) | ) | | OCT 1988 | 1100 | 54 | 9.0 | 780 | APR 1989<br>04 | 1645 | 42 | 9.0 | 700 | | NOV<br>09 | 1100 | 16 | 8.0 | <b>76</b> 0 | 26<br>JUN_ | 1630 | 30 | 23.0 | 660 | | JAN 1989<br>23 | 1125 | 23 | 0.0 | 475 | JUL 06 | 1240 | 36 | 24.0 | 760 | | FEB 23 | 1110 | 9.0 | 0.0 | 500 | 20<br>AUG | 1130 | 6.4 | 24.0 | 680 | | MAR<br>22 | 1415 | 42 | 1.0 | 740 | 08<br>22 | 1230<br>1100 | 2.5<br>1.3 | 26.0<br>30.0 | 775<br>800 | | | 05482170 | | BIG CEDAR C | REEK NEA | AR VARINA, IOWA (L | AT 42 41 16 | N LONG 09 | 4 47 52W) | | | OCT 1988 | 1320 | 18 | 11.5 | 790 | MAY 1989<br>04 | 0920 | 15 | 11.0 | 630 | | VOV<br>08 | 0930 | 5.0 | 4.0 | 880 | JUN 06 | 1030 | 11 | 22.0 | 640 | | JAN 1989<br>23 | 1400 | 6.3 | 0.0 | 800 | JUL<br>19 | 1130 | 2.3 | 24.0 | 940 | | MAR<br>01 | 1720 | 1.8 | 0.0 | 1100 | AUG<br>30 | 1000 | 0.70 | 28.0 | 1310 | | 22<br>APR | 1240 | 18 | 0.0 | 890 | 50 | 1000 | 0.70 | 20.0 | 1310 | | 26 | 0940 | 9.2 | 17.0 | 640 | | | | | | | | 0548230 | 00 | n raccoon | R NR SA | CCITY IOWA (LAT | 42 20 28N I | ONG 094 5 | 9 05W) | | | OCT 1988<br>03 | 1730 | 170 | 12.5 | 740 | APR 1989<br>26 | 1830 | 89 | 18.0 | 640 | | МОЛ<br>09 | 1240 | 48 | 5.0 | 60 <b>0</b> | JUN<br>08 | 1500 | 111 | 23.0 | 660 | | JAN 1989<br>23 | 1250 | 79 | 0.0 | 790 | JUL.<br>20 | 1415 | 31 | 28.0 | 760 | | FEB 23 | 1350 | 38 | 0.0 | <b>80</b> 0 | AUG<br>22 | 1500 | 8.4 | 27.5 | 700 | | MAR<br>22 | 1050 | 163 | 8.0 | 450 | | | | | | | 054 | 482500 | NORT | H RACCOON R | IVER NEA | R JEFFERSON, IOWA | (LAT 41 59 | 17N LONG | 094 22 36 | SW) | | OCT 1988<br>03 | 1330 | 469 | 12 5 | 340 | APR_1989 | 1200 | 170 | 16.0 | 640 | | JAN 1989 | | 468 | 13.5 | 740 | 25<br>25 | 1200<br>1630 | 1670 | 21.0 | 620 | | FEB | 1010 | 162 | 0.0 | 710 | JUN<br>09 | 1330 | 875 | 20.0 | 660 | | 13<br>MAR | 1315 | 105 | 0.0 | 700 | JUL<br>18 | 1245 | 100 | 26.0 | 640 | | 24 | 1650 | 314 | 7.5 | 720 | AUG<br>AUG | 1440 | 55 | 28.0 | 660 | | | | | | | 22 | 1745 | 34 | 31.5 | 650 | | | 483000 | EAST | FORK HARDI | N CREEK | NR. CHURDAN, IOWA | (LAT 42 06 | 27N LONG | 094 22 12 | (W) | | OCT 1988<br>03 | 1210 | 0.17 | 10.5 | 670 | JUN 1989<br>09 | 1630 | 5.3 | 21.5 | 660 | | MAR 1989<br>29 | 1430 | 0.41 | | 480 | JUL.<br>18 | 1025 | 2.0 | 22.0 | 390 | | | | | • • | | | | | | | | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | | |-----------------------|--------------|-----------------------------------------------------------------------|------------|--------------------------------------------------------------|---------------------|--------------|-----------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------|--| | | 05483 | 450 | M RACCOO | N R NR BAY | ARD, IOWA (LAT 41 4 | 7 00N | LONG 094 3 | 0 00W) | | | | NOV 1988 | 105 <b>5</b> | 40 | 7.0 | 690 | MAY 1989<br>22 | 1105 | 42 | 20.0 | 740 | | | DEC<br>02 | 1010 | 154 | 2.0 | 540 | JUL<br>05 | 1050 | 115 | <b>27</b> .0 | 740 | | | JAN 1989<br>18<br>APR | 1345 | 34 | 1.0 | 770 | AUG<br>18 | 1240 | 31 | 23.0 | 610 | | | 17 | 1225 | 42 | 5.0 | 850 | | | | | | | | | 05483600 | MID | DLE RACCOO | LE RACCOON RIVER AT PANORA, IOWA (LAT 41 41 14N LONG 09 | | | | | | | | NOV 1988<br>01 | 1315 | 42 | 9.0 | 490 | JUL 1989<br>05 | 1220 | 90 | 29.0 | 480 | | | JAN 1989<br>18 | 1240 | 49 | 4.0 | 610 | SEP<br>08 | 1240 | 3010 | 24.0 | 480 | | | APR<br>17 | 1435 | 41 | 5.0 | 600 | | | | | | | | | 05484000 | sou | TH RACCOON | RIVER AT | REDFIELD, IOWA (LAT | 41 34 | 48N LONG | 094 10 58 | W) | | | NOV 1988 | 1505 | 94 | 9.0 | 460 | MAY 1989 | 1415 | 93 | 25.0 | 480 | | | JAN 1989<br>18 | 1120 | 107 | 0.0 | 550 | 22<br>JUL<br>05 | 1415<br>1435 | 135 | 30.0 | 490 | | | APR 20 | 1435 | 85 | 19.0 | 450 | AUG<br>18 | 0920 | 77 | 22.0 | 470 | | | | 2.42 | | | ,50 | 10 | 0000 | • • | | | | | 00m 1000 | 05484800 | ) W | ALNUT CREE | K AT DES M | OINES, IOWA (LAT 41 | 35 14 | N LONG 093 | 42 11W) | | | | OCT 1988 | 1125 | 1.9 | 8.0 | 760 | JUN 1989<br>07 | 1550 | 11 | 28.0 | 720 | | | FEB 1989<br>09<br>MAR | 0810 | 1.2 | 0.0 | 605 | JUL<br>12 | 1135 | 9.5 | 27.0 | 340 | | | 17<br>APR | 1155 | 7.7 | 0.5 | 620 | AUG<br>30 | 1045 | 7.6 | 22.0 | 430 | | | 25 | 1605 | 2.0 | 28.0 | 820 | | | | | | | | 05485 | 500 | DES MOIN | ES R. BL R | ACCOON R. | AT DES MOINES, IOWA | (LAT | 41 34 30N | LONG 093 | 35 48 | | | OCT 1988 | 1040 | 830 | 11.0 | 620 | APR 1989<br>26 | 0845 | 520 | 21.0 | 480 | | | DEC<br>21 | 1600 | 506 | 0.5 | 100 | JUN<br>07 | 1200 | 3050 | 24.0 | 520 | | | FEB 1989<br>09 | 0940 | 564 | 0.0 | 625 | JUL<br>19 | 0920 | 1660 | 24.0 | 450 | | | MAR<br>23 | 0940 | 1940 | 4.0 | 690 | AUG<br>30 | 0825 | 603 | 24.0 | 440 | | | | 05485640 | FO | URMILE CRE | EK AT DES | MOINES, IOWA (LAT 4 | 1 36 5 | ON LONG 09 | 3 32 43W) | | | | NOV 1988<br>15 | 0810 | 1.5 | 10.0 | 1240 | JUN 1989<br>07 | 1415 | 12 | 27.0 | 830 | | | FEB 1989<br>09 | 1350 | 1.7 | 0.0 | 1750 | JUL<br>19 | 1135 | 42 | 21.5 | 780 | | | MAR<br>17 | 0920 | 4.4 | 0.0 | 1170 | AUG<br>23 | 1225 | 9.6 | 25.0 | 820 | | | APR<br>26 | 1115 | 2.9 | 23.0 | 1480 | | | | | | | | | 054860 | 00 | NORTH RIV | ER NEAR NO | RWALK, IOWA (LAT 41 | 27 25N | LONG 093 | 39 10W) | | | | DEC 1988<br>20 | 1440 | 2.5 | 0.5 | 650 | JUN 1989<br>07 | 0920 | 20 | 23.0 | 420 | | | MAR 1989<br>22 | 1520 | 16 | 5.0 | 460 | JUL<br>18 | 1625 | 9.5 | 25.0 | 340 | | | APR<br>25 | 1350 | 6.3 | 23.0 | 560 | AUG<br>29 | 1430 | 48 | 25.5 | 310 | | | | 05486490 | M | IDDLE RIVE | R NEAR IND | IANOLA, IOWA (LAT 4 | 1 25 2 | 7N LONG 09 | 3 35 09W) | | | | OCT 1988<br>06 | 1030 | 12 | a n | 400 | APR 1989 | 1145 | 16 | 25.5 | 580 | | | NOV 10 | 0900 | 5.6 | 9.0<br>4.5 | 490<br>550 | 25<br>JUN<br>06 | 1145<br>1620 | 19 | 30.0 | 490 | | | DEC 20 | 1235 | 11 | 0.0 | 6 <b>2</b> 0 | 06<br>JUL<br>18 | 1430 | 54 | 28.0 | 310 | | | MAR 1989<br>22 | 1330 | 48 | 6.0 | 660 | AUG<br>29 | 1220 | 14 | 27.0 | 440 | | | | 1000 | 70 | 0.0 | 000 | 20 | | ••• | | | | | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | |-----------------------|---------------|-----------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------|----------|------------------|----------|-----------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------| | | 0548747 | 0 | SOUTH RIV | er near ac | KWORTH, | IOWA (LAT 4 | 1 20 14 | N LONG 093 | 29 10W) | | | OCT 1988<br>06 | 1415 | 2.4 | 14.0 | 550 | | APR 1989<br>18 | 1100 | 3.8 | 11.5 | 570 | | NOV<br>09 | <i>⁴</i> 1700 | 3.8 | 7.5 | 525 | | JUN<br>06 | 1440 | 9.1 | 28.5 | 470 | | DEC20 | 1030 | 7.3 | 0.5 | 610 | | JUL<br>18 | 1025 | 48 | 23.5 | 230 | | FEB 1989<br>08 | 1020 | 3.3 | 0.0 | 120 | | AUG<br>29 | 1125 | 4.6 | 26.0 | 490 | | MAR<br>22 | 1045 | 6.2 | 4.0 | 720 | | | | | | | | | 05487500 | DE | s moines i | RIVER NR R | UNNELLS | , IOWA (LAT | 41 29 1 | 9N LONG 09 | 3 20 17W) | | | NOV 1988 | 1555 | 534 | 8.5 | 640 | | JUL 1989<br>19 | 1440 | 1750 | 24.0 | 450 | | APR 1989<br>26 | 1345 | 584 | 25.0 | 540 | | AUG<br>30 | 1500 | 1070 | 26.5 | 400 | | JUN 08 | 1010 | 2260 | 22.0 | 560 | | | | | | | | | 05487980 | | TE BREAST | CREEK NEA | R DALLAS | S, IOWA (LAT | : 41 14 | 41N LONG 0 | 93 16 08W | ) | | OCT_1988 | | | | | | APR 1989 | | | | | | NOV | 1400 | 1.5 | 12.0 | 380 | | 25<br>JUN_ | 0935 | 1.7 | 22.0 | 680 | | DEC DEC | 1200 | 1.6 | 7.0 | 590 | | JUL | 1250 | 6.6 | 27.0 | 470 | | FEB 1989 | 0915 | 3.2 | 0.5 | 620 | | AUG AUG | 0835 | 0.97 | 20.0 | 470 | | 08<br>MAR<br>21 | 0820 | 2.4 | 0.0 | 320<br>500 | | 29 | 0820 | 5.4 | 24.0 | 390 | | 21 | 1510 | 6.8 | 4.5 | 300 | | | | | | | | | 054882 | 00 | ENGLISH ( | CR NR KNOX | VILLE, | OWA (LAT 41 | 16 00N | LONG 093 | 05 00W) | | | OCT 1988<br>05<br>DEC | 0915 | 0.40 | 9.0 | 395 | | APR 1989<br>25 | 0725 | 0.32 | 20.0 | 880 | | 19.<br>FEB 1989 | 1610 | 0.23 | 0.5 | 1300 | | JUN<br>06<br>JUL | 1100 | 2.8 | 22.0 | 425 | | 07<br>MAR | 1510 | 0.58 | 0.0 | 820 | | 17<br>AUG | 1700 | 0.01 | 27.0 | 1400 | | 22 | 0835 | 1.3 | 1.0 | 620 | | 28 | 1600 | 3.9 | 27.0 | 810 | | | 05488500 | D | ES MOINES | RIVER NEA | R TRACY | , IOWA (LAT | 41 16 5 | BN LONG 09 | 2 <b>51 34W)</b> | | | OCT 1988 | 1715 | 371 | 15.0 | 530 | | APR 1989<br>24 | 1345 | 752 | 22.0 | 550 | | NOV<br>09 | 1400 | 336 | 8.0 | <b>61</b> 5 | | JUN<br>06 | 0850 | 3130 | 22.0 | 530 | | DEC<br>19 | 1220 | 644 | 0.5 | 570 | | JUL<br>17 | 1325 | 1590 | 26.5 | 500 | | FEB 1989<br>07 | 1225 | 438 | 0.0 | 685 | | AUG<br>28 | 1520 | 1380 | 25.0 | 500 | | MAR<br>21 | 1145 | 1370 | 2.5 | 620 | | | | | | | | | 054890 | 00 | CEDAR CRI | EK NEAR B | USSEY, I | IOWA (LAT 41 | . 13 09N | LONG 092 | 54 38W) | | | OCT 1988 | 1230 | 1.5 | 14.0 | 410 | | APR 1989 | 1600 | 3.4 | 21.0 | 1010 | | NOV<br>08 | 1530 | 0.66 | 8.0 | 825 | | 05 | 1550 | 7.3 | 27.5 | 560 | | FEB 1989 | 1315 | 3.3 | 0.0 | <b>75</b> 5 | | JUL 17 | 1500 | 4.0 | 27.0 | 425 | | MAR<br>21 | 1320 | 12 | 0.5 | 650 | | AUG<br>28 | 1425 | 20 | 24.5 | 920 | | | 05489500 | D | ES MOINES | RIVER AT | OTTUMWA, | , IOWA (LAT | 41 00 39 | ON LONG 09 | 2 24 40W) | | | NOV 1988<br>14 | 1230 | 908 | 7.0 | 700 | | JUN 1989<br>01 | 1130 | 3700 | 22.0 | 552 | | JAN 1989<br>30 | 1200 | 977 | 5.0 | 715 | | JUL 06 | 0950 | 1350 | 30.0 | 580 | | MAR 20 | 1120 | 2150 | 1.5 | 390 | | AUG 23 | 1230 | 1200 | 25.5 | 548 | | APR 25 | 0915 | 143 | 18.5 | 650 | | | | | 20,0 | 2.3 | | | | | 20.0 | | | | | | | | | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | |-----------------------|--------------|-----------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------|----------------------|--------------|-----------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------| | | 05490500 | D | ES MOINES I | RIVER AT K | EOSAUQUA, IOWA (LAT | 40 43 4 | ON LONG O | 91 57 34W | ) | | OCT 1988 | 1100 | 836 | 9.5 | 625 | APR 1989<br>25 | 1315 | 784 | 23.0 | 530 | | NOV<br>15 | 1445 | 382 | 13.0 | 675 | JUN<br>01 | 1630 | 3180 | 24.0 | 580 | | FEB 1989<br>01<br>MAR | 0900 | 2040 | 3.0 | 740 | JUL<br>06<br>AUG | 1815 | 1350 | 34.0 | 448 | | 21 | 1345 | 1600 | 1.5 | 420 | 24 | 1000 | 326 | 22.0 | 490 | | | 06483500 | | ROCK RIVER | NEAR ROCK | VALLEY, IOWA (LAT 4 | 3 12 5 | 2n Long 09 | 6 17 39W) | | | OCT 1988 | 1320 | 45 | 11.0 | 730 | MAY 1989<br>02 | 1420 | 260 | 13.5 | 830 | | NOV<br>17 | 0940 | 23 | 0.5 | 910 | JUN<br>13 | 1400 | 52 | 18.0 | 690 | | DEC<br>21<br>FEB 1989 | 1125 | 28 | 0.0 | 950 | AUG<br>02<br>SEP | 1245 | 43 | 26.0 | 580 | | 08<br>MAR | 1400 | 7.9 | 0.0 | 750 | 12 | 1400 | 49 | 13.0 | 650 | | 21<br>27 | 1530<br>1530 | 271<br>821 | 0.0<br>12.5 | 570<br>375 | | | | | | | 0660 | 0000 | PERRY | CREEK AT 3 | 3TH STREET | , SIOUX CITY, IOWA ( | LAT 42 | 32 05N LO | NG 096 24 | 35W) | | OCT 1988 | 1625 | 4.4 | 10.0 | 800 | MAY 1989<br>_ 03 | 1555 | 5.6 | 12.0 | 690 | | NOV 15 | 1600 | 4.4 | 6,5 | 740 | JUN 12 | 1435 | 4.0 | 21.5 | 720 | | DEC 21 | 1700 | 6.1 | 0.0 | 780 | AUG<br>01 | 1350 | 6.2 | 25.5 | 590 | | FEB 1989 | 0925 | 3.8 | 0.0 | 650 | SEP<br>11 | 1515 | 5.2 | 15.0 | 660 | | MAR<br>22 | 1550 | 10 | 4.0 | 790 | | | | | | | | 06600 | 100 | FLOYD R | IVER AT AL | TON, IOWA (LAT 42 58 | 55N L | ONG 096 00 | 03W) | | | OCT 1988<br>06 | 1215 | 22 | 11.0 | 1010 | MAR 1989<br>22 | 1230 | 12 | 1.5 | 830 | | NOV<br>16 | 1045 | 8.8 | 2.0 | 950 | 27<br>MAY | 1715 | 43 | 13.5 | 640 | | DEC<br>21<br>FEB 1989 | 1450 | 14 | 0.5 | 1110 | 03<br>JUN<br>14 | 1100<br>1035 | 26<br>8.9 | 12.5<br>16.5 | 870<br>850 | | 09 | 0945 | 5.5 | 0.0 | 900 | 14<br>AUG<br>02 | 1030 | 7.3 | 26.0 | 750 | | | | | | | 18 | 1310 | 2.1 | 25.0 | 890 | | | 00300 | WEST | BRANCH FLOY | D RIVER N | EAR STRUBLE, IOWA (L | AT 42 5 | 55 15N LON | G 096 10 3 | 30W) | | OCT 1988<br>06 | 0955 | 44 | 9.0 | 1240 | MAY 1989<br>02 | 1105 | 19 | 10.5 | 1160 | | NOV<br>17<br>DEC | 1235 | 25 | 1.0 | 1060 | JUN<br>13<br>AUG | 0945 | 7.9 | 15.5 | 1160 | | 21.<br>FEB 1989 | 0850 | 19 | 0.0 | 1170 | 02<br>SEP | 0845 | 7.5 | 22.0 | 1220 | | 08<br>Mar | 1040 | 7.0 | 0.0 | 975 | 12 | 1125 | 4.6 | 13.0 | 1200 | | 21<br>27 | 1200<br>1215 | 25<br>25 | 0.5<br>16.0 | 1120<br>1030 | | | | | | | | 06600 | 500 | FLOYD R | VER AT JA | MES, IOWA (LAT 42 34 | 36N L | ONG 096 18 | 43W) | | | OCT 1988<br>04 | 1110 | 134 | 8.5 | 1040 | FEB 1989<br>07 | 1500 | 34 | 0.0 | 1100 | | NOV<br>15 | 1305 | 86 | 7.5 | 990 | 15<br>24 | 1130<br>1150 | 40<br>49 | 0.0<br>0.0 | 1060<br>1110 | | 29<br>DEC<br>05 | 1030<br>1530 | 66<br>88 | 0.5<br>3.0 | 1000<br>1000 | 27<br>MAR<br>09 | 1300<br>1015 | 7 <b>7</b><br>60 | 0.0<br>0.0 | 880<br>955 | | 12<br>20 | 1200<br>1655 | 74<br>74 | 0.0<br>0.0 | 1000<br>1000<br>1000 | 14<br>20 | 1130<br>1515 | 308<br>147 | 3.0<br>4.0 | 500<br>890 | | 28<br>JAN 1989 | 1545 | 64 | 0.0 | 1100 | MAY<br>04 | 0910 | 89 | 13.5 | 950 | | 03<br>09 | 1715<br>1440 | 55<br>62 | 0.0<br>0.0 | 1160<br>1170 | JUN<br>12 | 1145 | 49 | 23.0 | 890 | | 18<br>23 | 1545<br>1400 | 61<br>79 | 0.0<br>0.0 | 1020<br>955 | AUG<br>01<br>17 | 1600<br>1805 | 73<br>43 | 32.0<br>29.0 | 700<br>720 | | | | | | | 22 | 1200 | 35 | 26.0 | 930 | | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | |-----------------------------|------------------------------|-----------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------|----------------------------------|------------------------------|-----------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------| | | 06601200 | M | ISSOURI RI | VER AT DE | CATUR, NEBRASKA (LAT | 42 00 | 26N LONG 0 | 96 14 29W | ) | | OCT 1988<br>04 | 1415 | 30600 | 15.0 | 710 | MAY 1989<br>01 | 1230 | 31600 | 14.0 | 780 | | 12<br>17<br>24<br>31<br>NOV | 1330<br>1650<br>1540<br>1515 | 32600<br>33500<br>33700<br>35600 | 14.0<br>14.0<br>12.5<br>8.0 | 740<br>730<br>760<br>760 | 08<br>16<br>23<br>31<br>JUN | 1230<br>0805<br>0740<br>1500 | 31500<br>33500<br>32700<br>31100 | 14.0<br>17.5<br>20.0<br>19.0 | 750<br>750<br>750<br>750<br>740 | | 07<br>14<br>22<br>28<br>DEC | 1315<br>1345<br>1215<br>1315 | 34500<br>22200<br>14100<br>14400 | 7.5<br>5.0<br>2.0<br>2.0 | 760<br>800<br>845<br>780 | 06<br>14<br>19<br>26 | 1515<br>1330<br>1645<br>1700 | 31700<br>29900<br>32200<br>32400 | 21.0<br>19.0<br>20.0<br>22.0 | 745<br>740<br>815<br>770 | | 06<br>19 | 1115<br>1230 | 14100<br>14100 | 4.0<br>0.0 | 780<br>750 | JUL<br>05<br>10 | 1145<br>1430 | 30200<br>30600 | 24.0<br>26.0 | 760<br>690 | | JAN 1989<br>10<br>17<br>23 | 1215<br>1300<br>1230 | 8490<br>14800<br>14100 | 0.0<br>1.5<br>1.0 | 830<br>810<br>805 | 17<br>26<br>31<br>AUG | 1430<br>1200<br>1320 | 33300<br>32900<br>32400 | 25.0<br>26.0<br>28.5 | 760<br>780<br>780 | | 30<br>FEB | 1330 | 14300 | 0.0 | 805 | 08<br>15 | 1300<br>1500 | 32000<br>32400 | 22.0<br>27.0<br>25.5 | 830<br>770 | | 27<br>MAR<br>08 | 1715<br>1030 | 14600<br>15800 | 0.5<br>0.5 | 755<br>755 | 23<br>30<br>SEP | 1225<br>1040 | 32400<br>30300 | 25.0 | 790<br>750 | | 20<br>29<br>APR | 1215<br>1400 | 12200<br>26800 | 1.0<br>8.0 | 790<br>740 | 06<br>11<br>19 | 1730<br>1310<br>1720 | 29100<br>25000<br>27700 | 23.0<br>20.0<br>20.0 | 810<br>820<br>810 | | 10<br>17<br>24 | 1740<br>1405<br>1600 | 30300<br>31500<br>33000 | 6.0<br>11.0<br>16.5 | 740<br>730<br>750 | 25 | 1650 | 29500 | 18.0 | 800 | | | 06602020 | 0 0 | WEST FORK | DITCH AT I | HORNICK, IOWA (LAT 4 | 2 13 37 | N LONG 096 | 04 40W) | | | OCT 1988<br>12 | 1500 | 50 | 14.0 | 750 | APR 1989<br>05 | 1445 | 58 | 12.0 | 700 | | NOV<br>30 | 1200 | 42 | 2.0 | 740 | MAY<br>17 | 1015 | 35 | 18.0 | 700 | | JAN 1989<br>13 | 1120 | 36 | 0.0 | 740 | JUN<br>29 | 0930 | 38 | 23.0 | 700 | | FEB<br>02<br>10 | 1730<br>1215 | 110<br>42 | 0.0 | 770<br>650 | AUG<br>08<br>SEP | 1750 | 26 | 26.0 | 460 | | 14 | 1630 | 45 | 0.0 | 700 | 19 | 1345 | 25 | 23.0 | 650 | | 00<br>OCT 1988 | 5602400 | MONO | ONA-HARRIS | ON DITCH I | NEAR TURIN, IOWA (LA<br>APR 1989 | T 41 57 | 52N LONG | 095 59 301 | 4) | | 14<br>NOV | 1100 | 81 | 12.5 | 760 | 04<br>MAY | 1830 | 93 | 12.0 | 725 | | JAN 1989 | 1500 | 68 | 2.0 | 740 | 16<br>Jun | 1715 | 57 | 21.0 | 700 | | FEB | 1015 | 88 | 0.0 | 600 | 28<br>AUG | 1300 | 80 | 26.0 | 650 | | 15<br>MAR<br>10 | 1630<br>1500 | 81<br>4660 | 0.0<br>1.5 | 700<br>220 | 07<br>SEP<br>18 | 1850<br>1350 | 43<br>58 | 22.0<br>25.0 | 525<br>655 | | 10 | 066050 | | | | ENCER, IOWA (LAT 43) | | | | 033 | | OCT 1988<br>04 | 1820 | 19 | 10.0 | 680 | APR 1989<br>24 | 1400 | 112 | 15.0 | 400 | | NOV<br>08 | 1540 | 15 | 7.0 | 840 | JUN<br>06 | 1800 | 37 | 23.5 | 660 | | JAN 1989<br>25 | 1155 | 12 | 0.0 | 650 | JUL<br>19 | 1740 | 40 | 24.0 | 740 | | MAR<br>01<br>28 | 1220<br>1645 | 8.3<br>89 | 0.0<br>10.0 | 800<br>460 | AUG<br>30 | 1830 | 13 | 28.0 | 810 | | 20111 | 066058 | | | | CDOTTE TOUR (TATE 42 | 52 24N | TONG DOE | 14 3051) | | | OCT 1988 | 000036 | JJ0 | r STOON I | Y WI LINN | GROVE, IOWA (LAT 42<br>APR 1989 | JJ 24N | FOUR 093 | T4 30M) | | | 04<br>NOV | 1600 | 59 | 11.5 | 530 | 26<br>Jun | 1300 | 319 | 17.0 | 665 | | 09<br>JAN 1989 | 0855 | 54 | 5.0 | 6 <b>5</b> 0 | 06<br>JUL | 1450 | 105 | 23.5 | 710 | | 25<br>MAR | 1015 | 50 | 1.0 | 620 | ŽO<br>AUG | 0830 | 198 | 23.0 | 610 | | 01<br><b>29</b> | 1420<br>0920 | 32<br><b>292</b> | 0. <b>0</b><br>7.0 | 750<br>460 | 30 | 1515 | 35 | 27.0 | <b>67</b> 0 | | DATE | TIME . | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | |-----------------------|----------|-----------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------|-------------------|--------------|-----------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------| | 0660 | 6600 | LITTL | E SIOUX RIV | ER AT CORRE | CTIONVILLE, IOWA | (LAT 42 | 28 20N LO | NG 095 47 | 49W) | | OCT 1988<br>07 | 1030 | 175 | 9.0 | 660 | MAY 1989<br>04 | 1300 | 492 | 15.0 | 770 | | NOV<br>18 | 1015 | 149 | 2.0 | 790 | JUN<br>15 | 1010 | 170 | 15.5 | 660 | | DEC<br>20<br>FEB 1989 | 0920 | 157 | 0.0 | 900 | AUG<br>03 | 1325<br>1700 | 112<br>50 | 27.5<br>25.0 | 660<br>7 <b>2</b> 0 | | 09<br>MAR | 1445 | 115 | 0.0 | 750 | 17 | 1700 | 50 | 25.0 | 720 | | 23 | 1145 | 509 | 3.0 | 540 | | | | | | | | 066072 | 200 | MAPLE RI | VER AT MAPLE | TON, IOWA (LAT 42 | 09 28N | LONG 095 | 48 27W) | | | OCT 1988 | 1130 | 104 | 11.0 | 760 | MAY 1989<br>17 | 1330 | 80 | 21.0 | 660 | | NOV | 1515 | 142 | 0.0 | 700 | JUN 28 | 1600 | 95 | 29.0 | 650 | | JAN 1989<br>12 | 1715 | 140 | 0.0 | 670 | AUG<br>08 | 1515 | 47 | 26.0 | 495 | | FEB 15 | 1430 | 111 | 0.0 | 750 | 09<br>17 | 0950<br>1305 | 43<br>40 | 19.0<br>27.0 | 575<br>455 | | APR<br>05 | 1745 | 133 | 12.0 | 660 | SEP<br>18 | 1815 | 74 | 23.0 | 745 | | | 06607500 | L | ITTLE SIOU | RIVER NR. | TURIN, IOWA (LAT | 41 57 52 | 2N LONG 09 | 5 58 21W) | | | OCT 1988 | 1700 | 290 | 14.0 | 625 | MAY 1989 | 1200 | 349 | 12.0 | 640 | | 13<br>NOV<br>29 | 1100 | 336 | 14.0<br>0.0 | 635<br>750 | 18<br>JUN<br>28 | 1200<br>1020 | 317 | 12.0<br>22.0 | 600 | | FEB 1989<br>16 | 1140 | 256 | 0.0 | 755 | AUG<br>07 | 1645 | 177 | 23.0 | 560 | | APR<br>05 | 1130 | 558 | 8.0 | 650 | SEP 18 | 1615 | 204 | 24.0 | 650 | | | 066085 | 500 | SOLDIER I | RIVER AT PIS | GAH, IOWA (LAT 41 | 49 52N | LONG 095 | 55 50W) | | | OCT 1988 | 1600 | 54 | 17 0 | 740 | APR 1989 | 1515 | 76 | 12.0 | 700 | | DEC<br>01 | 1100 | 54<br>64 | 17.0<br>0.0 | 700 | 04<br>JUN<br>27 | 1530 | 49 | 28.0 | 625 | | JAN 1989<br>11 | 1600 | 62 | 0.0 | 600 | AUG<br>07 | 1350 | 28 | 22.0 | 660 | | FEB 16 | 1530 | 60 | 0.0 | 610 | SEP 20 | 0835 | 34 | 18.0 | 700 | | MAR<br>10 | 1145 | 741 | 1.5 | 220 | | | | | | | | 0660 | 9400 | BOYER I | R NR DENISON | , IOWA (LAT 42 00 | OON LON | IG 095 23 | (W00 | | | MAY 1989 | | | | | AUG 1989 | | | | | | 18<br>JUN | 1430 | 44 | 18.0 | 800 | 09<br>SEP | 1115 | 19 | 24.0 | 680 | | 29 | 1145 | 78 | 27.0 | 650 | 21 | 1330 | 32 | 25.0 | 640 | | | 06609 | 9500 | BOYER R | IVER AT LOGA | N, IOWA (LAT 41 3 | 8 33N LC | ONG 095 46 | 57W) | | | OCT 1988<br>17 | 1245 | 102 | 14.0 | 810 | MAY 1989<br>16 | 1100 | 65 | 18.0 | 800 | | DEC<br>01<br>JAN 1989 | 1430 | 109 | 1.0 | 800 | JUN<br>27 | 1140 | 228 | 24.0 | 500 | | 11<br>FEB | 1230 | 127 | 0.0 | 440 | AUG<br>09<br>SEP | 1645 | 38 | 28.0 | 525 | | 16<br>APR | 1530 | 111 | 0.0 | 800 | 26 | 1055 | 65 | 12.0 | 690 | | 04 | 1145 | 121 | 9.0 | 825 | | | | | | | | 807410 | WES | NISHNABO | INA RIVER AT | HANCOCK, IOWA (L. | AT 41 23 | 3 24N LONG | 095 22 1 | 7W) | | OCT 1988 | 1450 | 58 | 13.0 | 660 | MAY 1989<br>15 | 1530 | 40 | 24.5 | 600 | | NOV<br>28 | 1445 | 37 | 0.0 | 610 | JUN<br>26 | 2000 | 4540 | 22.0 | 150 | | JAN 1989<br>18 | 1500 | 48 | 0.0 | 700 | AUG<br>10 | 1400 | 52 | 25.0 | 600 | | FEB<br>15 | 1500 | 50 | 0.0 | 610 | SEP<br>20 | 1515 | 266 | 20.0 | 680 | | APR<br>07 | 1315 | 64 | 6.0 | 600 | | | | | | | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | |----------------|--------------|-----------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------|---------------------|--------------|-----------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------| | 068 | 08500 | WEST | NISHNABOTNA | RIVER | AT RANDOLPH, IOWA | (LAT 40 5 | 2 23N LONG | 095 34 4 | 8W) | | OCT 1988<br>27 | 1410 | 99 | 8.0 | 625 | JUN 1989<br>06 | 0955 | 221 | 23.0 | 310 | | DEC<br>13 | 1125 | 96 | 0.0 | 750 | 27<br>JUL | 1045 | 3620 | 21.0 | 225 | | JAN 1989 | | | | | 06<br>AUG | 1800 | 197 | 31.0 | 550 | | 24<br>MAR | 1145 | 114 | 0.0 | 550 | 15 | 1300 | 84 | 22.0 | 550 | | 08<br>APR | 1055 | 152 | 0.0 | 580 | | | | | | | 18 | 1230 | 119 | 11.0 | 540 | | | | | | | 0680 | 9210 | EAST N | ISHNABOTNA | RIVER N | NEAR ATLANTIC, IOWA | (LAT 41 | 20 47N LON | G 095 04 | 31W) | | OCT 1988<br>11 | 1050 | 24 | 8.5 | 570 | MAY 1989<br>15 | 1200 | 19 | 20.0 | 580 | | NOV 28 | 1115 | 18 | 0.0 | 625 | JUN 26 | 1530 | 1400 | 23,0 | 180 | | JAN 1989<br>18 | 1115 | 23 | 0.0 | 700 | JUL<br>10 | 1245 | 27 | 23.0 | 580 | | FEB 15 | 1230 | 21 | 0.0 | 600 | AUG<br>10 | 1245 | 27 | 23.0 | 580 | | MAR | | | | | SEP | | 182 | | 575 | | 10<br>APR | 1015 | 30 | 6.0 | 580 | 20 | 1240 | 102 | 19.0 | 3/3 | | 07 | 1015 | 30 | 6.0 | 580 | | | | | | | 068 | 09500 | EAST | NISHNABOTNA | RIVER | NEAR RED OAK, IOWA | (LAT 41 | 00 41N LON | G 095 14 | 07W) | | OCT 1988<br>25 | 1100 | 51 | 7.0 | 515 | FEB 1989<br>01 | 1140 | 225 | 0.0 | 490 | | DEC 09 | 1325 | 34 | 0.0 | 605 | 09<br>16 | 1805<br>1515 | 51<br>56 | 0.0 | 480<br>500 | | 16<br>21 | 1150<br>1200 | 42<br>64 | 0.0 | 675<br>680 | MAR 02 | 1030 | 89 | | 525 | | 30 | 1200 | 64 | 0.0<br>0.0 | 680 | APR | | | 0.0 | 475 | | JAN 1989<br>04 | 1140 | 50 | 0.0 | 570 | 18<br>Jun | 1845 | 62 | 12.0 | | | 10<br>19 | 1000<br>1100 | 68<br>73 | 0.0<br>0.0 | 590<br>550 | 05<br>JUL | 1615 | 146 | 26.0 | 325 | | 24 | 1350 | 71 | 1.0 | 470 | 03<br>AUG | 1530 | 173 | 28.0 | 500 | | | | | | | 15 | 1650 | 76 | 23.0 | 500 | | | 068118 | 40 | TARKIO RIV | ER AT S | STANTON, IOWA (LAT | 40 58 52N | LONG 095 | 06 32W) | | | OCT 1988 | 0930 | 0.0 | 7,0 | 490 | MAR 1989<br>01 | 1710 | 1.1 | 0.0 | 530 | | 25<br>DEC | 1315 | 0.13 | 7.0 | 1150 | APR | 1615 | 0.48 | 14.0 | 625 | | 09 | 1050 | 0.56 | 0.0 | 775 | 18<br>MAY | | | | 500 | | 16<br>21 | 0940<br>1430 | 0.36<br>0.43 | $0.0 \\ 1.0$ | 830<br>815 | 10<br>JUN | 1450 | 0.60 | 22.0 | | | JAN 1989<br>04 | 1500 | 0.65 | 1.0 | 1000 | 05<br>JՄL | 1310 | 0.50 | 24.0 | 615 | | FEB | 1610 | 0.59 | 0.0 | 500 | 03<br>AUG_ | 1210 | 10 | 25.0 | 415 | | 01<br>16 | 1400<br>1100 | 3.9<br>0.56 | 0.0<br>0.0 | 600<br>620 | 18 | 1200 | 0.06 | 20.0 | 830 | | | | DIS- | 111 | SPE- | WIEK-QUALIII DAIA | | DIS-<br>CHARGE, | | SPE- | |-----------------|--------------|---------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------|--------------------|--------------|----------------------------------------------------|-------------------------------------------------|------------------------------------------------------| | DATE | TIME | CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | DATE | TIME | INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | | | 0681350 | D 1 | MISSOURI R | IVER AT RULO | , NEBRASKA (LAT 40 | 03 14 | N LONG 095 | 25 12W) | | | OCT 1988<br>05 | 1415 | 37800 | 16.0 | 700 | MAY 1989<br>01 | 1315 | 37200 | 17.0 | 745 | | 11<br>20 | 1400<br>1445 | 38900<br>40000 | 14.0<br>14.0 | 725<br>750 | 11<br>17 | 1145<br>1215 | 36200<br>35200 | 15.0<br>19.0 | 750<br>770 | | 27<br>NOV | 1130 | 38800 | 11.0 | 750 | 24<br>JUN | 1330 | 36100 | 22.0 | 660 | | 02<br>10 | 1315<br>1230 | 38400<br>40700 | 9.0<br>8.0 | 790<br>745 | 01<br>09 | 1745<br>1155 | 34500<br>38400 | 21.0<br>22.5 | 695<br>750 | | 15<br>23 | 1300<br>1245 | 31000<br>21300 | 9.0<br>6.0 | 775<br>725 | 12<br>21 | 1400<br>1300 | 38700<br>34500 | 22.0<br>22.0 | 740<br>740 | | 02 | 0950 | 20600 | 5.0 | 950 | 29<br>JUL | 1345 | 41300 | 22.0 | 770 | | 06<br>13 | 1315<br>1340 | 21200<br>18500 | 3.0<br>2.0 | 810<br>750 | 06<br>12 | 2130<br>1200 | 39500<br>33200 | 25.0<br>29.5 | 650<br>800 | | JAN 1989 | 1130 | 19200 | 0.0 | 790 | 19<br>25 | 1500<br>1200 | 44400<br>37900 | 24.0<br>24.0 | 720<br>760 | | 04<br>17 | 1330<br>1330 | 18400<br>19500 | 1.0<br>1.0 | 800<br>800 | AUG<br>02 | 1215<br>1330 | 37000 | 26.0 | 780 | | 31 | 1350<br>1315 | 22900<br>24200 | 3.5<br>2.0 | 740<br>770 | 08<br>16 | 1330 | 34800<br>35000 | 26.0<br>27.0 | 770<br>790 | | FEB<br>15 | 1410 | 25900 | 1.0 | 775 | 23<br>30 | 1730<br>1000 | 35800<br>38900 | 26.0<br>24.0 | 740<br>710 | | MAR<br>15 | 1230<br>1250 | 38700 | 3.5 | 470 | SEP<br>05 | 1005<br>1130 | 56500<br>73900 | 23.0<br>10.0 | 575<br>410 | | 27<br>APR<br>12 | 1430 | 21900<br>36800 | 11.0<br>8.0 | 800<br>760 | 11<br>19<br>27 | 0940<br>1410 | 38900<br>35000 | 20.0<br>18.0 | 740<br>775 | | 19<br>26 | 1210<br>1300 | 37700<br>35400 | 12.0<br>19.0 | 740<br>750 | 2/ | 1410 | 03000 | 10.0 | ,,, | | 20 | 2000 | 05400 | 10.0 | 730 | | | | | | | | 0681875 | <b>D</b> 1 | PLATTE RIV | ER NEAR DIAG | ONAL, IOWA (LAT 40 | 46 02 | N LONG 094 | 24 46W) | | | OCT 1988 | 1900 | 1.6 | 7.0 | 535 | APR 1989 | 1420 | 3.0 | 18.0 | 540 | | 14 | 1220 | 2.2 | 0.0 | 650 | JUN<br>01 | 1725 | 6.5 | 21.0 | 400 | | JAN 1989<br>25 | 0940 | 3.5 | 0.0 | 560 | JUL<br>05 | 1700 | 2.1 | 30.0 | 425 | | MAR<br>02 | 1615 | 4.6 | 0.0 | 770 | AUG<br>17 | 1450 | 0.40 | 25.0 | 540 | | | 06819185 | E. | AST FORK 1 | 02 RIVER AT | BEDFORD, IOWA (LAT | 40 39 | 40N LONG | 094 42 58 | W) | | OCT_1988 | | 2.25 | | 500 | JUN 1989 | 40.0 | 0.40 | 07.0 | 100 | | 25<br>DEC | 1730 | 0.25 | 9.0 | 580 | 02<br>JUL | 1340 | 0.42 | 27.0 | 460 | | JAN 1989 | 1000 | 0.39 | 0.0 | 640 | 05<br>AUG | 1430 | 0.02 | 31.0 | 320<br>520 | | 26<br>MAR | 1210 | 0.26 | 1.0 | 700 | 17<br>SEP | 1700 | 0.0 | 25.0 | 520 | | 02<br>APR<br>19 | 1320<br>1145 | 0.47<br>0.26 | 0.0<br>14.0 | 760<br>540 | 08 | 1800 | 1180 | 20.0 | 145 | | 10 | 1143 | 0.20 | 14.0 | 340 | | | | | | | | 06898000 | T | HOMPSON RI | VER AT DAVIS | CITY, IOWA (LAT 4 | 0 38 2 | 5N LONG 09 | 3 48 29W) | | | OCT 1988 | 0930 | 0.86 | 4.0 | 540 | JUN 1989<br>01 | 1335 | 50 | 22.0 | 510 | | DEC<br>15 | 0920 | 5.3 | 0.0 | 520 | JUL<br>06 | 1100 | 7.8 | 27.5 | 300 | | JAN 1989 | 1305 | 8.1 | 0.0 | 670 | AUG<br>16 | 1155 | 0.74 | 22.0 | 450 | | MAR<br>08 | 1740 | 39 | 0.0 | 475 | SEP<br>09 | 1600 | 6350 | 19.0 | 185 | | APR<br>20 | 1300 | 7.0 | 14.0 | 550 | | | | | | | | 06898 | 400 | WELDON R | IVER NEAR LE | ON, IOWA (LAT 40 4 | 1 45N | LONG 093 3 | 8 07W) | | | OCT_1988 | 1100 | | | E00 | MAY 1989 | 0015 | 0.14 | 16.0 | 160 | | 04<br>26 | 1420<br>1235 | 0.10<br>0.20 | 6.0<br>6.0 | 590<br>600 | JUN | 0915 | 0.14 | 16.0 | 460 | | DEC<br>15 | 1140 | 0.19 | 0.0 | 550 | JUL<br>JUL | 1045 | 58 | 18.0 | 205<br>520 | | JAN 1989<br>25 | 1400 | 1.1 | 0.0 | 480 | 06<br>AUG | 0830 | 0.03 | 22.0 | 520<br>530 | | MAR<br>09 | 0845 | 3.1 | 0.0 | 315 | 16<br>SEP | 1045 | 0.02 | 19.0 | 530<br>120 | | APR<br>19 | 1805<br>0930 | 0.46<br>0.57 | 17.0<br>18.0 | 525<br>550 | 09 | 1310 | 2550 | 19.0 | 120 | | 20 | 0830 | 0.37 | 10.0 | 230 | | | | | | # MISCELLANEOUS WATER-QUALITY DATA | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | DATE | TIME | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | |----------------------------------|--------------|-----------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------|----------------------------|----------------------|-----------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------| | | 06903400 | CHA | ARITON RIV | ER NEAR C | HARITON, IOWA (LAT | 40 57 12 | N LONG 09 | 3 15 37W) | | | OCT 1988<br>11<br>JAN 1989<br>06 | 1250<br>1130 | 0.0 | 9.0<br>1.5 | 430<br>575 | FEB 1989<br>10<br>16<br>24 | 1050<br>1145<br>0810 | 0.22<br>0.22<br>0.17 | 0.0<br>0.5<br>0.0 | 600<br>680<br>625 | | 12<br>20 | 1100<br>1045 | 0.17<br>0.15 | 1.5<br>0.0 | 650<br>625 | MAR<br>20 | 1415 | 2.7 | 0.5 | 330 | | 27<br>30 | 1115<br>1450 | 0.21<br>2.0 | 2.0<br>0.5 | 480<br>500 | APR<br>24 | 1345 | 0.02 | 28.0 | 395 | | | | | | | MAY<br>30 | 1130 | 228 | 17.0 | 151 | | 069037 | 00 | SOUTH FORK | CHARITON | RIVER NE | AR PROMISE CITY, IO | W (LAT 4 | 0 48 02N | LONG 093 | 11 32 | | OCT 1988<br>11 | 1420 | 0.22 | 0.0 | 450 | MAR 1989<br>20 | 1630 | 1.9 | 0.5 | 315 | | NOV<br>15 | 0735 | 0.43 | 9.5 | 550 | APR<br>24 | 1545 | 0.43 | 23.0 | 570 | | DEC<br>19 | 1300 | 0.31 | 4.0 | 690 | <b>MAY</b><br>30 | 1730 | 26 | 26.0 | 238 | | JAN 1989<br>31 | 1000 | 3.1 | 1.5 | 500 | | | | | | | | 0690390 | 0 CH | MARITON RI | VER NEAR 1 | RATHBUN, IOWA (LAT | 40 49 22 | N LONG 09 | 2 53 22W) | | | OCT 1988<br>11 | 1550 | 10 | 16.5 | 300 | APR 1989<br>26 | 1010 | 6.0 | 12.0 | 335 | | NOV<br>15 | 0950 | 6.4 | 9.0 | 400 | MAY<br>31 | 0930 | 6.0 | 21.5 | 312 | | DEC<br>19 | 1445 | 8.6 | 1.5 | 300 | JUL<br>07 | 1130 | 5.0 | 22.5 | 320 | | JAN 1989<br>31 | 1215 | 2.8 | 7.5 | 290 | AUG<br>22 | 0750 | 5.0 | 23.5 | 308 | | MAR<br>21 | 0730 | 1.7 | 1.0 | 181 | | | | | | | | 0690 | 4010 | CHARITON | R NR MOU | LTON, IOWA (LAT 40 | 41 30N L | ONG 092 4 | 6 15W) | | | OCT 1988 | 0810 | 22 | 8.0 | 360 | APR 1989<br>25 | 1710 | 21 | 25.0 | 440 | | NOV<br>15 | 1230 | 21 | 11.0 | 425 | MAY<br>31 | 1650 | 72 | 22.5 | 290 | | DEC 20 | 0815 | 29 | 0.0 | 350 | JUL<br>07 | 0815 | 23 | 26.0 | 380 | | JAN 1989<br>31 | 1500 | 22 | 7.5 | 440 | AUG<br>22 | 1055 | 24 | 23.5 | 368 | | MAR<br>21 | 1020 | 24 | 1.0 | 254 | | | | | | #### GROUND-WATER LEVELS #### AUDUBON COUNTY 413044094565601. Local number, 78-36-35 ADCC1. LOCATION.--Lat 41°30'44", long 94°56'56", Hydrologic Unit 10240003, 2.5 mi south of the Town of Brayton on Hwy 71, and 0.3 mi west on the north side of County Road F-67. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 115 ft, cased to 115 ft, slotted from 94-101 ft, gravel-packed. METHOD.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,230 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.15 ft above land-surface datum. REMARKS.--Well WC-69. PERIOD OF RECORD.--June 1982 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 43.55 ft below land-surface datum, January 14, 1987; lowest measured, 53.09 ft below land-surface datum, July 5, 1989. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEARS OCTOBER 1981 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------| | JUN 22, 1982<br>JUL 02<br>AUG 03<br>SEP 01<br>OCT 07<br>NOV 04<br>DEC 07<br>JAN 04, 1983<br>MAR 09<br>APR 11<br>MAY 03 | 53.04<br>52.99<br>53.05<br>53.03<br>52.94<br>52.93<br>52.40<br>51.29<br>51.20<br>49.54 | JUN 06,<br>JUL 01<br>AUG 02<br>SEP 06<br>OCI 03<br>NOV 10<br>JAN 10, 1984<br>FEB 06<br>MAR 06<br>APR 10<br>JUL 10 | 48.83<br>47.74<br>47.95<br>48.12<br>49.40<br>49.20<br>49.27<br>45.49 | OCT 17,<br>JAN 09, 1985<br>APR 02<br>JUL 11<br>OCT 09<br>JAN 08, 1986<br>APR 19<br>JUL 09<br>OCT 06<br>JAN 14, 1987<br>APR 15 | 46.75<br>47.72<br>48.49<br>49.45<br>50.43<br>50.32<br>47.43<br>44.23<br>44.23<br>45.01 | JUL 09,<br>OCT 09<br>JAN 14, 1988<br>APR 12<br>JUL 20<br>OCT 19<br>JAN 20, 1989<br>APR 05<br>JUL 05 | 45.02<br>47.52<br>48.70<br>50.13<br>51.38<br>52.30<br>52.72<br>53.09 | 413958094544501. Local number, 79-35-10 CABB LOCATION.--Lat 41°39'58", long 94°54'45", Hydrologic Unit 10240003, approximately 0.3 mi west of the Town of Hamlin, on the south side of Highway 44. Owner: Geological Survey Bureau/DNR and U.S. Bu ogical Survey. AQUIFER. -- Dakota: ogical Survey. AQUIFER.--Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 221 ft, cased to 210 ft, slotted from 168-188 ft, open hole 210-221 ft, gravel-packed. METHOD.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,280 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 3.70 ft above land-surface datum. REMARKS.--Well WC-17 PERIOD OF RECORD.--August 1981 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 35.60 ft below land-surface datum, April 15, 1987; lowest measured, 40.71 ft below land-surface datum, April 5, 1989. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEARS OCTOBER 1980 TO SEPTEMBER 1989 | | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------| | SEP<br>NOV<br>FEB<br>APR<br>MAY<br>JUN<br>JUL<br>AUG<br>SEP<br>OCT | 17<br>07<br>02<br>03<br>01<br>07 | 36.97 F. 37.59 M. 37.44 M. 37.27 J. 36.90 A. 36.81 C. 36.42 J. 36. | IAN 04, 1983 EB 08 IAR 09 IPR 11 IAY 03 IUN 06 IUL 01 IUG 02 SEP 06 ICT 03 IOV 10 IAN 10, 1984 EB 06 | 35.94 APR<br>36.06 JUL<br>35.95 OCT<br>35.82 JAN<br>35.97 APR<br>35.92 JUL<br>36.27 OCT<br>36.39 JAN<br>36.44 APR | 10<br>17<br>109, 1985<br>102<br>109<br>108, 1986<br>119 | 36.09<br>35.92<br>35.91<br>35.74<br>35.72<br>36.52<br>36.54<br>35.72<br>36.72<br>35.72 | APR 15<br>JUL 09<br>OCT 09<br>JAN 14, 1988<br>APR 12<br>JUL 20<br>OCT 19<br>JAN 20, 1989<br>APR 05<br>JUL 05 | 35.60<br>36.07<br>36.15<br>35.95<br>36.10<br>36.08<br>37.43<br>40.71<br>39.37 | #### AUDUBON COUNTY 413843094541701. Local number, 79-35-15 DCDD LOCATION.--Lat 41°38'43", long 94°54'17", Hydrologic Unit 10240003, approximately 1.5 mi south of the Town of Hamlin and 0.5 mi west of Highway 71. Owner: Geological Survey Bureau, DNR and U.S. Su Town of Hamlin and 0.5 mi west of Highway /1. Owner: Geological Survey Bureds, John Survey and Survey. AQUIFER. -- East Nishnabotna alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS. --Drilled observation water-table well, diameter 2 in., depth 32 ft, cased to 30 ft, slotted from 25-30 ft, open hole 30-32 ft, gravel-packed. METHOD. --Quarterly measurement with chalked tape by USGS personnel. DATUM. --Elevation of land-surface datum is 1,245 ft above National Geodetic Vertical Datum of 1929, from from topographic map. Measuring point: Top of casing, 1.50 ft above land-surface datum. REMARKS. --Well WC-75 PERIOD OF RECORD. --June 1982 to current year. EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 11.28 ft below land-surface datum, May 3, 1983; lowest measured, 18.81 ft below land-surface datum, October 19, 1988. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEARS OCTOBER 1981 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------| | JUN 29, 1982<br>JUL 01<br>AUG 03<br>SEP 01<br>OCT 07<br>NOV 04<br>DEC 07 | 16.17<br>15.07<br>15.59<br>15.55<br>17.66<br>17.74<br>16.93 | MAY 03<br>JUN 06<br>JUL 01<br>AUG 02<br>SEP 06<br>OCT 03<br>NOV 10 | 11.28<br>14.75<br>14.54<br>16.87<br>17.71<br>16.98<br>17.79 | JUL 10<br>OCT 17<br>JAN 09, 1985<br>AFR 02<br>JUL 11<br>OCT 09<br>JAN 08, 1986<br>AFR 09 | 14.13<br>17.30<br>16.82<br>17.54<br>17.80<br>18.26<br>17.46 | APR 15<br>JUL 09<br>OCT 09<br>JAN 14, 1988<br>APR 12<br>JUL 20<br>OCT 19 | 15.92<br>16.58<br>17.31<br>17.48<br>18.33<br>18.34 | | JAN 04, 1983<br>FEB 08<br>MAR 09<br>APR 11 | 15.75<br>16.03<br>14.24<br>13.61 | JAN 10, 1984<br>FEB 06<br>MAR 06<br>APR 10 | 17.19<br>16.89<br>16.53<br>15.19 | APR 09<br>JUL 09<br>OCT 06<br>JAN 14 1987 | 15.90<br>12.83<br>15.26<br>17.12 | JAN 20, 1989<br>APR 05<br>JUL 05 | 18.40<br>18.61<br>18.51 | 415023094593801. Local number, 81-36-12 CBCA LOCATION.--Lat 41°50'23", long 94°59'38", Hydrologic Unit 10240002, approximately 0.5 mi west of the Town of Gray on the east side of County Road N-14, south of the Gray Cemetary. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artssian water well, diameter 2 in., depth 315 ft, cased to 315 ft, slotted from 279-295 ft, gravel-packed. METHOD.--Quarterly measurement with chalked tape or electric line by USGS personnel. DATUM.--Elevation of land-surface datum is 1,393 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.50 ft above land-surface datum. REMARKS.--Well WC-18. PERIOD OF RECORD.--August 1981 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 160.69 ft below land-surface datum, December 7, 1983; lowest measured, 168.52 ft below land-surface datum, October 6, 1987. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEARS OCTOBER 1980 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------| | AUG 19, 1981<br>SEP 24<br>NOV 03<br>FEB 01, 1982<br>APR 06<br>MAY 06<br>JUN 07<br>JUL 02<br>AUG 03<br>SEP 01<br>OCT 07<br>NOV 04<br>DEC 10 | 166.90<br>165.80<br>165.79<br>165.68<br>165.72<br>165.52<br>165.48<br>165.47<br>165.50<br>165.49<br>165.49 | JAN 04, 1983<br>FEB 08<br>MAR 09<br>APR 11<br>MAY 03<br>JUN 07<br>JUL 07<br>AUG 02<br>SEP 06<br>OCT 03<br>NOV 07<br>DEC 07<br>JAN 09, 1984 | 165.15<br>165.21<br>164.91<br>164.67<br>164.73<br>164.69<br>164.89<br>165.04<br>165.72<br>164.70<br>164.70<br>164.37 | FEB 08<br>MAR 05<br>APR 03<br>JUL 13<br>OCT 17<br>JAN 08, 1985<br>APR 03<br>JUL 09<br>OCT 08<br>JAN 07, 1986<br>APR 09<br>JAN 07, 1986<br>APR 09<br>JUL 08<br>OCT 07 | 164.23<br>164.38<br>164.67<br>163.83<br>163.83<br>163.75<br>163.74<br>163.69<br>163.83<br>163.51<br>163.51<br>163.28 | JAN 14, 1987<br>APR 16<br>JUL 09<br>OCT 06<br>JAN 13, 1988<br>APR 12<br>JUL 19<br>OCT 18<br>JAN 17, 1989<br>APR 03<br>JUL 12 | 163.30<br>163.01<br>163.24<br>168.52<br>163.30<br>162.55<br>160.32<br>163.65<br>163.55<br>164.25 | 415211092164101. Local number, 82-12-31 DAAD1. LOCATION.--Lat 41°52'11", long 92°16'41", Hydrologic Unit 07080208, approximately 0.6 mi north of the Iowa River, west side of Iowa Highways 21 and 212, approximately 1.2 mi south of the Town of Belle Plaine. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Iowa alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 25 ft, cased to 23 ft, screen 23 to 25 ft. METHOD.--Monthly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 770 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 3 ft above land-surface datum. REMARKS.--Well IRA-16A. PERIOD OF RECORD.--October 1984 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.52 ft below land-surface datum, May 28, 1986; lowest measured, 7.50 ft below land-surface datum, October 6, 1988. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | : | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |------|----------|----------------|--------------|----------------|--------------|----------------|------------------|----------------| | OCT | 06<br>27 | 7.50<br>7.45 | JAN 03<br>26 | 7.13<br>6.87 | MAY 04<br>24 | 4.89<br>5.48 | JUL 27<br>SEP 13 | 6.62<br>2.70 | | NOV | 28 | 7.12 | MAR 02 | 6.45 | JUN 20 | 6.00 | 521 10 | 2,70 | 415211092164102. Local number, 82-12-31 DAAD2. LOCATION.--Lat 41°52'11", long 92°16'41", Hydrologic Unit 07080208, approximately 0.6 mi north of the Iowa River, west side of Iowa Righways 21 and 212, approximately 1.2 mi south of the Town of Belle Plaine. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Iowa alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 15 ft, cased to 12 WELL CHARACTERISTICS. --Drilled Observation ft, slotted 12 to 15 ft. METHOD. --Monthly measurement with chalked tape by USGS personnel. DATUM. --Elevation of land-surface datum is 770 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.92 ft above land-surface datum. topographic map. Measuring point: Top of casing, 2.92 ft above land-surface datum. REMARKS.--Well IRA-16B. PERIOD OF RECORD.--October 1984 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.48 ft below land-surface datum, May 28, 1985; lowest measured, 7.54 ft below land-surface datum, August 29, 1988. WATER LEVEL. IN FEET BELOW LAND-SURFACE DATUM. WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE WATER<br>LEVEL | DATE WATER<br>LEVEL | ATER<br>EVEL | |------------------------|----------------------|---------------------------------------|---------------------------------------|--------------| | OCT 06<br>27<br>NOV 28 | 7.52<br>7.49<br>7.17 | JAN 03 7.18<br>26 6.91<br>MAR 02 6.51 | MAY 04 4.94<br>24 5.55<br>JUN 20 6.06 | 6.67<br>2.90 | 420459091500201. Local number, 84-09-13 DADD1. LOCATION.--Lat 42°04'56", long 91°50'02", Hydrologic Unit 07080205, approximately 1.75 mi southeast of the Town of Shellsburg, north of the Chicago, Rock Island and Pacific Railroad tracks. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--silurian-Devonian: in dolomite of Silurian and limestone of Devonian age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 5", depth 421 ft, cased to 35 ft and 163,5-184 ft, open hole 35-163.5 ft and 184-421 ft. DATUM.--Elevation of land-surface datum is 753 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.23 ft above land-surface datum. REMARKS.--Shellsburg Quarry/Flood Hole. Records for November 1975 to September 1988 are on file in the Iowa District Office. PERIOD OF RECORD.--November 1975 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, +0.65 ft above land-surface datum, April 3, 1979; lowest measured, 12.40 ft below land-surface datum, July 16, 1977. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 12 | 8.47 | MAR 30 | 8.71 | JUN 14 | 10.01 | SEP 11 | 11.59 | 420319091540102. Local number, 84-09-28 DBCC2. LOCATION.--Lat 42°03'19", long 91°54'01", Hydrologic Unit 07080205, approximately 3 mi south and 1.5 mi west of the Town of Shellsburg. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.-Silurian-Devonian: in dolomite of Silurian age and limestone of Devonian age. WELL CHARACTERISTICS.--Drilled observation artersian water well, diameter 7 in. to 173 ft, 5 in. to 590 ft, depth 590 ft, cased to 260 ft, open hole 265-590 ft. Cement plug 260-265 ft. Well open to 59.7 ft of Devonian rock reported to yield little, if any, water. METHOD.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 915 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.28 ft above land-surface datum. REMARKS.--Parker's Grove Cemetery well. PERIOD OF RECORD.--April 1975 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 150.73 ft below land-surface datum, April 14, 1975; lowest measured, 167.63 ft below land-surface datum, September 11, 1989. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 12 | 165.41 | MAR 30 | 165.58 | JUN 14 | 166.12 | SEP 11 | 167.63 | 420731092083801. Local number, 85-11-33 CCBC1. LOCATION.--Lat 42°07'31", long 92°08'38", Hydrologic Unit 07080205, approximately 1 mi South of Town of Garrison, just east of County Road V-56. Owner: Geological Survey Bureau, DNR and Geological Survey. AQUIFER.--Devonian: in Cedar Valley limestone of Middle Devonian age. south of the Geological Survey. AQUIFER. --Devonian: in Cedar Valley limestone of Middle Devonian age. WELL CHARACTERISTICS. --Drilled observation artesian water well, diameter 0.75 in., depth 237 ft, cased to 170 ft, slotted below cement plug, open hole 170 to 237 ft. Cement plugs from 97-100 ft and 237-240 ft. METHOD. --Quarterly measurement with chalked tape by USGS personnel. DATUM. --Elevation of land-surface datum is 905 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of 6 in. casing, 2.20 ft above land-surface datum. REMARKS. --Garrison 170 well. PERIOD OF RECORD. --June 1977 to current year. EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 60.18 ft below land-surface datum, April 19, 1983; lowest measured, 64.96 ft below land-surface datum, October 12, 1988. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 12 | 64.96 | MAR 30 | 63.08 | JUN 14 | 63.39 | SEP 11 | 63.76 | 420731092083803. Local number, 85-11-33 CCBC3. LOCATION.--Lat 42°07'31", long 92°08'38", Hydrologic Unit 07080205, approximately 1 mi south of the Town of Garrison, just east of County Road V-56. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Devonian: in Cedar Valley limestone of Middle Devonian age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 6 in., depth 97 ft, cased to 90 ft, open hole 90 to 97 ft. Cement plug from 97-100 ft. METHOD.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 905 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of 6 in. casing, 2.20 ft above land-surface datum. REMARKS.--Garrison 109 well. PERIOD OF RECORD.--June 1977 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 60.63 ft below land-surface datum, March 23, 1979; lowest measured, 65.03 ft below land-surface datum, October 12, 1988. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 12 | 65.03 | MAR 30 | 63.59 | JUN 14 | 63.46 | SEP 11 | 63.82 | 421326091522701. Local number, 86-09-34 AAAD1. LOCATION.--Lat 42°13'29", long 91°52'19", Hydrologic Unit 07080205, next to the water tower in the Town of Urbana. Owner: Town of Urbana. AQUIFER.--Ordovician and Silurian-Devonian: open from limestone and dolomite of the Platteville formation into limestone of Devonian age. WELL CHARACTERISTICS.--Drilled unused artesian water well, diameter 8 in., depth 1,033 ft, cased to 142 ft, open hole 142-1,033 ft. METHOD.--Monthly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 940 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Nipple on plate welded to casing, 3.15 ft above land-surface datum. REMARKS.--None. PERIOD OF RECORD.--September 1984 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 141.37 ft below land-surface datum, December 17, 1986; lowest measured, 151.64 ft below land-surface datum, August 24, 1989. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 24 | 148.42 | JAN 20 | 149.14 | APR 27 | 149.12 | JUL 21 | 150.03 | | NOV 23 | 148.17 | FEB 22 | 148.73 | MAY 26 | 149.53 | AUG 24 | 151.64 | | DEC 21 | 148.84 | MAR 23 | 148.81 | JUN 23 | 149.58 | SEP 25 | 150.30 | # BUENA VISTA COUNTY 423618095194511. Local number, 90-38-16 DDDD11. LOCATION.--Lat 42°36'18", long 95°19'45", Hydrologic Unit 10230005, north of County Highway C-65, 2 mi east of the Village of Hanover. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.-Drilled observation artesian water well, diameter 2 in., depth 497 ft, cased to 497 ft, perforated 346.5-349.5 ft. METHOD.--Quarterly measurement with chalked tape or electric line by USGS personnel. DATUM.--Elevation of land-surface datum is 1,365 ft above National Geodetic Vetical Datum of 1929, from topographic map. Measuring point: Top of casing, 3.50 ft above land-surface datum. REMARKS.--Well D-25. PERIOD OF RECORD.--April 1980 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 187.17 ft below land-surface datum, August 12, 1988; lowest measured, 189.53 ft below land-surface datum, December 6, 1983. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | JAN 18 | 187.32 | MAR 28 | 187.48 | MAY 23 | 187.95 | AUG 30 | 188.12 | #### BUENA VISTA COUNTY 424023095571401. Local number, 91-35-26 BCCC1. LOCATION.--Lat 42\*40'23", long 94\*57'14", Hydrologic Unit 07100006, approximately 2.7 mi west and 0.5 mi north of the Village of Varina. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: in sandstone of Cretaceous age. MELL CHARACTERISTICS.-Drilled observation artesian water well, diameter 2 in., depth 357 ft, cased to 357 ft, perforated 338-347 ft. Paleozoic rock present at 347 ft. METHOD.--Quarterly measurement with chalked tape or electric line by USGS personnel. DATUM.--Elevation of land-surface datum is 1,291 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.00 ft above land-surface datum. REMARKS.--Well D-24. PERIOD OF RECORD.--December 1979 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 18.40 ft below land-surface datum, January 7, 1980; lowest measured, 58.80 ft below land-surface datum, August 30, 1989. | WAIRK LEVEL | | 1988 TO SEPTEMBER 198 | | |-------------|--|-----------------------|--| | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | DEC 28 | 56.76 | MAR 22 | 57.65 | JUN 06 | 58.11 | AUG 30 | 58.80 | 425233094545001. Local number, 93-35-13 ADAA1. LOCATION.--Lat 42°52'33", long 94°54'50", Hydrologic Unit 07100006, south of the Chicago, Rock Island and Pacific Railroad track, approximately 3.5 mi east and 0.75 mi north of the Town of Marathon. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 1.50 in., depth 381 ft, cased to 381 ft, perforated 350-360 ft. METHOD.--Quarterly measurement with chalked tape or electric line by USGS personnel. DATUM.--Elevation of land-surface datum is 1,330 ft above National Geodetic Vetrical Datum of 1929, from topographic map. Measuring point: Top of casing, 3.00 ft above land-surface datum. REMARKS.--Well D-36. PERIOD OF RECORD.--February 1980 to current year. EXTREMES FOR FERIOD OF RECORD.--Highest water level measured, 131.65 ft below land-surface datum, May 6, 1985; lowest measured, 133.67 ft below land-surface datum, September 11, 1981. | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | JAN 18 | 133.03 | MAR 29 | 132.48 | MAY 23 | 132.73 | SEP 01 | 133.38 | #### CARROLL COUNTY 420705094394501. Local number, 84-33-02 BDBA1. LOCATION.--Lat 42°07'05", long 94°39'45", Hydrologic Unit 07100006, 3.75 mi north and 3.25 mi east of the Town of Glidden, east of County Road N-50 and the Kendal Bridge. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., cased to 76 ft, slotted from 73-76 ft. METHOD.--Quarterly measurement with chalked tape or electric line by USGS personnel. DATUM.--Elevation of land-surface datum is 1,110 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.00 ft above land-surface datum. REMARKS.--Well WC-132. DATUM. --Elevation of land-surface datum is 1,110 it above National Geodetic vertical Datum of 1929, From topographic map. Measuring point: Top of casing, 2.00 ft above land-surface datum. REMARKS. --Well WC-132. PERIOD OF RECORD. --September 1982 to current year. EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 49.24 ft below land-surface datum, July 12, 1984; lowest measured, 56.14 ft below land-surface datum, July 12, 1989. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEARS OCTOBER 1981 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------| | SEP 09, 1982<br>OCT 08<br>NOV 05<br>DEC 09<br>JAN 05, 1983<br>MAR 11<br>APR 13<br>MAY 04<br>JUN 03<br>JUL 05<br>AUG 03 | 54.58 OC<br>54.72 NC<br>54.77 DF<br>54.74 JA<br>54.44 FF<br>53.91 MA<br>53.14 AF<br>52.29 JU<br>51.99 OC | EP 08<br>CT 05<br>OS<br>SC 07<br>AN 09, 1984<br>EB 09<br>AR 05<br>PR 02<br>JL 12<br>CT 16<br>AN 08, 1985 | 51.78<br>52.22<br>52.14<br>52.75<br>52.30<br>52.00<br>51.86<br>49.24<br>50.46 | APR 02<br>JUL 08<br>OCT 07<br>JAN 07, 1986<br>APR 09<br>JUL 08<br>OCT 07<br>JAN 04, 1987<br>APR 16<br>JUL 09<br>OCT 06 | 52.11 JAN<br>53.04 APF<br>53.90 JUI<br>54.90 OCT<br>54.80 JAN<br>53.56 APF<br>53.00 JUI<br>52.99<br>53.40<br>53.50<br>53.66 | 12<br>12<br>18 | 53.48<br>53.80<br>54.61<br>54.80<br>55.30<br>55.77<br>56.14 | 420643094403701. Local number, 84-33-03 CADA1. LOCATION.--Lat 42°06'43", long 94°40'37", Hydrologic Unit 07100006, 3.5 mi north and 2.5 mi east of the Town of Glidden, on the west side of County Road N-50. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--North Raccoon terrace: in terrace sand and gravel of Pleistocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 21 ft, cased to 15 ft, slotted from 13-15 ft, gravel-packed. Glacial till penetrated 15-21 ft. METHOD.--Quarterly measurement with chalked tape or electric line by USGS personnel. DATUM.--Elevation of land-surface datum is 1,090 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.31 ft above land-surface datum. REMARKS.--Well WC-131. PERIOD OF RECORD.--September 1982 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 7.39 ft below land-surface datum, July 5, 1983; lowest measured, 11.92 ft below land-surface datum, January 7, 1986. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEARS OCTOBER 1981 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------| | SEP 09, 1982<br>OCT 07<br>NOV 05<br>DEC 09<br>JAN 05, 1983<br>FEB 09<br>MAR 11<br>APR 13<br>MAY 04<br>JUN 03<br>JUL 05 | 9.67<br>10.17<br>10.57<br>10.77<br>10.57<br>10.47<br>9.13<br>8.37<br>7.84<br>8.19<br>7.39 | AUG 03<br>SEP 08<br>OCT 05<br>NOV 08<br>DEC 07<br>JAN 09, 1984<br>FEB 09<br>MAR 05<br>APR 02<br>JUL 12<br>OCT 16 | 8.58<br>9.66<br>9.11<br>10.51<br>9.92<br>10.09<br>10.21<br>8.37<br>9.17<br>7.52<br>10.22 | JAN 08, 1985<br>APR 02<br>JUL 08<br>OCT 07<br>JAN 07, 1986<br>APR 09<br>JUL 08<br>OCT 07<br>JAN 14, 1987<br>APR 16<br>JUL 09 | 10.54<br>11.13<br>10.87<br>11.48<br>11.92<br>9.68<br>7.49<br>9.72<br>9.81<br>9.94<br>10.05 | OCT 06<br>JAN 12, 1988<br>APR 12<br>JUL 18<br>OCT 18<br>JAN 17, 1989<br>APR 03<br>JUL 12 | 9.48<br>9.37<br>10.86<br>10.82<br>11.64<br>11.67<br>10.50 | ## CARROLL COUNTY 420233094475901. Local number, 83-35-34 BCDC1. LOCATION.--Lat 42°02'33", long 94°47'59", Hydrologic Unit 07100007, approximately 3.5 mi west and 1.5 mi south of the Town of Glidden near the airport, west of County Road N-38. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 100 ft, cased to 99 ft, slotted from 72-76 ft; gravel packed, open hole 99-100 ft. Pennsylvanian rock 80-100 ft. METHOD.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,225 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.40 ft above land-surface datum. REMARKS.--Well WC-148. FERIOD OF RECORD.--October 1982 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 15.56 ft below land-surface datum, May 4, 1983; lowest measured, 21.54 ft below land-surface datum, April 3, 1989. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEARS OCTOBER 1982 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------| | OCT 06, 1982<br>NOV 05<br>DEC 09<br>JAN 05, 1983<br>MAR 10<br>APR 13<br>MAY 04<br>JUN 03<br>JUL 05<br>AUG 03 | 20.50<br>20.50<br>19.67<br>19.17<br>17.79<br>15.84<br>15.56<br>16.84<br>17.58 | SEP 08<br>OCT 05<br>NOV 08<br>DEC 08<br>MAR 06<br>APR 02<br>JUL 13<br>OCT 16<br>JAN 08, 1985<br>APR 02 | 19.49<br>19.26<br>19.23<br>17.27<br>16.64<br>15.65<br>19.10<br>17.21<br>18.49 | JUL 08<br>OCT 07<br>JAN 07, 1986<br>APR 09<br>JUL 08<br>OCT 07<br>JAN 14, 1987<br>APR 16<br>JUL 09<br>OCT 05 | 17.42<br>19.04<br>19.74<br>17.63<br>16.47<br>17.59<br>18.13<br>17.13<br>18.98<br>17.62 | JAN 12, 1988<br>APR 12<br>JUL 18<br>OCT 18<br>JAN 17, 1989<br>APR 03<br>JUL 12 | 18.61<br>19.50<br>20.77<br>20.59<br>21.04<br>21.54<br>20.15 | 420335094521501. Local number, 84-35-25 BDAD1. LOCATION.--Lat 42°03'35", long 94°52'15", Hydrologic Unit 07100007, near the city water plant, Carroll. Owner: City of Carroll. AQUIFER.--Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled unused artesian water well, diameter 8 in., depth 120 ft, cased to 100 ft, open hole 100-120 ft. METHOD.--Intermittent measurement reported by personnel from the City of Carroll. DATUM.-Elevation of land-surface datum is 1,275 ft above National Geodetic Vetrical Datum of 1929, from topographic map. Measuring point: Top of casing, 4.00 ft above land-surface datum. REMARKS.--City test No. 1. Water levels affected by pumping of nearby wells. PERIOD OF RECORD.--September 1939 to December 1949, May 1952 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 34.55 ft below land-surface datum, September 8, 1945; lowest measured, 87.50 ft below land-surface datum, June 13, 1981. REVISION:--Lowest water level measured, 87.50 ft below land-surface datum, Jun. 13, 1981. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | | DATE | WATER<br>LEVEL | | DATE | WATER<br>LEVEL | |----------------------------------------|----------------------------------------|-------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------|-----|----------------------------------------|----------------------------------------------------------------------|-----|----------------------------------|----------------------------------------------------------------------| | OCT<br>NOV<br>DEC<br>JAN<br>FEB<br>MAR | 15<br>01<br>30<br>04<br>17<br>14<br>08 | 66.76<br>63.48<br>62.90<br>62.75<br>66.10<br>62.48<br>62.79 | APR 21<br>25<br>28<br>30<br>MAY 05<br>10<br>15<br>20 | 69.02<br>67.55<br>64.90<br>65.09<br>66.76<br>69.32<br>68.31 | JUL | 20<br>25<br>30<br>05<br>10<br>15<br>20 | 67.19<br>68.64<br>67.41<br>69.03<br>67.50<br>73.80<br>73.40<br>73.00 | AUG | 15<br>18<br>20<br>24<br>25<br>28 | 73.60<br>73.30<br>72.80<br>68.90<br>73.40<br>71.30<br>68.10<br>72.20 | | APR<br>APR | 23<br>05<br>11<br>17 | 62.76<br>62.68<br>62.45<br>65.00 | 25<br>31<br>JUN 05<br>10 | 67.53<br>66.88<br>66.50<br>69.82 | AUG | 25<br>31<br>05<br>10 | 70.30<br>71.30<br>74.30<br>71.00 | | | | #### CARROLL COUNTY 421058094582701. Local number, 85-35-07 CCCC1. LOCATION.--Lat 42°10'58", long 94°58'27", Hydrologic Unit 07100006, approximately 1 block north of Iowa Highway 217, next to the town maintenance building, Breda. Owner: Town of Breda. AQUIFER.--Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled municipal artesian water well, diameter 10 in., depth 340 ft, cased to 320 ft, screen 320-340 ft. Original depth 349 ft. METHOD.--Quarterly measurement with chalked taped by USGS personnel. DATUM.--Elevation of land-surface datum is 1,362 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Vent pipe, 1.60 ft above land-surface datum. REMARKS.--Town well No. 3. Water levels affected by pumping. PERIOD OF RECORD.--March 1942 to August 1966, March 1968 to November 1971, June 1975 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 187.70 ft below land-surface datum, March 25, 1948; lowest measured, 250.40 ft below land-surface datum, May 24, 1977. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------| | DEC 29 | 204.36 | MAR 29 | 201.34 | JUL 13 | 200.37 | ## CASS COUNTY 411117095091902. Local number, 74-37-30 BBBB2. LOCATION.--Lat 41°11'17", long 95°09'19", Hydrologic Unit 10240003, approximately 3 mi south of the Town of Griswold, and 1 mi west of Highway 48 on the Pottawattamic County-Cass County border. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--East Nishnabotna alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 70 ft, cased to 70 ft, slotted 69-70 ft, gravel packed. METHOD.--Twice-a-month measurement with chalked tape by observer. DATUM.--Elevation of land-surface datum is 1,090 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.10 ft above land-surface datum. REMARKS.--Well SW-16B(L). PERIOD OF RECORD.--July 1986 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 11.62 ft below land-surface datum, June 1, 1987; lowest measured, 21.59 ft below land-surface datum, May 25, 1989. | | • | | | • | | | | |------------------------|------------------------------|----------------------------|----------------------------------|------------------------|---------------------------|------------------------|-------------------------| | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | | JUL 21,<br>AUG 07 | 17.48<br>17.96 | JUL 25<br>AUG 03<br>10 | 15.60<br>14.90<br>16.16 | MAR 10<br>25<br>APR 10 | 19.18<br>19.29<br>19.27 | MAR 25<br>APR 10<br>25 | 20.80<br>21.21<br>21.37 | | OCT 23<br>DEC 09<br>24 | 13.75<br>16.88<br>17.15 | 25<br>26<br>28 | 16.67<br>16.58<br>15.82 | 25<br>MAY 10<br>25 | 19.46<br>19.58<br>19.79 | MAY 10<br>25<br>JUN 10 | 21.48<br>21.59<br>20.28 | | | 1987 17.88<br>18.17<br>18.60 | 30<br>SEP 01<br>03 | 15.97<br>16.16 | JUN 10<br>25 | 20.10<br>20.30<br>20.16 | 25<br>JUL 10<br>JUL 25 | 15.00<br>17.84<br>19.48 | | 10<br>25 | 18.59<br>18.85 | 05<br>07 | 16.42<br>16.74<br>16.40<br>16.60 | JUL 10<br>25<br>AUG 10 | 20.03<br>20.69 | AUG 10<br>27 | 20.41<br>20.56 | | MAR 10<br>25<br>APR 01 | 18.59<br>17.86<br>17.16 | 10<br>24<br>OCT 10 | 16.60<br>15.05<br>16.57 | 27<br>SEP 10<br>25 | 21.10<br>21.50<br>21.45 | SEP 10<br>25 | 14.97<br>18.13 | | 10<br>25 | 15.98<br>15.15 | 12<br>25 | 16.70<br>17.36 | OCT 10<br>25 | 21.40<br>21.43 | | | | MAY 01<br>10<br>21 | 15.55<br>16.44<br>17.05 | NOV 05<br>10<br>29 | 17.80<br>17.97<br>18.20 | NOV 10<br>25<br>DEC 10 | 21.45<br>20.94<br>21.18 | | | | JUN 01<br>10 | 16.57<br>11.62<br>13.60 | DEC 10<br>25<br>JAN 11, 19 | 17.97<br>18.18<br>988 18.40 | JAN 10, 198<br>28 | 21.12<br>9 21.14<br>21.24 | | | | JUL 07<br>10 | 15.84<br>14.90<br>14.64 | 26<br>FEB 10<br>25 | 18.67<br>18.89<br>19.06 | FEB 10<br>26<br>MAR 10 | 21.19<br>21.02<br>20.07 | | | #### GROUND-WATER LEVELS ## CERRO GORDO COUNTY 430757093131801. Local number, 96-20-17 DAAD1. LOCATION.--Lat 43°07'57", long 93°13'18", Hydrologic Unit 07080203, in southwest Mason City, 1 mi west of Highway 65 and south of the Iowa Terminal Railyard. Owner: AMPI Creamery (formerly State Brand Creameries). AQUIFER.--Cambrian-Ordovician: in sandstone of Late Cambrian and sandy dolomite of Early Orodovician age. WELL CHARACTERISTICS.--Unused drilled industrial artesian water well, diameter 10 in., depth 1,336 ft, cased from 0-1,080 ft, open hole from 1,080-1,336 ft. METHOD.--Quarterly measurement with electric line by USGS personnel. DATUM.--Elevation of land-surface datum is 1,162 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 0.30 ft above land-surface datum. REMARKS.--State Brand Creameries Well #1. Records for 1968-1971 and 1973-1975 are available in the files of the Iowa District Office. PERIOD OF RECORD.--October 1968 to 1971, and March 1973 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 170.80 ft below land-surface datum, August 4, 1977; lowest measured, 298.80 ft below land-surface datum, October 22, 1968. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEARS OCTOBER 1975 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------| | MAY 17, 1976<br>FEB 15, 1977<br>MAR 16<br>MAY 12<br>AUG 04<br>NOV 07<br>FEB 15, 1978<br>MAY 23<br>AUG 22<br>NOV 08<br>FEB 14, 1979<br>MAY 23<br>AUG 30 | 265.80<br>266.60<br>241.22<br>189.40<br>170.90<br>196.00<br>258.57<br>249.30<br>251.60<br>255.60<br>254.10<br>252.20 | NOV 07<br>FEB 04, 1980<br>MAY 20<br>AUG 11<br>NOV 04<br>JAN 27, 1981<br>JUN 04<br>AUG 26<br>NOV 19<br>FEB 12, 1982<br>MAY 06<br>JUL 30<br>NOV 01 | 254.88<br>254.93<br>255.50<br>255.75<br>254.53<br>271.50<br>258.45<br>268.80<br>265.05<br>259.45<br>264.20 | FEB 10, 1983 MAY 24 AUG 01 NOV 01 FEB 02, 1984 JUL 11 SEP 26 DEC 28 MAR 18, 1985 JUL 10 OCT 16 DEC 05 FEB 19, 1986 | 260.17<br>261.20<br>273.42<br>261.63<br>260.78<br>255.70<br>268.12<br>257.87<br>250.82<br>252.15<br>251.02<br>257.83 | MAY 09<br>AUG 04<br>OCT 25<br>JAN 12, 1987<br>JUN 29<br>APR 19, 1988<br>MAY 31<br>AUG 17<br>DEC 28<br>MAR 20, 1989<br>JUN 13<br>SEP 06 | 256.37<br>247.89<br>256.78<br>230.75<br>273.14<br>228.08<br>227.89<br>280.27<br>277.81<br>258.12<br>278.26<br>267.61 | 430806093164501. Local number, 96-21-13 BCCB1. LOCATION.--Lat 43°08'06", long 93°16'45", Hydrologic Unit 07080203, south of the County Home, just north of Iowa Highway 106, east of the City of Clear Lake. Owner: Mason City and Clear Lake Rail- road. AQUIFER. -- Devonian: in Cedar Valley limestone of Middle Devonian age. WELL CHARACTERISTICS. -- Drilled unused artesian water well, diameter 5 in., depth 198 ft. Casing inform- AQUIFER. --Devonian: in Cedar valley ilmestone of Figure Devonian age. WELL CHARACTERISTICS. --Drilled unused artesian water well, diameter 5 in., depth 198 ft. Casing information is not available. METHOD. --Quarterly measurement with chalked tape or electric line by USGS personnel. DATUM. --Elevation of land-surface datum is 1,165 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of well curb, 1.30 ft above land-surface datum. PERIOD OF RECORD. --November 1940 to August 1971, March 1973 to current year. EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 1.73 ft below land-surface datum, January 28, 1951; lowest measured, 17.26 ft below land-surface datum, November 18, 1955. | DATE | WATER<br>LEVEL | | NATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|---------|----------------|--------|----------------| | DEC 28 | 8 08 | MAP 20 | 8 80 | TIIN 12 | 11 17 | SED 06 | 10 01 | #### CERRO GORDO COUNTY 430658093281001. Local number, 96-22-20 CADC1. LOCATION.--Lat 43°06'58", long 93°28'10", Hydrologic Unit 07080203, east of County Road S-14 in Ventura Heights. Owner: W. Blaine and H. Elder. AQUIFER.--Glacial drift: in material of Pleistocene age. WELL CHARACTERISTICS.--Drilled unused artesian water well, diameter 5 in., depth 126 ft. Casing information is not available. METHOD.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,249 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Hole in side of casing, 0.87 ft above land-surface datum. PERMARKS.--Formerly Boy Scouts of America. PERIOD OF RECORD.--July 1940 to August 1971, March 1973 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 29.65 ft below land-surface datum, March 25, 1942; Lowest measured, 55.49 ft below land-surface datum, March 20, 1989. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------| | Dec 28 | 50.58 | Mar 20 | 55.49 | 431123093124301. Local number, 97-20-28 CAAC1. LOCATION.--Lat 43°11'23", long 93°12'43", Hydrologic Unit 07080203, north of Mason City at the southwest corner of the junction of Highway 65 and County Road D-20. Owner: American Crystal Sugar Corporation. AQUIFER.--Cambrian-Ordovician and Devonian: in sandstone of Late Cambrian and Middle Ordovician age and limestone of Devonian age. WELL CHARACTERISTICS.--Unused industrial drilled artesian waterwell, diameter 20 in., original depth 1,347 ft, back-filled to 1,257 ft in 1932, cased to 241 ft and 653-815 ft, open hole from 241-653 ft and 815-1,257 ft. METHOD.--Quarterly measurement with electric line by USGS personnel. DATUM.--Elevation of land-surface datum is 1,127 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.77 ft above land-surface datum. REMARKS.--Records for 1937 to September 1988 are on file in the Iowa District Office. PERIOD OF RECORD.--1937 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 148.00 ft below land-surface datum, August 29, 1944; lowest measured, 318.23 ft below land-surface datum, November 6, 1968. | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | DEC 28 | 231.67 | MAR 20 | 233.50 | JUN 13 | 229.54 | SEP 06 | 225.17 | #### CHEROKEE COUNTY 423833095365701. Local number, 90-40-06 BDCD1. LOCATION.-Lat 42°38'33", long 95°36'57", Hydrologic Unit 10230003, approximately 3.1 mi west of U.S. Highway 59 and 0.55 mi north of Iowa Highway 31 along the Illinois Central Railroad track. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.-Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 1.25 in., depth 253 ft, cased to 252 ft, sandpoint 252-253 ft. METHOD.--Quarterly measurements with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,182 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 3.93 ft above land-surface datum. REMARKS --Well D-6. PERIOD OF RECORD.--December 1978 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 28.38 ft below land-surface datum, August 27, 1983; lowest measured, 37.22 ft below land-surface datum, September 10, 1981. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 17 | 35.04 | JAN 19 | 35.24 | APR 04 | 35.28 | JUL 05 | 35.76 | 424348095231601. Local number, 91-39-01 ADAD1. LOCATION.--Lat 42°43'48", long 95°23'16", Hydrologic Unit 10230005, approximately 2 mi east and 0.5 mi north of the Town of Aurelia at the Larson Lake County Fark. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Cambrian-Ordovician: in sandstone of Cambrian age and dolomite of Ordovician age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 6 in. to 236 ft, 5 in. to 486 ft, 2 in. to 1,545 ft, depth 1,545 ft, cased to 1,126 ft, open hole 1,126 to 1,545 ft. METHOD.--Quarterly measurement with electric line or chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,370 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 3.20 ft above land-surface datum. REMARKS.--Well D-28. PERIOD OF RECORD.--September 1979 to current year. EXTREMES FOR FERIOD OF RECORD.--Highest water level measured, 189.65 ft below land-surface datum, December 19, 1984; lowest measured, 194.47 ft below land-surface datum, May 5, 1982. | DATE | WATER<br>LEVEL | | ATER DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|------------|-----------|----------------|--------|----------------| | TAN 10 | 102 10 | MAR 20 103 | 2 55 MAY | 31 192.95 | AUG 30 | 192,99 | ## CHEROKEE COUNTY 424348095231602. Local number, 91-39-01 ADAD2. LOCATION.--Lat 42\*43'48", long 95\*23'16", Hydrologic Unit 10230005, approximately 2 mi east and 0.5 mi north of the Town of Aurelia at the Larson Lake County Park. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 4 in., depth 340 ft, cased to 340 ft, perforated 235-240 ft. METHOD.--Quarterly measurement with electric line or chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,370 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.75 ft above land-surface datum. REMARKS.--Well D-29. PERIOD OF RECORD.--September 1979 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 188.65 ft below land-surface datum, April 20, 1988; lowest measured, 194.15 ft below land-surface datum, August 24, 1982. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | JAN 18 | 189.20 | MAR 29 | 189.50 | MAY 31 | 189.77 | AUG 30 | 189.61 | 424132095480211. Local number, 91-42-16 DDDD11. LOCATION.--Lat 42°41'32", long 95°48'02", Hydrologic Unit 10230004, approximately 2 mi north of the Village of Fielding at the junction of County Roads L-36 and C-44. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 390 ft, cased to 390 ft, perforated 386-390 ft. METHOD.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,320 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.50 ft above land-surface datum. REMARKS.--Well D-11. PERIOD OF RECORD.--March 1980 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 152.75 ft below land-surface datum, June 27, 1984; lowest measured, 155.50 ft below land-surface datum, December 15, 1980. | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 17 | 154.69 | JAN 19 | 154.63 | APR 04 | 154.57 | JUL 05 | 154.92 | #### CHEROKEE COUNTY 424802095331201. Local number, 92-40-10 BDDD1. LOCATION.--Lat 42\*48'02", long 95\*33'12", Hydrologic Unit 10230003, west of U.S. Highway 59, approximately 2.5 mi north of the City of Cherokee. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2.50 in., depth 300 ft, cased to 300 ft, perforated 114-118 ft. METHOD.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,210 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 0.30 ft above land-surface datum. REMARKS.--Well D-5. PERIOD OF RECORD.--April 1980 to October 1980, May 1982 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 26.05 ft below land-surface datum, June 27, 1984; lowest measured, 29.19 ft below land-surface datum, May 5, 1982. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 17 | 27.75 | JAN 19 | 27.67 | APR 04 | 27,68 | JUL 05 | 28.24 | 424459095322411. Local number, 92-40-26 CCDD1. LOCATION.--Lat 42°44'59", long 95°32'24", Hydrologic Unit 10230003, in the City of Cherokee, to the north of County Road C-38 and east of Highway 59 near the old pumping station. Owner: City of Cherokee. Cherokee. AQUIFER. --Cambrian-Ordovician: in sandstone of Late Cambrian age and sandy dolomite of Early Ordovician age. WELL CHARACTERISTICS. --Unused drilled municipal artesian test water well, diameter 8 in., depth 1,055 ft, cased to 965 ft, open hole from 965-1055 ft. METHOD. --Quarterly measurement with chalked tape by USGS personnel. DATUM. --Elevation of land-surface datum is 1,180 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 3.53 ft above land-surface datum. REMARKS. --City of Cherokee Test #1. PERIOD OF RECORD. --November 1987 to current year. EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 20.59 ft below land-surface datum, April 12, 1987; lowest measured, 26.28 ft below land-surface datum, October 19, 1988. | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |------------------|----------------|--------|----------------|--------|----------------|--------|----------------| | NOV 05<br>APR 12 | 20.94<br>20.59 | OCT 19 | 26.28 | JAN 19 | 23.16 | APR 04 | 23.03 | #### CLAYTON COUNTY 424023091291201. Local number, 91-05-30 BBBB1. LOCATION.--Lat 42°40'23", long 91°29'12", Hydrologic Unit 07060006, 5 mi northwest of the City of Edgewood, or 2 mi northwest of the junction of Iowa Highways 3 and 13, east of Strawberry Point. Owner: Harold Knight. AQUIFER.--Glacial drift: in material of Pleistocene age. WELL CHARACTERISTICS.--Dug unused water-table well, diameter 36 in., depth 36 ft. Casing information not available. METHOD.--Intermittent measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,233 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Hole in pump base at land-surface datum. REMARKS.--None. topographic map. Measuring point: Hole in pump base at land-surface datum. REMARKS.--None. PERIOD OF RECORD.--June 1957 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 14.06 ft below land-surface datum, March 26, 1986; lowest measured, 30.68 ft below land-surface datum, January 12, 1959. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |----------------------------------------|-------------------------------------------|----------------------------------|----------------------------------|--------------------------------------|----------------------------------|------------------------|-------------------------| | OCT 06<br>11<br>NOV 15<br>22<br>DEC 12 | 23.40<br>23.59<br>23.07<br>23.30<br>24.12 | JAN 05<br>FEB 01<br>28<br>MAR 14 | 24.42<br>22.78<br>24.76<br>24.55 | APR 05<br>MAY 09<br>JUN 12<br>JUL 11 | 25.12<br>24.50<br>25.86<br>25.41 | AUG 01<br>SEP 07<br>14 | 25.50<br>23.79<br>22.72 | 424057091320001. Local number, 91-06-22 ACAC1. LOCATION.--Lat 42°40'57", long 91°32'00", Hydrologic Unit 07060006, southeast corner of the junction of Iowa Highways 3 and 13, Strawberry Point. Owner: City of Strawberry Point. AQUIFER.--Ordovician and Silurian: in dolomite of Late Ordovician and Silurian age. WELL CHARACTERISTICS.--Drilled unused artesian water well, diameter 16 in. depth 492 ft, cased to 161 ft with 16 in., 12 in. 130-161 ft; 10 in. liner 229-370 ft, open hole 161-229 ft and 370-492 ft. DATUM.--Elevation of land-surface datum is 1,219 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of recorder platform, 2.10 ft above land-surface datum. REMARKS.--City well No. 2. Recorder removed October 1987. PERIOD OF RECORD.--March 1963 to current year. REVISED RECORDS.--WDR IA-84-1. EXTREMES FOR PERIOD OF RECORD.--Highest water level recorded, 114.38 ft below land-surface datum, May 9, 1973; lowest recorded, 134.76 ft below land-surface datum, August 1, 1989. | DATE | WATER<br>LEVEL | DATE WATER<br>LEVEL | DATE WATER<br>LEVEL | DATE | WATER<br>LEVEL | |------------------|------------------|--------------------------------|---------------------|--------|----------------| | NOV 22<br>FEB 28 | 129.65<br>130.48 | MAY 09 130.23<br>JUL 18 131.07 | AUG 01 134.76 | SEP 14 | 131.46 | #### CLAYTON COUNTY 430156091182901. Local number, 95-04-22 BCBD1. LOCATION.--Lat 43°01'56", long 91°18'29", Hydrologic Unit 07060001, approximately 2 mi north of the junction of U.S. Highway 18 and U.S. Highway 52-Iowa Highway 13, near Spook Cave. Owner: Gerald Mielke. AQUIFER.--Cambrian-Ordovician: in St. Peter sandstone of Middle Ordovician age. WELL CHARACTERISTICS.--Drilled unused artesian water well, diameter 6 in., depth 49 ft. Casing information not available. METHOD.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 940 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.00 ft above land-surface datum. REMARKS.--None. PERIOD OF RECORD.--October 1957 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 13.98 ft below land-surface datum, December 7, 1983; lowest measured, 27.88 ft below land-surface datum, March 4, 1968. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | NOV 28 | 23.94 | MAR 07 | 24.21 | MAY 09 | 23.50 | SEP 14 | 23.79 | 425940091194701. Local number, 95-04-32 DDDD1. LOCATION.--Lat 42°59'40", long 91°19'47", Hydrologic Unit 07060004, 1 mi west of the junction of U.S. Highway 52 and Iowa Highway 13, or northeast of the Town of Farmersburg. Owner: Milton and Willis Highway 52 and 10wa figure, 10, 02 modern. Meier. AQUIFER. --Cambrian-Ordovician: in St. Perter sandstone of Middle Ordovician age. WELL CHARACTERISTICS. --Drilled stock artesian water well, diameter 6 in., depth 380 ft (reported). Casing information not available. METHOD. --Quarterly measurement with chalked tape by USGS personnel. DATUM. --Elevation of land-surface datum is 1,090 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Plug in pump base, 1.00 ft above land-surface datum. topographic map. Measuring point: Plug in pump base, 1.00 ft above land-surface datum. REMARKS.--None. PERIOD OF RECORD.--October 1957 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 74.08 ft below land-surface datum, July 10, 1984; lowest measured, 126.56 ft below land-surface datum, January 13, 1969. | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | NOV 28 | 95.30 | MAR 07 | 100.95 | MAY 09 | 99.10 | SEP 14 | 102.34 | #### CRAWFORD COUNTY 415514095312001. Local number, 82-40-17 AABB1. LOCATION.--Lat 41°55'14", long 95°31'20", Hydrologic Unit 10230007, approximately 1.5 mi west of the Town of Dow City on the south side of U.S. Highway 30. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 141 ft, cased to 141 ft, slotted from 123-141 ft, gravel-packed. METHOD.--Intermittent measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,150 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.50 ft above land-surface datum. REMARKS.--Well WC-9. PERIOD OF RECORD.--June 1981 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 38.15 ft below land-surface datum, May 3, 1983; lowest measured, 43.86 ft below land-surface datum, June 11, 1981. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEARS OCTOBER 1980 TO SEPTEMBER 1989 | DATE WATER LEVEL WATER LEVEL DATE WATER LEVEL DATE WATER LEVEL WATER LEVEL JUN 11, 1981 43.86 MAY 03 38.15 MAR 20 41.51 JUL 29 40.30 26 43.60 JUN 02 39.61 APR 30 40.83 OCT 16 40.67 SEP 23 43.02 JUL 05 39.15 JUN 11 41.13 NOV 27 40.67 SEP 23 43.62 AUG 02 40.43 JUL 24 41.70 JAN 14, 1988 40.60 NOV 03 43.52 SEP 07 41.32 SEP 30 41.99 FEB 16 40.82 JAN 13, 1982 43.22 OCT 04 39.47 NOV 25 41.98 MAR 30 41.60 APR 06 42.83 NOV 08 41.54 JAN 19, 1986 41.65 MAY 06 41.64 MAY 07 42.50 DEC 08 41.24 FEB 21 41.75 JUN 20 41.60 JUN 04 40.84 JAN 10, 1984 41.15 MAR 19 39.30 AUG 01 41.83 JUL 02 40.65 FEB 06 41.06 MAY 01 40.00 SEP 09 42.30 AUG 03 41.77 MAR 06 41.06 MAY 01 40.00 SEP 09 42.30 AUG 03 41.77 MAR 06 41.06 MAY 01 40.00 SEP 09 42.30 AUG 03 41.77 MAR 06 41.06 MAY 01 40.00 SEP 09 42.30 AUG 03 41.77 MAR 06 41.06 MAY 01 40.00 SEP 09 42.30 SEP 09 42.33 APR 10 39.87 JUL 22 40.87 DEC 02 42.16 NOV 01 41.55 MAY 30 38.27 SEP 05 41.56 JAN 17, 1989 41.65 NOV 01 41.73 JUL 11 39.16 OCT 14 40.35 FEB 16 42.06 DEC 02 41.60 AUG 20 40.64 NOV 19 JAN 03, 1983 41.17 OCT 03 41.46 JAN 02, 1987 41.15 MAY 18 42.30 FEB 08 NOV 14 41.88 FEB 25 41.56 JAN 29 42.28 FEB 08 NOV 14 41.88 FEB 25 41.56 JAN 29 42.28 FEB 08 NOV 14 41.88 FEB 25 41.56 JAN 29 42.28 FEB 08 NOV 14 41.88 FEB 25 41.56 JAN 29 42.28 FEB 08 NOV 14 41.88 FEB 25 41.56 JAN 29 42.28 FEB 08 NOV 14 41.88 FEB 25 41.56 JAN 29 42.28 FEB 08 NOV 14 41.88 FEB 25 41.56 JAN 29 42.28 FEB 08 NOV 14 41.88 FEB 25 41.56 JAN 29 42.28 FEB 08 NOV 14 41.88 FEB 25 41.56 JAN 29 42.28 FEB 08 NOV 14 41.88 FEB 25 41.56 JAN 29 42.28 FEB 08 NOV 14 41.88 FEB 25 41.56 JAN 29 42.28 FEB 08 NOV 14 41.88 FEB 25 41.56 JAN 29 42.28 FEB 08 NOV 14 41.88 FEB 25 41.56 JAN 29 42.28 FEB 08 NOV 14 41.88 FEB 25 41.56 JAN 29 42.28 FEB 08 NOV 14 41.88 FEB 25 41.56 JAN 29 42.28 FEB 08 NOV 14 41.88 FEB 25 41.56 JAN 29 42.28 FEB 08 NOV 14 41.88 FEB 25 41.56 JAN 29 42.28 FEB 08 NOV 14 41.48 FEB 25 41.56 JAN 29 42.28 FEB 08 NOV 14 41.48 FEB 25 41.56 JAN 29 42.28 FEB 08 NOV 14 41.48 FEB 25 41.56 JAN 29 42.28 FEB 08 NOV 14 41.48 FEB 25 41.56 JAN | | | | | | | | | |-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------| | 26 | DATE | | DATE | | DATE | | DATE | | | MAR 10 39.34 DEC 27 40.74 MAR 18 41.26 AUG 09 42.36 APR 11 39.06 FEB 04, 1985 40.99 APR 28 40.00 SEP 21 42.24 | 26 JUL 28 SEP 23 NOV 03 JAN 13, 19 APR 06 MAY 07 JUN 04 JUL 02 AUG 03 SEP 09 OCT 07 NOV 01 DEC 02 JAN 03, 19 FEB 08 MAR 10 | 43.60<br>43.62<br>43.62<br>43.22<br>43.22<br>42.83<br>42.83<br>40.65<br>41.73<br>41.73<br>41.76<br>41.76<br>41.77<br>40.86 | JUN 02<br>JUL 02<br>AUG 02<br>SEP 07<br>OC 04<br>NOV 08<br>DEC 08<br>JAN 10, 198<br>FEB 06<br>MAR 06<br>APR 10<br>MAY 30<br>JUL 11<br>AUG 20<br>OCT 03<br>NOV 14<br>DEC 27 | 39.61<br>39.143<br>41.327<br>41.245<br>41.1245<br>41.137<br>338.276<br>41.48<br>41.48<br>41.48<br>41.44 | APR 30 JUN 11 JUL 24 SEP 30 NOV 25 JAN 19, 1986 FEB 21 MAR 19 MAY 01 JUN 13 JUL 22 SEP 05 OCT 14 NOV 19 JAN 02, 1987 FEB 25 MAR 18 | 40.83<br>41.170<br>41.99<br>41.95<br>41.75<br>39.00<br>40.77<br>41.56<br>40.35<br>41.15<br>41.628 | OCT 16<br>NOV 27<br>JAN 14, 1988<br>FEB 16<br>MAY 06<br>JUN 20<br>AUG 01<br>SEP 09<br>OCT 17<br>DCT 17<br>JAN 17, 1989<br>FEB 16<br>APR 06<br>MAY 18<br>JUN 29<br>AUG 09 | 40.67<br>40.660<br>40.860<br>41.663<br>41.683<br>41.683<br>42.326<br>42.326<br>42.338<br>42.326 | 415512095313801. Local number, 82-40-17 ABBC1. LOCATION.--Lat 41°55'12", long 95°31'38", Hydrologic Unit 10230007, approximately 1.75 mi west of the Town of Dow City on County Road E-5L, north of U.S. Highway 30. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Boyer alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 46 ft, cased to 46 ft, slotted from 40-46 ft, gravel-packed. METHOD.--Intermittent measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,122 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.90 ft above land-surface datum. REMARKS.--Well WC-188. topographic map. Measuring point: Top of casing, 1.90 ft above land-surface datum. REMARKS.--Well WC-188. PERIOD OF RECORD.--May 1983 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 21.55 ft below land-surface datum, May 30, 1984; lowest measured, 26.09 ft below land-surface datum, August 9, 1989. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEARS OCTOBER 1982 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------| | MAY 26, 1983<br>JUN 02<br>JUL 05<br>AUG 02<br>SEP 07<br>OCT 04<br>NOV 08<br>DEC 08<br>JAN 10, 1984<br>FEB 06<br>MAR 06<br>APR 10<br>MAY 30<br>JUL 11<br>AUG 20 | 22.41<br>22.74<br>22.275<br>24.21<br>24.92<br>24.565<br>24.44<br>24.079<br>21.55<br>22.59 | OCT O3<br>NOV 14<br>DEC 27<br>FEB 04, 1985<br>MAR 20<br>APR 30<br>JUN 11<br>JUL 24<br>SEP 03<br>OCT 16<br>NOV 26<br>JAN 09, 1986<br>FEB 21<br>MAR 19<br>MAY 01 | 24.88<br>24.69<br>24.23<br>24.94<br>24.183<br>25.25<br>25.35<br>25.39<br>25.03<br>22.298 | JUN 13<br>JUL 22<br>SEP 05<br>OCT 14<br>NOV 19<br>JAN 01, 1987<br>FEB 25<br>MAR 18<br>JUN 19<br>JUL 29<br>OCT 16<br>NOV 27<br>JAN 14, 1988<br>FEB 16<br>MAR 30 | 24.01<br>24.17<br>24.97<br>24.67<br>24.10<br>24.15<br>25.86<br>23.85<br>24.65<br>24.75<br>24.20<br>25.03 | MAY 06<br>JUN 20<br>AUG 01<br>SEP 09<br>OCT 17<br>DEC 02<br>JAN 17, 1989<br>FEB 16<br>APR 06<br>MAY 18<br>JUN 29<br>AUG 09<br>SEP 21 | 25.10<br>25.03<br>25.37<br>25.63<br>25.78<br>25.60<br>25.17<br>25.30<br>25.85<br>25.85<br>25.65 | ## CRAWFORD COUNTY 420608095111701. Local number, 84-37-08 BCCB1. LOCATION.--Lat 42°06'08", long 95°11'17", Hydrologic Unit 10230007, approximately 3 mi north of the Town of Vail on the east side of County Road E-25. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Fremont buried channel: in sand and gravel of Pleistocene age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 541 ft, cased to 541 ft, slotted from 527-541 ft, gravel-packed. Open to Pennsylvanian limestone 539-541 ft. METHOD.--Quarterly measurement with chalked tape or electric line by USGS personnel. DATUM.--Elevation of land-surface datum is 1,380 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.65 ft above land-surface datum. REMARKS.--Well WC-226. PERIOD OF RECORD.--July 1983 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 208.35 ft below land-surface datum, July 17, 1988; lowest measured, 212.32 ft below land-surface datum, October 3, 1983. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEARS OCTOBER 1982 TO SEPTEMBER 1989 | | | | | | • | | | | |--------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------| | | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | | i<br>I | AUG 01, 1983<br>SEP 07<br>CT 03<br>IOV 08<br>EC 07<br>IAN 09, 1984<br>EB 08<br>IAR 05 | 211.29<br>211.56<br>212.32<br>211.86<br>211.09<br>209.40<br>211.20<br>211.03 | APR 02<br>JUL 12<br>OCT 17<br>JAN 08, 1985<br>APR 02<br>JUL 08<br>OCT 07<br>JAN 07, 1986 | 211.25<br>211.73<br>211.34<br>210.91<br>210.58<br>210.73<br>210.93<br>211.18 | APR 09<br>JUL 08<br>OCT 07<br>JAN 04, 1987<br>APR 16<br>JUL 09<br>OCT 05<br>JAN 13, 1988 | 210.74<br>210.77<br>210.63<br>210.65<br>210.45<br>210.60<br>210.80<br>210.70 | APR 12<br>JUL 17<br>OCT 18<br>JAN 17, 1989<br>APR 03<br>JUL 12 | 208.45<br>208.35<br>211.14<br>208.93<br>211.75<br>211.83 | 421106095125501. Local number, 85-38-12 DCBA1. LOCATION.--Lat 42°11'06", long 95°12'55", Hydrologic Unit 10230007, approximately 5.5 mi east of the Town of Kiron on the south side of County Road E-16 near the Town of Boyer. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Fremont buried channel: in sand and gravel of Pleistocene age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 341 ft, cased to 315 ft, slotted from 300-310 ft, gravel-packed open hole from 315-341 ft. Open to Pennsylvanian limestone and shale from 331-341 ft. METHOD.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,225 ft above National Geodetic Vertical Datum of1929, from topographic map. Measuring point: Top of casing, 3.70 ft above land-surface datum. REMARKS.--Well WC-14. PERIOD OF RECORD.--July 1981 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 62.76 ft below land-surface datum, April 16, 1987; lowest measured, 64.86 ft below land-surface datum, September 22, 1981. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEARS OCTOBER 1980 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------| | JUL 28, 1981<br>SEP 22<br>NOV 03<br>FEB 05, 1982<br>APR 06<br>MAY 06<br>JUN 09<br>JUL 06<br>AUG 05<br>SEP 08<br>OCT 07<br>NOV 02<br>DEC 02 | 64.61<br>64.86<br>64.68<br>64.55<br>64.35<br>64.17<br>64.17<br>64.21<br>64.21 | JAN 05, 1983 FEB 08 MAR 10 APR 12 MAY 04 JUN 03 JUL 05 AUG 01 SEP 07 OCT 04 NOV 08 DEC 07 JAN 09, 1984 | 63.78<br>63.69<br>63.74<br>63.35<br>63.16<br>63.68<br>63.91<br>64.74<br>63.38 | FEB 08<br>MAR 05<br>APR 02<br>JUL 12<br>OCT 17<br>JAN 08, 1985<br>APR 02<br>JUL 08<br>OCT 07<br>JUL 08<br>OCT 07<br>JUL 08 | 63.94<br>63.51<br>63.43<br>63.20<br>63.24<br>62.92<br>63.27<br>63.27<br>63.27<br>63.29<br>63.21<br>62.98 | JAN 14, 1988<br>APR 16<br>JUL 09<br>OCT 05<br>JAN 13, 1988<br>APR 12<br>JUL 17<br>OCT 18<br>JAN 17, 1989<br>APR 03<br>JUL 12 | 62.94<br>62.76<br>63.09<br>63.03<br>63.07<br>64.03<br>63.19<br>63.68<br>63.53<br>63.76<br>64.14 | #### CRAWFORD COUNTY 421031095225601. Local number, 85-39-16 ADDD1. LOCATION.--Lat 42°10'31", long 95°22'56", Hydrologic Unit 10230007, approximately 2.5 mi east and 0.5 mi north of the Town of Schleswig on the west side of County Road M-27. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 5 in., depth 351 ft, cased to 351 ft, slotted from 315-330 ft, gravel-packed. Open to Pennsylvanian rock from 344-351 ft. METHOD.--Quarterly measurement with chalked tape or electric line by USGS personnel. DATUM.--Elevation of land-surface datum is 1,370 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 3.14 ft above land-surface datum. REMARKS.--Well WC-7A. PERIOD OF RECORD.--June 1981 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 232.61 ft below land-surface datum, October 7, 1986; lowest measured, 238.35 ft below land-surface datum, June 10, 1981. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEARS OCTOBER 1980 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------| | JUN 10, 1981 JUL 28 NOV 03 FEB 05, 1982 APR 06 MAY 06 JUN 09 JUL 06 AUG 05 SEP 08 OCT 07 NOV 01 DEC 10 | 238.35<br>238.26<br>236.80<br>235.43<br>235.34<br>235.22<br>234.40<br>234.05<br>234.27<br>234.34<br>233.95<br>234.67<br>234.83 | JAN 03, 1983<br>FEB 08<br>MAR 10<br>APR 12<br>MAY 04<br>JUN 03<br>JUL 05<br>AUG 01<br>SEP 07<br>OCT 04<br>NOV 08<br>DEC 07<br>JAN 09, 1984 | 234.55<br>236.24<br>233.99<br>233.67<br>233.83<br>233.49<br>234.15<br>234.87<br>236.01<br>234.01<br>233.60 | FEB 08<br>MAR 05<br>APR 02<br>JUL 12<br>OCT 17<br>JAN 08, 1985<br>APR 02<br>JUL 08<br>OCT 07<br>JAN 07, 1986<br>APR 09<br>JUN 08<br>OCT 07 | 233.64<br>233.63<br>233.85<br>233.36<br>233.34<br>233.34<br>233.34<br>233.10<br>233.15<br>233.15<br>233.15<br>233.61 | JAN 14, 1987<br>APR 16<br>JUL 09<br>OCT 05<br>JAN 13, 1988<br>APR 12<br>JUL 17<br>OCT 18<br>JAN 17, 1989<br>APR 03<br>JUL 12 | 232.98<br>233.08<br>233.08<br>233.64<br>232.96<br>234.48<br>233.08<br>233.06<br>233.54<br>233.71 | 421031095225602. Local number, 85-39-16 ADDD2. LOCATION.--Lat 42°10'31", long 95°22'56", Hydrologic Unit 10230007, approximately 2.5 mi east and 0.5 mi north of the Town of Schleswig on the west side of County Road M-27. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Mississippian: in limestone of Mississippian age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 561 ft, cased to 561 ft, perforated 543-561 ft, gravel-packed. METHOD.--Quarterly measurement with electric line by USGS personnel. DATUM.--Elevation of land-surface datum is 1,370 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 3.14 ft above land-surface datum. REMARKS.--Well WC-7B. PERIOD OF RECORD.--June 1981 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 305.58 ft below land-surface datum, February 8, 1983; lowest measured, 307.64 ft below land-surface datum, October 4, 1983. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 18 | 306.88 | JAN 17 | 306.91 | APR 03 | 307.08 | JUL 12 | 307.18 | ## GROUND-WATER LEVELS ## CRAWFORD COUNTY 421005095342801. Local number, 85-41-13 CCCC1. LOCATION.--Lat 42°10'05", long 95°34'28", Hydrologic Unit 10230001, approximately 7 mi west of the Town of Schleswig, northeast of the junction of County Roads L-51 and E-16. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota and glacial drift: in sandstone of Cretaceous age and sand and gravel of Pleistocene age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 361 ft, cased to 322 ft, slotted from 307-322 ft, gravel-packed. Open to Dakota Formation from 320-361 ft. METHOD.--Quarterly measurement with electric line or chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,375 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 3.49 ft above land-surface datum. REMARKS.--Well WC-6. PERIOD OF RECORD.--May 1981 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 244.23 ft below land-surface datum, July 28, 1981; lowest measured, 249.05 ft below land-surface datum, February 4, 1982. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEARS OCTOBER 1980 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------| | MAY 19, 1981<br>JUN 10<br>25<br>JUL 28<br>NOV 03<br>FEB 05, 1982<br>APR 07<br>MAY 06<br>JUN 09<br>JUL 06<br>AUG 04<br>SEP 08<br>OCT 07 | 247.79 DEC<br>245.42 JAN<br>244.23 EEE<br>248.81 MAR<br>249.05 APR<br>248.88 MAY<br>248.77 JUN<br>248.57 JUL<br>248.46 SEF<br>247.68 SEF | 08<br>10<br>12<br>04<br>03<br>05<br>05 | 247.97 J.<br>247.93 F.<br>247.84 M.<br>247.33 A.<br>246.50 O.<br>246.50 J.<br>246.48 J.<br>246.54 J.<br>246.75 O.<br>248.60 J. | EC 06<br>AN 09, 1984<br>EB 08<br>AR 05<br>PR 02<br>UCT 17<br>AN 08, 1985<br>PR 02<br>UL 08<br>CT 07<br>AN 07, 1986<br>PR 09 | 245.91 OCT<br>246.00 JAN<br>245.91 APR<br>245.87 JUL<br>246.16 OCT<br>245.11 JAN<br>245.23 APR<br>245.43 JUL<br>245.15 OCT<br>245.57 APR<br>245.57 APR<br>245.83 JUL<br>245.83 JUL | 14, 1987<br>16<br>09<br>05<br>13, 1988<br>12<br>17<br>18<br>17, 1989 | 245.39<br>245.61<br>245.56<br>245.97<br>246.06<br>246.25<br>246.09<br>247.03<br>246.90<br>247.71 | ## DELAWARE COUNTY 422029091144302. Local number, 87-03-18 CBCD2. LOCATION.--Lat 42°20'37", long 91°14'47", Hydrologic Unit 07060006, behind the municipal utilities building in downtown Hopkinton. Owner: Town of Hopkinton. AQUIFER.--Silurian: in dolomite of Silurian age. WELL CHARACTERISTICS.--Drilled unused artesian water well, diameter 8 in., depth 86 ft. Casing infor- WELL CHARACTERISTICS. --Drilled unused artesian water well, diameter 8 in., depth 86 ft. Casing information not available. METHOD. --Monthly measurement with chalked tape by observer. DATUM. --Elevation of land-surface datum is 863 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Nipple welded to plate on top of casing, 2.46 ft above land-surface datum. REMARKS. --Hopkinton #1 well. Water levels affected by pumping of a nearby well. PERIOD OF RECORD. --December 1984 to current year. EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 16.65 ft below land-surface datum, November 6, 1986; lowest measured, 26.49 ft below land-surface datum, July 31, 1989. | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------------------------------------|----------------------------------|----------------------------|-------------------------|----------------------------|-------------------------|----------------------------|-------------------------| | OCT 31<br>NOV 29<br>DEC 30<br>JAN 29 | 24.95<br>25.09<br>25.54<br>25.58 | FEB 28<br>MAR 31<br>APR 30 | 25.95<br>25.79<br>26.04 | MAY 31<br>JUN 13<br>JUN 30 | 25.84<br>26.07<br>26.24 | JUL 31<br>AUG 27<br>SEP 29 | 26.49<br>26.29<br>25.74 | ## DES MOINES COUNTY 404844091142701. Local number, 69-03-06 AABA1. LOCATION.--Lat 40°48'44", long 91°14'27", Hydrologic Unit 07080104, at the Iowa Army Ammunition Plant, near the Town of Middleton. Owner: Iowa Ordnance Plant. AQUIFER.--Cambrian-Ordovician: in St. Peter sandstone of Middle Ordovician age. WELL CHARACTERISTICS.--Drilled unused artesian water well, diameter 16 in., depth 1,209 ft, cased to 855 ft, open hole 855-1,209 ft. METHOD.--Intermittent measurement with chalked tape by observer. DATUM.--Elevation of land-surface datum is 717 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of platform, 1.61 ft above land-surface datum. REMARKS.--Plant well No. 3. PERIOD OF RECORD.--March 1950 to current year. EXTREMES FOR PERIOD OF RECORD.--Flighest water level measured, 105.97 ft below land-surface datum, May 11, 1987; lowest measured, 201.75 ft below land-surface datum, Aug. 15, 1978. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------| | NOV 12 | 107.44 | MAR 04 | 106.89 | JUN 10 | 106.39 | | JAN 18 | 109.52 | APR 09 | 106.48 | JUL 05 | 106.44 | 404753091142501. Local number, 69-03-06 DDCD1. LOCATION.--Lat 40°47′53", long 91°14′25", Hydrologic Unit 07080104, at the Iowa Army Ammunition Plant, near the Town of Middleton. Owner: Iowa Ordnance Plant. AQUIFER.--Devonian and Mississippian: in Cedar Valley limestone of Devonian age and limestone of Mississ-AQUITER. --Devonian and mississippian: in cedar variety innestone of bevolutar age and financial inpian age. WELL CHARACTERISTICS. --Drilled unused artesian water well, diameter 19 in., depth 675 ft, cased to 75 ft, open hole 75-675 ft. METHOD. --Intermittent measurement with chalked tape by observer. DATUM. --Elevation of land-surface datum is 699 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of platform, 1.91 ft above land-surface datum. REMARKS. --Plant well No. 2. PERIOD OF RECORD. --March 1950 to current year. EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 74.46 ft below land-surface datum, April 18, 1975; lowest measured, 86.04 ft below land-surface datum, April 22, 1989. | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | NOV 12 | 82.84<br>80 19 | MAR 04 | 79.79<br>85 17 | APR 22 | 86.04<br>84.79 | JUL 05 | 84.94 | ## EMMET COUNTY 432927094345501. Local number, 100-32-11 DDDD1. LOCATION.--Lat 43°29'27", long 94°34'55", Hydrologic Unit 07100003, at Okamanpedan Lake Reserve State Park, north of the Town of Dolliver. Owner: State of Iowa. AQUIFER:--Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled public-supply artesian water well, diameter 6 in., depth 277 ft. Casing information is not available. METHOD.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,233 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Plug in pump base, 0.61 ft above land-surface datum. REMARKS.--None. topographic map. Measuring point: Flug in pump base, 0.61 ft above land-surface datum. REMARKS.--None. PERIOD OF RECORD.--November 1939 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 59.60 ft below land-surface datum, December 19, 1946; lowest measured, 77.86 ft below land-surface datum, August 7, 1979. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |-------|----------------|-------|----------------|--------|----------------| | MAR 2 | 8 69.17 | JUN 0 | 7 72.02 | AUG 31 | 69.58 | #### GREENE COUNTY 415449094161501. Local number, 82-29-18 CAAA1. LOCATION.--Lat 41°54'49", long 94°16'15", Hydrologic Unit 07100006, approximately 0.5 mi south and 4 mi east of the Village of Cooper and just south of County Road E-57. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Pennsylvanian: in sandstone of Pennsylvanian age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 101 ft, cased to 100 ft, perforated 89-100 ft, gravel-packed; open hole 100-101 ft. METHOD.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 960 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.00 ft above land-surface datum. REMARKS.--Well W-116. PERIOD OF RECORD.--September 1982 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.41 ft above land-surface datum, July 12, 1989; lowest measured, 5.93 ft below land-surface datum, July 12, 1989. | DATE | WATER<br>LEVEL | DATE WATER<br>LEVEL | DATE WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|---------------------|---------------------|--------|----------------| | OCT 18 | 5.42 | JAN 17 5.39 | APR 03 5.39 | JUL 12 | 5.93 | 415448094163401. Local number, 82-29-18 CBAA1. LOCATION.--Lat 41°54'48", long 94°16'34", Hydrologic Unit 07100006, approximately 3.75 west and 1.5 mi south of the Town of Rippey, south of County Road E-57 on the west edge of the North Raccoon River. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER:--North Raccoon alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 34 ft, cased to 30 ft, slotted from 20-30 ft, gravel-packed. Open hole from 30-34 ft into glacial till. METHOD.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 965 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.45 ft above land-surface datum. REMARKS.--Well WC-115. PERIOD OF RECORD.--August 1982 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 7.84 ft below land-surface datum, July 5, 1983; lowest measured, 20.83 ft below land-surface datum, January 17, 1989. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEARS OCTOBER 1981 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------| | AUG 23, 1982<br>SEP 02<br>CCT 08<br>NOV 05<br>DEC 09<br>JAN 05, 1983<br>FEB 09<br>MAR 11<br>APR 13<br>MAY 04<br>JUN 03 | 18.88<br>19.34<br>17.73<br>17.28<br>16.73<br>15.86<br>16.83<br>10.01<br>10.17<br>10.77<br>12.53 | JUL 05<br>AUG 01<br>SEP 08<br>OCT 04<br>NOV 08<br>DEC 08<br>JAN 10, 1984<br>FEB 09<br>MAR 05<br>APR 02<br>JUL 12 | 7.84<br>13.15<br>17.94<br>19.64<br>20.25<br>16.62<br>17.05<br>17.70<br>14.32<br>14.99<br>12.89 | OCT 17 JAN 08, 1985 APR 02 JUL 08 OCT 07 JAN 07, 1986 APR 09 JUL 08 OCT 07 JAN 14, 1987 APR 16 | 19.70<br>17.74<br>18.13<br>19.19<br>20.78<br>20.19<br>14.25<br>10.42<br>14.77<br>16.98<br>15.70 | JUL 09<br>OCT 06<br>JAN 12, 1988<br>APR 12<br>JUL 18<br>OCT 18<br>JAN 17, 1989<br>APR 03<br>JUL 12 | 18.65<br>17.29<br>18.15<br>17.90<br>19.85<br>20.65<br>20.83<br>19.36<br>20.02 | 415449094155601. Local number, 82-29-18 DBAA. LOCATION, --Lat 41°54′49", long 94°15′56", Hydrologic Unit 07100006, approximately 3.25 mi west and 1.5 mi south of the Town of Rippey, south of County Road E-57. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER, --Glacial drift: in sand and gravel of Pleistocene age. WELL CHARACTERISTICS. --Drilled observation artesian water well, diameter 2 in., depth 90 ft, cased to 75 ft, slotted 65-75 ft, gravel-packed; open hole from 75-90 ft. Pleistocene glacial till open from 75-86 ft, and Pennsylvanian shale and siltstone open from 86-90 ft. METHOD. --Quarterly measurement with chalked tape by USGS personnel. DATUM. --Elevation of land-surface datum is 1,005 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.85 ft above land-surface datum. REMARKS. --Well WC-117. PERIOD OF RECORD. --August 1982 to current year. EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 32.64 ft below land-surface datum, July 5, 1983; lowest measured, 39.52 ft below land-surface datum, July 12, 1989. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEARS OCTOBER 1981 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------| | AUG 25, 1982<br>SEP 02<br>OCT 08<br>NOV 05<br>DEC 09<br>JAN 05, 1983<br>FEB 09<br>MAR 11<br>APR 13<br>MAY 04<br>JUN 03 | 37.37<br>37.23<br>37.63<br>37.72<br>37.63<br>36.55<br>36.43<br>34.89<br>33.40<br>33.61 | JUL 05<br>AUG 01<br>SEP 08<br>OCT 05<br>NOV 08<br>DEC 08<br>JAN 10, 1984<br>FEB 09<br>MAR 05<br>APR 02<br>JUI 12 | 32.64<br>34.46<br>36.16<br>36.55<br>36.24<br>35.70<br>35.63<br>34.48<br>35.65 | OCT 17<br>JAN 08, 1985<br>APR 02<br>JUL 08<br>OCT 07<br>JAN 07, 1986<br>APR 09<br>JUL 08<br>OCT 07<br>JAN 14, 1987<br>APR 16 | 36.13<br>35.48<br>35.47<br>36.58<br>37.84<br>37.69<br>36.27<br>36.09<br>35.24<br>34.66 | JUL 09<br>OCT 06<br>JAN 12, 1988<br>APR 12<br>JUL 18<br>OCT 18<br>JAN 17, 1989<br>APR 03<br>JUL 12 | 35.64<br>35.29<br>35.46<br>35.94<br>37.37<br>38.46<br>38.76<br>38.57<br>39.52 | 415449094173201. Local number, 82-30-13 CABA1. LOCATION.--Lat 41°54'49", long 94°17'32", Hydrologic Unit 07100006, approximately 0.5 mi south and 3 mi east of the Village of Cooper and just south of County Road E-57. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Pennsylvanian: in sandstone of Pennsylvanian age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 230 ft, cased to 230 ft, perforated 209-230 ft, gravel-packed. Original depth 245 ft, casing plugged at 230 ft. METHOD.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,035 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.45 ft above land-surface datum. REMARKS.--Well WC-118. PERIOD OF RECORD.--September 1982 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 66.79 ft below land-surface datum, July 5, 1983; lowest measured, 73.09 below land-surface datum, July 12, 1989. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | WATER<br>WATER | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | water<br>Level | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 18 | 72.46 | JAN 17 | 72.44 | APR 03 | 72.48 | JUL 12 | 73.09 | 415608094260701. Local number, 82-31-10 AAAA1. LOCATION.--Lat 41°56'08", long 94°26'07", Hydrologic Unit 07100006, approximately 7 mi south and 3.5 mi west of the City of Jefferson, 1.0 mi east of the junction of County Roads E-57 and P-14 on the south side of County Road E-57. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 125 ft, cased to 125 ft, slotted 111-120, gravel-packed. Open to Pennsylvanian shale and coal 121-125 ft. METHOD.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,108 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.00 ft above land-surface datum. REMARKS.--Well WC-235. PERIOD OF RECORD.--September 1983 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 12.03 ft below land-surface datum, July 12, 1984; lowest measured, 14.72 ft below land-surface datum, July 12, 1989. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEARS OCTOBER 1982 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------|-------------------------------------------| | SEP 08, 1983<br>OCT 05<br>NOV 08<br>DEC 08<br>JAN 10, 1984<br>FEB 09<br>MAR 05<br>APR 02 | 14.03<br>14.17<br>13.90<br>13.49<br>13.58<br>13.49<br>14.43<br>13.35 | JUL 12<br>OCT 17<br>JAN 08, 1985<br>APR 02<br>JUL 08<br>OCT 07<br>JAN 07, 1986<br>APR 09 | 12.03<br>13.59<br>13.48<br>13.32<br>13.70<br>14.25<br>14.53<br>14.07 | JUL 08<br>OCT 07<br>JAN 14, 1987<br>APR 06<br>JUL 09<br>OCT 06<br>JAN 12, 1988<br>APR 12 | 13.18<br>13.28<br>12.74<br>12.62<br>12.84<br>12.70<br>13.04 | JUL 18<br>OCT 18<br>JAN 17, 1989<br>APR 03<br>JUL 12 | 13.50<br>14.43<br>14.24<br>14.40<br>14.72 | 420149094344701. Local number, 83-32-04 ACCC1. LOCATION.--Lat 42°01'49", long 94°34'47", Hydrologic Unit 07100006, 1.5 mi west of the Town of Scranton, south of U.S. Highway 30, adjacent to the Scranton Cemetary. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 240 ft, cased to 240 ft, slotted 220-240 ft, gravel-packed. Open to Pennsylvanian shale 234-240 ft. METHOD.--Quarterly measurement with chalked tape or electric line by USGS personnel. DATUM.--Elevation of land-surface datum is 1,202 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.10 ft above land-surface datum. REMARKS.--Well WC-228. balom. --Elevation of land-surface datum is 1,202 it above national Geodetic vertical balom of 1926, 1204 topographic map. Measuring point: Top of casing, 2.10 ft above land-surface datum. REMARKS.--Well WC-228. PERIOD OF RECORD.--July 1983 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 152.77 ft below land-surface datum, October 4, 1983; lowest measured, 153.93 ft below land-surface datum, July 29, 1983. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM. WATER YEARS OCTOBER 1982 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------|----------------------|--------------------------------------------------------------------|----------------|--------------------------------------------------------------------| | JUL 29, 1983<br>SEP 08<br>OCT 04<br>NOV 08<br>DEC 07<br>MAR 05, 1984<br>APR 02 | 153.93<br>153.72<br>152.77<br>153.60<br>153.67<br>153.64<br>153.61 | JUL 12<br>OCT 16<br>JAN 08, 1985<br>APR 02<br>JUL 08<br>OCT 07<br>JAN 07, 1986 | 153.09 JUL<br>153.78 OCT<br>153.04 JAN<br>153.19 APR | 14, 1987<br>16<br>09 | 153.44 APR<br>153.18 JUL<br>153.20 OCT<br>153.12 JAN<br>153.18 APR | 12<br>18<br>18 | 153.05<br>152.98<br>152.92<br>153.18<br>152.96<br>152.30<br>153.18 | 420116094363001. Local number, 83-32-08 BBBC1. LOCATION.--Lat 42°01'16", long 94°36'30", Hydrologic Unit 07100006, approximately 3 mi west of the Town of Scranton, south of U.S. Highway 30. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Hardin Creek buried channel: in sand and gravel of Pleistocene age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 181 ft, cased to 181 ft, slotted 161-171 ft, gravel-packed. Open to Pennsylvanian shale and siltstone, 171-181 ft. METHOD.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,135 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.20 ft above land-surface datum. REMARKS.--Well WC-229. topographic map. Measuring point: Top of casing, 2.20 ft above land-surface datum. REMARKS.--Well WC-229. PERIOD OF RECORD.--September 1983 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 39.64 ft below land-surface datum, July 12, 1984; lowest measured, 51.03 ft below land-surface datum, July 8, 1985. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM. WATER YEARS OCTOBER 1982 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------| | SEP 07, 1983<br>OCT 05<br>NOV 08<br>DEC 07<br>JAN 09, 1984<br>FEB 09<br>MAR 06<br>APR 02 | 46.82<br>43.46<br>42.19<br>41.49<br>41.29<br>41.12<br>41.10 | JUL 12<br>OCT 16<br>JAN 08, 1985<br>APR 02<br>JUL 08<br>OCT 07<br>JAN 07, 1986<br>APR 09 | 39.64<br>41.82<br>41.01<br>40.90<br>51.03<br>42.78<br>42.24 | JUL 08<br>OCT 07<br>JAN 14, 1987<br>APR 16<br>JUL 09<br>OCT 06<br>JAN 12, 1988<br>APR 12 | 40.85<br>40.44<br>40.31<br>40.40<br>46.06<br>41.03<br>40.16<br>40.39 | JUL 18<br>OCT 18<br>JAN 17, 1989<br>APR 03<br>JUL 12 | 41.43<br>43.39<br>42.23<br>42.15<br>50.92 | 420507094141901. Local number, 84-29-16 CBAB1. LOCATION.--Lat 42°05'07", long 94°14'19", Hydrologic Unit 07100006, approximately 1.5 mi south of the Town of Dana, east of Iowa Highway 144 near the Chicage and Northwestern Railroad. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Beaver buried channel: in sand and gravel of Pleistocene age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 181 ft, cased to 181 ft, slotted 161-176 ft, gravel-packed. Open to Pennsylvanian shale 177-181 ft. METHOD.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,075 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.80 ft above land-surface datum. REMARKS.--Well WC-233. PERIOD OF RECORD.--August 1983 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 38.63 ft below land-surface datum, April 2, 1985; lowest measured, 42.81 ft below land-surface datum, USBS 1989. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEARS OCTOBER 1982 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------| | AUG 05, 1983<br>SEP 08<br>OCT 05<br>NOV 08<br>DEC 08<br>JAN 10, 1984<br>FEB 09<br>MAR 05 | 40.69<br>41.18<br>40.86<br>40.16<br>39.41<br>39.08<br>39.72<br>38.68 | APR 12<br>JUL 12<br>OCT 16<br>JAN 08, 1985<br>APR 02<br>JUL 08<br>OCT 07<br>JAN 07, 1986 | 39.88<br>40.18<br>40.24<br>39.80<br>38.63<br>40.57<br>41.66 | APR 09<br>JUL 08<br>OCT 07<br>JAN 14, 1987<br>APR 16<br>JUL 09<br>OCT 06<br>JAN 13. 1988 | 39.83<br>40.48<br>41.46<br>39.56<br>38.95<br>39.84<br>41.38<br>39.79 | APR 12<br>JUL 18<br>OCT 18<br>JAN 17, 1989<br>APR 04<br>JUL 12 | 40.19<br>41.70<br>42.29<br>41.89<br>42.18<br>42.81 | 420603094355101. Local number, 84-32-08 ACDB1. LOCATION.--Lat 42°06'03", long 94°35'51", Hydrologic Unit 07100006, approximately 3.5 mi north and 1.5 mi east of the Town of Ralston near the Raccoon River Bible Camp. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Pennsylvanian and Dakota: in sandstone of Pennsylvanian and Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 2 in., depth 141 ft, cased to 129 ft, slotted 119-129 ft, gravel-packed. Open to Pennsylvanian sandstones from 129-141 ft. METHOD.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,070 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.55 ft above land-surface datum. REMARKS.--Well WC-124. PERIOD OF RECORD.--September 1982 to current year. PERIOD OF RECORD. --September 1982 to current year. EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 33.36 ft below land-surface datum, July 5, 1983; lowest measured, 40.97 ft below land-surface datum, January 7, 1986. WATER LEVEL. IN FEET BELOW LAND-SURFACE DATUM. WATER YEARS OCTOBER 1981 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------| | SEP 02, 1982<br>OCT 08<br>NOV 05<br>DEC 09<br>JAN 05, 1983<br>FEB 09<br>MAR 11<br>APR 13<br>MAY 04<br>JUN 03<br>JUL 05 | 37.37<br>38.47<br>38.08<br>37.92<br>37.62<br>38.09<br>35.48<br>34.58<br>34.25<br>33.36 | AUG 03<br>SEP 08<br>OCT 05<br>NOV 08<br>DEC 07<br>JAN 09, 1984<br>FEB 09<br>MAR 05<br>APR 02<br>JUL 12<br>OCT 16 | 35.12<br>36.89<br>37.66<br>37.74<br>37.25<br>37.81<br>37.94<br>37.67<br>36.46<br>33.72 | JAN 08, 1985<br>APR 02<br>JUL 08<br>OCT 07<br>JAN 07, 1986<br>APR 09<br>JUL 08<br>OCT 07<br>JAN 14, 1987<br>APR 16<br>JUL 09 | 38.15<br>38.73<br>39.10<br>40.30<br>40.97<br>37.65<br>35.81<br>36.76<br>37.00<br>36.90<br>37.77 | OCT 06<br>JAN 12, 1988<br>APR 12<br>JUL 18<br>OCT 18<br>JAN 17, 1989<br>APR 03<br>JUL 12 | 37.35<br>38.33<br>38.65<br>39.25<br>40.55<br>40.59<br>40.67 | 420723094143201. Local number, 85-29-32 DDDD1. LOCATION.--Lat 42°07'23", long 94°14'32", Hydrologic Unit 07100006, 1 mi north of the Town of Dana on the west side of Iowa Highway 144. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Beaver buried channel: in sand and gravel of Pleistocene age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 171 ft, cased to 171 ft, slotted 153-168 ft, gravel-packed. Open to Pennsylvanian shale and sandy limestone from 165-171 ft. METHOD.--Quarterly measurement with chalked tape or electric line by USGS personnel. DATUM.--Elevation of land-surface datum is 1,091 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.50 ft above land-surface datum. REMARKS.--Well WC-232. PERIOD OF RECORD.--August 1983 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 38.70 ft below land-surface datum, April 2, 1985; lowest measured, 4.43 ft below land-surface datum, July 12, 1989. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM. WATER YEARS OCTOBER 1982 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------| | AUG 05, 1983<br>SEP 08<br>OCT 05<br>NOV 08<br>DEC 08<br>JAN 10, 1984<br>FEB 09<br>MAR 05 | 39.36<br>39.63<br>39.64<br>39.40<br>39.12<br>39.05<br>38.79<br>38.79 | APR 02<br>JUL 12<br>OCT 16<br>JAN 08, 1985<br>APR 02<br>JUL 08<br>OCT 07<br>JAN 07, 1986 | 38.76<br>38.92<br>39.34<br>39.09<br>38.70<br>39.37<br>39.94 | APR 09<br>JUL 08<br>OCT 07<br>JAN 14, 1987<br>APR 16<br>JUL 09<br>OCT 06<br>JAN 13, 1988 | 39.54<br>39.49<br>39.85<br>39.32<br>38.89<br>39.49<br>39.52 | APR 12<br>JUL 18<br>OCT 18<br>JAN 17, 1989<br>APR 04<br>JUL 12 | 39.16<br>40.18<br>40.77<br>40.62<br>40.95<br>41.43 | # GRUNDY COUNTY 422605092560001. Local number, 88-18-15 DBBB1. LOCATION.--Lat 42°26'05", long 92°56'00", Hydrologic Unit 07080205, west of the corner of Monroe and 4th Streets and west of the high school, Wellsburg. Owner: City of Wellsburg. ADUIFER.--Devonian: in limestone and dolomite of Late Devonian age. WELL CHARACTERISTICS.--Drilled public-emergency-supply artesian water well, diameter 12 in., depth 280 ft, cased to 128 ft, open hole 128-280 ft. METHOD.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,060 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Edge of vent pipe, 1.25 ft above land-surface datum. PERIOD OF RECORD.--September 1960 to August 1971, May 1973 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 32.78 ft below land-surface datum, June 18, 1987; lowest measured, 96.81 ft below land-surface datum, September 27, 1960. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |------------------|-----------------|--------|----------------|--------|----------------|--------|----------------| | DEC 29<br>MAR 22 | 40.70<br>p75.24 | JUL 25 | 63.22 | AUG 30 | 55.94 | SEP 06 | 54.46 | p Well recently pumped. # GUTHRIE COUNTY 413223094150801. Local number, 78-30-24 CAAB1 LOCATION.--Lat 41°32'23", long 94°15'08", Bydrologic Unit 07100007, approximately 0.5 mi west and 1.5 north of the Town of Dexter. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drill observation artesian water well, diameter 2 in., depth 72 ft, cased to 72 ft, slotted 60-68 ft, gravel-packed. Open to Pennsylvanian shale 65-72 ft. METHOD.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,020 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.10 ft above land-surface datum. PEMARKS.--Well WC-238. PERIOD OF RECORD.--August 1983 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 41.90 ft below land-surface datum, October 6, 1987; lowest measured, 48.82 ft below land-surface datum, April 10, 1986. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEARS OCTOBER 1982 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVELS | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------| | AUG 15, 1983<br>SEP 06<br>OCT 03<br>NOV 07<br>DEC 08<br>JAN 10, 1984<br>FEB 09<br>MAR 06 | 45.73<br>44.95<br>44.01<br>44.30<br>43.00<br>43.20<br>43.06<br>44.18 | AFR 03<br>JUL 13<br>OCT 17<br>JAN 09, 1985<br>AFR 03<br>JUL 09<br>OCT 08<br>JAN 08, 1986 | 42.55<br>42.26<br>44.07<br>45.60<br>45.53<br>45.56<br>44.46 | APR 10<br>OCT 08<br>JAN 15, 1987<br>APR 17<br>JUL 10<br>OCT 06<br>JAN 12, 1988<br>APR 13 | 48.82<br>43.11<br>42.43<br>43.14<br>42.39<br>41.90<br>42.09<br>42.14 | JUL 19<br>OCT 19<br>JAN 04, 1989<br>APR 04<br>JUL 13 | 42.41<br>42.43<br>42.28<br>42.18<br>42.29 | 413248094314301. Local number, 78-32-21 AAAA1. LOCATION, --Lat 41°32'48", long 94°31'43", Hydrologic Unit 07100008, approximately 2.25 mi north of the Town of Casey. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER. --Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS. --Drilled observation artesian water well, diameter 2 in., depth 161 ft, cased to 135 ft, slotted 125-135 ft, gravel-packed. Open to Pennsylvanian shale 158-161 ft. METHOD. --Quarterly measurement with chalked tape by USGS personnel. DATUM. --Elevation of land-surface datum is 1,250 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.90 ft above land-surface datum. PEMARKS. --Well WC-239. PERIOD OF RECORD. --August 1983 to current year. EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 70.50 ft below land-surface datum, January 1, 1988; lowest measured, 74.38 ft below land-surface datum, January 9, 1985. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEARS OCTOBER 1982 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |-----------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------| | AUG 17,1983<br>SEP 06<br>OCT 03<br>NOV 07<br>DEC 08<br>JAN 10, 1984<br>FEB 09<br>MAR 06 | 73.04<br>73.09<br>73.56<br>72.95<br>73.05<br>73.64<br>73.12<br>73.22 | APR 03<br>JUL 13<br>OCT 17<br>JAN 09, 1985<br>APR 03<br>JUL 09<br>OCT 08<br>JAN 08, 1986 | 72.95<br>73.04<br>73.22<br>74.38<br>73.00<br>73.10<br>73.79 | APR 10<br>OCT 08<br>JAN 15, 1987<br>APR 17<br>JUL 10<br>OCT 06<br>JAN 12, 1988<br>APR 13 | 73.21<br>73.14<br>73.23<br>72.88<br>73.00<br>73.07<br>70.50<br>73.07 | JUL 19<br>OCT 19<br>JAN 04, 1989<br>APR 04<br>JUL 13 | 73.12<br>73.41<br>73.29<br>73.04<br>73.33 | ## GUTHRIE COUNTY 413837094194601. Local number, 79-30-22 BAAC1. LOCATION.--Lat 41°38'37", long 94°19'46", Hydrologic Unit 07100007, approximately 2.5 mi west of the Town of Linden on the west side of County Road F-51. Owner: Geological Survey Bureau, DNR and U.S. Town of Linden on the west side of County Road F-51. Owner: Geological Survey Bureau, DNK and U.S. Geological Survey. AQUIFER. -Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS. --Drilled observation artesian water well, diameter 2 in., depth 152 ft, cased to 150 ft, slotted 140-150 ft, gravel-packed. Open to Fennsylvanian shale 149-152 ft. METHOD. --Quarterly measurement with chalked tape or electric line by USGS personnel. DATUM. --Elevation of land-surface datum is 1,140 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.85 ft above land-surface datum. REMARKS. --Well WC-109. PERIOD OF RECORD. --August 1982 to current year. EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 135.85 ft below land-surface datum, January 15, 1987; lowest measured, 140.75 ft below land-surface datum, August 18, 1982. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEARS OCTOBER 1981 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------|--------------------------------------------------------------------| | AUG 18, 1982<br>SEP 02<br>OCT 08<br>NOV 05<br>JAN 04, 1983<br>FEB 09<br>MAR 09<br>APR 11<br>APR 11<br>JUN 07 | | 03<br>7 07<br>5 08<br>7 10, 1984<br>8 09<br>8 06 | 139.72<br>139.89<br>139.83<br>139.57<br>139.68<br>140.15<br>139.57<br>139.83 | JUL 12<br>OCT 17<br>JAN 09, 1985<br>APR 03<br>JUL 09<br>OCT 08<br>JAN 15, 1987<br>APR 17<br>JUL 10<br>OCT 06 | 139.72 OC<br>139.68 JAI<br>139.89 API | R 13 <sup>°</sup><br>L 19<br>T 19 | 140.10<br>138.87<br>139.70<br>140.14<br>139.72<br>140.13<br>140.12 | 414110094260501. Local number, 79-31-23 BBBB1. LOCATION.--Lat 41\*41'10", long 94\*26'05", Hydrologic Unit 07100007, approximately 1 mi north of the Town of Monteith on the east side of County Road P-20. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--South Raccoon alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 30 ft, cased to 27 ft, slotted 21-27 ft, gravel-packed. Open to Pennsylvanian shale 27-30 ft. METHOD.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,037 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.50 ft above land-surface datum. REMARKS.--Weil WC-85. PERIOD OF RECORD.--July 1982 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 3.93 ft below land-surface datum, April 11, 1983; lowest measured, 11.07 ft below land-surface datum, October 19, 1988. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEARS OCTOBER 1982 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------| | JUL 19, 1982<br>AUG 02<br>SEP 02<br>CCT 08<br>NOV 05<br>DEC 09<br>JAN 04, 1983<br>FEB 09<br>MAR 09<br>APR 11<br>MAY 04 | 7.75<br>9.43<br>9.66<br>10.17<br>17.22<br>6.55<br>7.62<br>5.07<br>3.93<br>4.87 | JUN 06<br>JUL 01<br>AUG 03<br>SEP 06<br>OCT 03<br>NOV 07<br>DEC 08<br>JAN 10, 1984<br>FEB 09<br>MAR 16<br>APR 03 | 4.93<br>4.97<br>8.59<br>9.99<br>10.12<br>8.94<br>8.26<br>7.62<br>7.62<br>7.34<br>5.23 | JUL 12<br>OCT 17<br>JAN 09, 1985<br>APR 03<br>JUL 09<br>OCT 08<br>JAN 08, 1986<br>APR 10<br>OCT 08<br>JAN 15, 1987<br>APR 17 | 7.15<br>7.57<br>7.78<br>6.00<br>8.55<br>10.54<br>9.49<br>5.96<br>5.75<br>7.64<br>5.07 | JUL 10<br>OCT 06<br>JAN 12, 1988<br>APR 13<br>JUL 19<br>OCT 19<br>JAN 17, 1989<br>APR 04<br>JUL 13 | 6.58<br>7.32<br>8.14<br>8.38<br>9.97<br>11.07<br>10.07<br>10.38<br>10.79 | ## GROUND-WATER LEVELS #### GUTHRIE COUNTY 414514094381601. Local number, 80-33-12 ACCC1. LOCATION.--Lat 41°45'14", long 94°38'16", Hydrologic Unit 07100007, approximately 6.5 mi west and 4.5 mi north of the Town of Guthrie Center on County Road N-56. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 81 ft, cased to 81 ft, slotted 60-66 ft, gravel-packed. METHOD.--Monthly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,170 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.20 ft above land-surface datum. REMARKS.--Well WC-90. PERIOD OF RECORD.--July 1982 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 7.42 ft below land-surface datum, May 4, 1983; lowest measured, 12.75 ft below land-surface datum, October 19, 1988. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEARS OCTOBER 1981 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------| | JUL 22, 1982<br>AUG 02<br>SEP 02<br>OCT 06<br>NOV 05<br>DEC 09<br>JAN 04, 1983<br>FEB 09<br>MAR 09<br>AFR 11<br>MAY 04 | 10.51<br>10.60<br>10.85<br>11.00<br>10.84<br>10.83<br>10.77<br>9.30<br>7.91<br>7.42 | JUN 07<br>JUL 01<br>AUG 03<br>SEP 06<br>OCT 03<br>NOV 07<br>DEC 08<br>JAN 10, 1984<br>FEB 09<br>MAR 06<br>APR 03 | 8.08<br>8.00<br>9.40<br>9.89<br>10.33<br>10.02<br>10.40<br>9.95<br>9.55 | JUL 12<br>OCT 17<br>JAN 09, 1985<br>APR 03<br>JUL 09<br>OCT 08<br>JAN 08, 1986<br>APR 10<br>OCT 08<br>JAN 15, 1987<br>APR 17 | 8.22<br>10.16<br>10.30<br>10.50<br>10.95<br>11.38<br>11.66<br>10.07<br>8.36<br>9.06<br>8.29 | OCT 06<br>JAN 12, 1988<br>APR 13<br>JUL 19<br>OCT 19<br>JAN 17, 1989<br>APR 04<br>JUL 13 | 8.61<br>10.10<br>10.60<br>11.13<br>12.75<br>11.89<br>12.04 | 414821094271301. Local number, 81-31-22 CCCC1. LOCATION.--Lat 41°48'21", long 94°27'13", Hydrologic Unit 07100007, approximately 2.5 mi south and 1 mi west of the Town of Bagley, north of Spring Brook State Park. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 153 ft, cased to 153 ft, slotted 143-153 ft, gravel-packed. Open to Pennsylvanian shale 149-153 ft. METHOD.--Quarterly measurement with chalked tape or electric line by USGS personnel. DATUM.--Elevation of land-surface datum is 1,190 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.10 ft above land-surface datum. REMARKS.--Weil WC-105. PERIOD OF RECORD.--August 1982 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 60.52 ft below land-surface datum, October 6, 1987, and April 13, 1988; lowest measured, 69.88 ft below land-surface datum, December 9, 1982. | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------| | AUG 12, 1982<br>SEP 02<br>OCT 08<br>NOV 05<br>DEC 09<br>JAN 04, 1983<br>FEB 09<br>MAR 09<br>APR 11<br>MAY 04<br>JUN 07 | 68.39<br>66.50<br>68.96<br>69.88<br>68.21<br>68.34<br>68.12<br>68.10<br>68.51 | JUL 01<br>AUG 03<br>SEP 06<br>OCT 03<br>NOV 07<br>DEC 08<br>JAN 10, 1984<br>FEB 09<br>MAR 06<br>APR 03<br>JUL 12 | 66.37<br>65.53<br>65.06<br>65.11<br>64.37<br>64.94<br>64.39<br>64.61<br>64.92<br>62.52 | OCT 17<br>JAN 09, 1985<br>APR 03<br>JUL 09<br>OCT 08<br>JAN 08, 1986<br>APR 10<br>OCT 08<br>JAN 15, 1987<br>APR 17<br>OCT 06 | 61.81<br>61.84<br>62.05<br>62.45<br>63.09<br>64.34<br>63.08<br>62.35<br>61.49<br>60.52 | JAN 12, 1988<br>APR 13<br>JUL 19<br>OCT 19<br>JAN 18, 1989<br>APR 04<br>JUL 13 | 61.12<br>60.52<br>61.27<br>62.12<br>61.69<br>61.03<br>64.01 | ## GUTHRIE COUNTY 414652094293301. Local number, 81-31-32 CBCC1. LOCATION.--Lat 41\*46'52", long 94\*29'33", Hydrologic Unit 07100007, approximately 1 mi west of Springbrook State Park at the junction of Iowa Highways 25 and 384. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey: AQUIFER.--Middle Raccoon alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 52 ft, cased to 51 ft, slotted 40-51 ft, gravel-packed, open hole 51-52 ft. Open to Pennsylvanian shale, 49-52 ft. METHOD.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,090 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.03 ft above land-surface datum. REMARKS.--Weil WC-106. PERIOD OF RECORD.--August 1982 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 30.33 ft below land-surface datum, July 1, 1983; lowest measured, 35.92 ft below land-surface datum, October 6, 1982. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM. WATER YEARS OCTOBER 1981 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------| | AUG 13, 1982<br>SEP 02<br>OCT 06<br>NOV 05<br>DEC 09<br>JAN 04, 1983<br>FEB 09<br>MAR 09<br>APR 11<br>MAY 04<br>JUN 07 | 35.15<br>35.59<br>35.92<br>35.87<br>35.13<br>34.40<br>34.36<br>32.26<br>32.42<br>31.08<br>31.21 | JUL 01<br>AUG 03<br>SEP 06<br>OCT 03<br>NOV 07<br>DEC 08<br>JAN 10, 1984<br>FEB 09<br>MAR 06<br>APR 03<br>JUL 12 | 30.33<br>33.49<br>34.94<br>35.35<br>34.96<br>33.89<br>34.17<br>34.06<br>33.30<br>32.88 | OCT 17<br>JAN 09, 1985<br>APR 03<br>JUL 09<br>OCT 08<br>JAN 08, 1986<br>APR 10<br>OCT 08<br>JAN 15, 1987<br>APR 17<br>JUL 10 | 34.69<br>33.55<br>34.39<br>35.14<br>35.13<br>33.14<br>33.21<br>33.91<br>34.06 | OCT 06<br>JAN 12, 1988<br>APR 13<br>JUL 19<br>OCT 19<br>JAN 18, 1989<br>APR 04<br>JUL 13 | 33.27<br>33.93<br>34.54<br>34.28<br>35.45<br>34.97<br>35.12<br>34.85 | 414728094385301. Local number, 81-33-26 DDDD1. LOCATION.--Lat 41°47'28", long 94°38'53", Hydrologic Unit 07100007, approximately 5 mi south and 1.25 mi east of the Town of Coon Rapids on the north side of County Road F-24. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 80 ft, cased to 75 ft, slotted 60-65 ft, gravel-packed, open hole 75-80 ft. Open to Pennsylvanian shale 67-80 ft. METHOD.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,205 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.20 ft above land-surface datum. REMARKS.--Well WC-93. PERIOD OF RECORD.--July 1982 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 38.52 ft below land-surface datum, June 7, 1983; lowest measured, 40.98 ft below land-surface datum, January 3, 1983. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEARS OCTOBER 1981 TO SEPTEMBER 1989 | DATE | : | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |---------------------------------------------------------------------------------------------------------------|--------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------| | JUL 27,<br>AUG 02,<br>SEP 02<br>OCT 06<br>NOV 05<br>DEC 09<br>JAN 03,<br>FEB 09<br>MAR 09<br>AFR 11<br>MAY 04 | 1982<br>1983 | 40.70<br>40.72<br>40.82<br>40.91<br>40.93<br>40.97<br>40.98<br>40.89<br>40.69<br>40.63<br>39.92 | JUN 07<br>JUL 01<br>AUG 03<br>SEP 06<br>OCT 03<br>NOV 07<br>DEC 08<br>JAN 10, 1984<br>FEB 09<br>MAR 06<br>APR 03 | 38.52<br>39.23<br>39.29<br>39.37<br>39.63<br>39.63<br>40.12<br>40.18<br>39.93<br>39.83 | JUL 13<br>OCT 17<br>JAN 09, 1985<br>APR 03<br>JUL 09<br>OCT 08<br>JAN 08, 1986<br>APR 10<br>OCT 08<br>JAN 15, 1987<br>APR 17 | 38.58<br>39.57<br>39.88<br>40.04<br>40.18<br>40.52<br>40.51<br>39.08<br>39.74 | OCT 06<br>JAN 12, 1988<br>APR 13<br>JUL 19<br>OCT 19<br>JAN 17, 1989<br>APR 04<br>JUL 13 | 39.02<br>39.85<br>39.76<br>40.08<br>40.27<br>40.33<br>40.53<br>40.59 | # GUTHRIE COUNTY 414728094392401. Local number, 81-33-35 ABBC1. LOCATION.--Lat 41°47'28", long 94°39'24", Hydrologic Unit 07100007, approximately 5 mi south and 1 mi east of the Town of Coon Rapids, on the south side of County Road F-24. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--South Raccoon alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 41 ft, cased to 35 ft, slotted 26-35 ft gravel-packed, open hole 35-41 ft. Open to Early Cretaceous sandstone and shale 38-41 ft. METHOD.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,150 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 0.80 ft above land-surface datum. REMARKS.--Well WC-94. topographic map. Measuring point: Top of casing, 0.80 ft above land-surface datum. REMARKS.--Well WC-94. PERIOD OF RECORD.--July 1982 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 12.80 ft below land-surface datum, July 1, 1983; lowest measured, 16.65 ft below land-surface datum, April 4, 1989. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEARS OCTOBER 1981 TO SEPTEMBER 1989 | | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------| | JUL<br>AUG<br>SEP<br>OCT<br>NOV<br>DEC<br>JAN<br>FEB<br>MAR<br>APR | 01<br>02<br>05<br>05<br>09<br>04, 1983<br>09 | 15.13<br>15.21<br>15.41<br>15.66<br>15.72<br>15.35<br>14.95<br>14.83<br>14.21<br>13.31 | JUN 07<br>JUL 01<br>AUG 03<br>SEP 06<br>OCT 03<br>NOV 07<br>DEC 08<br>JAN 10, 1984<br>FEB 09<br>MAR 06<br>APR 03 | 13.92<br>12.80<br>14.22<br>14.42<br>14.92<br>14.99<br>14.75<br>14.83<br>14.78 | JUL 13<br>OCT 17<br>JAN 09, 1985<br>AFR 03<br>JUL 09<br>OCT 08<br>JAN 08, 1986<br>AFR 10<br>OCT 08<br>JAN 15, 1987<br>APR 17 | 13.16<br>14.66<br>14.86<br>15.08<br>15.19<br>15.81<br>15.79<br>15.08<br>14.82<br>15.14 | OCT 16<br>JAN 12, 1988<br>APR 13<br>JUL 19<br>OCT 19<br>JAN 17, 1989<br>APR 04<br>JUL 13 | 14.74<br>14.81<br>15.55<br>15.58<br>16.28<br>16.33<br>16.65<br>16.54 | # HARRISON COUNTY 413024095353901. Local number, 78-41-31 DDDD1. LOCATION.--Lat 41°30'24", long 95°35'39", Hydrologic Unit 10230006, approximately 4.5 mi south of the Town of Persia and west of Iowa Highway 191 to the north of the Tri-County High School. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Glacial drift: in sand and gravel of Pleistocene age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 129 ft, cased to 129 ft, slotted 109-119 ft, gravel-packed. Open to Pennsylvanian shale and limestone 118-129 ft. METHOD.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,158 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.05 ft above land-surface datum. REMARKS.--Well WC-27. PERIOD OF RECORD.--January 1982 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 55.26 ft below land-surface datum, July 7, 1982; lowest measured, 60.54 ft below land-surface datum, July 5, 1989. WATER LEVEL. IN FEET BELOW LAND-SURFACE DATUM. WATER YEARS OCTOBER 1981 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------| | JAN 13, 1982<br>APR 06<br>MAY 06<br>JUN 03<br>JUL 07<br>AUG 03<br>SEP 09<br>OCT 07<br>NOV 01<br>DEC 02<br>JAN 04, 1983 | 57.49<br>56.84<br>56.70<br>55.94<br>55.26<br>55.41<br>55.39<br>55.33<br>57.59 | MAR 10<br>APR 12<br>MAY 02<br>JUN 01<br>JUL 06<br>AUG 02<br>SEP 07<br>OCT 03<br>NOV 08<br>DEC 13<br>JAN 12, 1984<br>FEB 08 | 57.48<br>56.33<br>56.33<br>56.35<br>56.35<br>57.38<br>57.41<br>57.58<br>57.73 | MAR 06<br>APR 11<br>JUL 10<br>OCT 17<br>JAN 09, 1985<br>APR 02<br>JUL 11<br>OCT 09<br>JAN 08, 1986<br>APR 09<br>JUL 09<br>FEB 09 | 57.82<br>57.31<br>56.32<br>56.83<br>57.04<br>56.93<br>57.40<br>57.77<br>58.22<br>57.97<br>57.02<br>58.03 | JAN 14, 1987<br>APR 15<br>JUL 09<br>OCT 09<br>JAN 14, 1988<br>APR 12<br>JUL 20<br>OCT 19<br>JAN 20, 1989<br>APR 05<br>JUL 05<br>OCT 08 | 56.45<br>56.51<br>56.44<br>56.77<br>57.08<br>57.49<br>58.35<br>58.92<br>59.30<br>59.53<br>60.54<br>57.03 | 413523095483101. Local number, 78-45-05 ACDD1. LOCATION.--Lat 41°35'23", long 95°48'31", Hydrologic Unit 10230007, approximately 3.25 mis south of the Town of Logan and 1.5 mi east of U.S. Highway 30. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 179 ft, cased to 179 ft, slotted 168-175 ft, gravel-packed. Open to Pennsylvanian shale 175-179 ft. METHOD.--Intermittent measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,080 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.35 ft above land-surface datum. REMARKS.--Well WC-33. PERIOD OF RECORD.--May 1982 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 70.32 ft below land-surface datum, August 22, 1984; lowest measured, 74.90 ft below land-surface datum, February 16, 1988. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEARS OCTOBER 1981 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------| | MAY 13, 1982 JUN 03 JUL 07 AUG 03 SEP 09 OCT 07 NOV 01 DEC 02 JAN 03, 1983 FEB 08 MAR 10 APR 12 MAY 02 JUN 01 JUL 06 AUG 02 SEP 07 OCT 04 | 73.76<br>72.79<br>72.94<br>73.64<br>74.19<br>73.17<br>72.82<br>73.14<br>72.00<br>71.04<br>71.38<br>71.97<br>72.87<br>71.97 | NOV 08 DEC 13 JAN 12, 1984 FEB 08 MAR 06 APR 11 MAY 30 JUL 11 AUG 22 OCT 02 NOV 14 DEC 27 FEB 04, 1985 MAR 20 MAY 01 JUN 11 JUL 24 SEP 03 | 73.50<br>73.354<br>73.559<br>72.34<br>71.71<br>71.44<br>70.351<br>73.16<br>72.62<br>72.50<br>72.87<br>73.25<br>73.25<br>73.97 | OCT 16 NOV 26 JAN 09, 1986 FEB 21 MAR 19 MAY 01 JUN 13 JUL 22 SEP 05 OCT 14 NOV 19 JAN 02, 1987 FEB 25 MAR 18 APR 28 JUN 22 JUL 27 OCT 16 | 70.45<br>73.69<br>73.80<br>73.72<br>72.65<br>72.02<br>71.88<br>72.46<br>73.21<br>71.17<br>71.20<br>71.89<br>71.94<br>72.33 | NOV 27 JAN 14, 1988 FEB 16 MAR 30 MAY 06 MAY 20 AUG 01 SEP 09 OCT 17 DEC 02 JAN 17, 1989 FEB 16 APR 06 MAY 18 JUN 29 AUG 09 SEP 21 | 72.49 73.03 74.954 72.80 73.43 74.51 74.13 74.028 73.90 73.62 | 413524095490601. Local number, 78-43-05 BCDD1. LOCATION.--Lat 41°35'24", long 95°49'06", Hydrologic Unit 10230007, approximately 2 mi north and 3.5 mi east of the Town of Missouri Valley and 1 mi east of U.S. Highway 30. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AOUIFER.--Boyer alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 51 ft, cased to 51 ft, slotted 48-51 ft, gravel-packed. METHOD.--Intermittent measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,010 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 3.10 ft above land-surface datum. REMARKS.--Well WC-32. FERIOD OF RECORD.--May 1982 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 2.71 ft below land-surface datum, April 12, 1983; lowest measured, 7.00 ft below land-surface datum, September 9, 1988. | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------| | MAY 13, 1982 JUN 03 JUL 07 AUG 03 SEP 09 OCT 07 NOV 01 DEC 02 JAN 03, 1983 FEB 08 MAR 10 AFR 12 MAY 02 JUN 01 JUL 06 AUG 02 SEP 07 OCT 04 | 4.18169991884951699918844.867229369445.16999 | NOV 08 DEC 13 JAN 12, 1984 FEB 08 MAR 06 APR 11 MAY 30 JUL 11 AUG 21 OCT 02 NOV 14 DEC 27 FEB 04, 1985 MAY 01 JUN 11 JUL 11 JUL 24 SEP 03 | 5.2055.450<br>5.2055.450<br>4.454<br>3.454.451<br>5.429<br>4.584<br>4.980<br>5.829 | OCT 16<br>NOV 26<br>JAN 09, 1986<br>FEB 21<br>MAR 19<br>MAY 01<br>JUN 13<br>JUL 22<br>SEP 05<br>OCT 14<br>NOV 19<br>JAN 02, 1987<br>FEB 25<br>MAR 18<br>APR 28<br>MAY 12<br>JUN 22<br>JUN 22 | 5.80<br>5.70<br>8.86<br>8.67<br>9.86<br>5.3.62<br>3.4.4.3<br>8.86<br>4.38<br>8.86<br>9.26<br>9.26<br>9.26<br>9.26<br>9.26<br>9.26<br>9.26<br>9.2 | NOV 27<br>JAN 04, 1988<br>FEB 16,<br>MAR 30<br>MAY 06<br>JUN 20<br>AUG 01<br>SEP 09<br>OCT 17<br>DEC 02<br>JAN 17, 1989<br>FEB 16<br>APR 06<br>MAY 18<br>JUN 29<br>AUG 09 | 4.65<br>4.35<br>54.13<br>55.20<br>66.21<br>66.88<br>55.55<br>66.88<br>55.55<br>66.88 | 413838095462001. Local number, 79-42-19 AADB1. LOCATION.--Lat 41°38'38", long 95°46'20", Hydrologic Unit 10230007, approximately 0.5 mi east of the Town of Logan, north of U.S. Highway 30. Owner: Geological Survey Bureau, DNR and U.S. Geological Town of Logan, north of U.S. Highway 30. Owner. Town of Logan, north of U.S. Highway 30. Owner. Survey. AQUIFER .--Mississippian: in dolomite of Mississippian age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 628 ft, cased to 628 ft, perforated 588-628 ft. METHOD.--Intermittent measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,045 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 4.40 ft above land-surface datum. REMARKS.--Well WC-22. PERIOD OF RECORD.--November 1981 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.33 ft above land-surface datum, June 9, 1987; lowest measured, 16.37 ft below land-surface datum, June 3, 1982. | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|-------------|----------------|--------|----------------|--------|----------------| | OCT 17 | 1.50 | JAN 17,1989 | 1.39 | MAY 18 | 1.70 | AUG 09 | 2.40 | | DEC 02 | 1.77 | APR 06 | 1.74 | JUN 29 | 2.30 | SEP 21 | 2.45 | 413836095465502. Local number, 79-42-19 BADC2. LOCATION.--Lat 41°38'36", long 95°46'55", Hydrologic Unit 10230007, approximately 0.25 mi east of the Town of Logan, north of U.S. Highway 30. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Boyer alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 5 in., depth 49 ft, cased to 49 ft, slotted 31-49 ft, gravel-packed. METHOD.--Intermittent measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,030 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 3.40 ft above land-surface datum. REMARKS.--Well WC-196. PERIOD OF RECORD.--June 1983 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 8.36 ft below land-surface datum, May 30, 1984; lowest measured, 14.08 ft below land-surface datum, May 18, 1989. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEARS OCTOBER 1982 TO SEPTEMBER 1989 | | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |----------------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------------------------------------------| | JUN<br>JUL<br>AUG<br>AUG<br>SEP<br>OCT<br>NOV<br>DEC<br>JAN<br>FEB<br>MAR<br>APR | 02<br>16<br>07<br>08<br>16<br>12, 1984<br>07 | 12.12<br>9.53<br>11.48<br>13.08<br>13.42<br>13.17<br>12.72<br>11.79<br>11.98<br>12.67<br>10.36 | MAY 30<br>JUL 12<br>AUG 21<br>OCT 02<br>JAN 02, 1985<br>MAR 21<br>APR 29<br>JUN 12<br>JUL 24<br>OCT 01<br>NOV 13<br>DEC 17 | 8.36<br>11.59<br>11.49<br>12.03<br>10.97<br>12.80<br>12.86<br>12.08<br>10.21<br>11.78<br>12.29 | JAN 30, 1986<br>MAR 19<br>MAR 20<br>MAY 05<br>JUL 22<br>OCT 14<br>NOV 19<br>JAN 02, 1987<br>APR 28<br>JUN 22<br>JUN 22<br>JUL 27<br>AUG 01, 1988 | 12.00 SEP<br>10.34 OCT<br>9.38 DCT<br>10.65 APR<br>11.23 MAY<br>9.22 JUN<br>9.14 AUG<br>11.81<br>9.01<br>10.98<br>10.18<br>13.55 | 17<br>02<br>06, 1989<br>18<br>29 | 13.08<br>13.68<br>12.18<br>13.34<br>14.08<br>13.69<br>13.72 | 414226095435002. Local number, 80-42-27 CCBA2. LOCATION.--Lat 41°42'26", long 95°43'50", Hydrologic Unit 10230007, approximately 2 mi south and 1.5 mi West of the Town of Woodbine, west of U.S. Highway 30. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Boyer alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 41 ft, cased to 40 ft, slotted 35-40 ft, gravel-packed, open hole 40-41 ft. METHOD.--Intermittent measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,050 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.80 ft above land-surface datum. REMARKS.--Well WC-192. PERIOD OF RECORD.--June 1983 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 8.26 ft below land-surface datum, June 13, 1986; lowest measured, 14.27 ft below land-surface datum, August 9, 1989. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEARS OCTOBER 1982 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------| | JUN 01, 1983<br>JUL 06<br>AUG 02<br>SEP 07<br>OCT 04<br>NOV 08<br>DEC 13<br>JAN 11, 1984<br>FEB 07<br>MAR 06<br>APR 11<br>APR 11<br>AUG 21<br>OCT 03 | 9.57<br>9.61<br>112.61<br>12.62<br>12.26<br>12.26<br>12.20<br>11.04<br>9.99<br>9.64<br>11.60 | NOV 14<br>DEC 27<br>FEB 04, 1985<br>MAR 20<br>MAY 01<br>JUN 11<br>JUL 24<br>SEP 03<br>OCT 16<br>NOV 25<br>JAN 09, 1986<br>JAN 21<br>MAR 19<br>MAY 01<br>JUN 13 | 12.04<br>10.99<br>11.40<br>11.78<br>10.94<br>10.11<br>12.71<br>12.61<br>12.57<br>12.53<br>9.94<br>9.28<br>8.26 | JUL 22<br>SEP 05<br>OCT 14<br>NOV 19<br>JAN 02, 1987<br>FEB 25<br>MAR 18<br>APR 28<br>MAY 12<br>MAY 12<br>JUN 19<br>JUL 27<br>OCT 16<br>NOV 27<br>JAN 14, 1988 | 10.49<br>11.37<br>8.57<br>9.84<br>11.32<br>11.80<br>11.67<br>9.71<br>10.50<br>10.55<br>11.45<br>12.04 | FEB 16 MAR 30 MAY 06 JUN 20 AUG 01 SEP 09 OCT 17 DEC 02 JAN 17, 1989 FEB 16 APR 06 MAY 18 JUN 29 AUG 09 | 12.05<br>12.35<br>12.48<br>12.82<br>13.35<br>14.10<br>14.15<br>14.00<br>13.77<br>13.79<br>13.80<br>13.97<br>13.72<br>14.27 | 414228095442301. Local number, 80-42-28 DBCD1. LOCATION.--Lat 41°42'28", long 95°44'23", Hydrologic Unit 10230007, approximately 2 mi south and 1.75 mi west of the Town of Woodbine, west of U.S. Highway 30. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Boyer alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 53 ft, cased to 52 ft, slotted 46-52 ft, gravel-packed, open hole 52-53 ft. Open to Pennsylvanian shale 51-53 ft. METHOD.--Intermittent measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,060 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 3.00 ft above land-surface datum. REMARKS.--Well WC-37. PERIOD OF RECORD.--May 1982 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 13.75 ft below land-surface datum, April 12, 1983; lowest measured, 22.43 ft below land-surface datum, August 9, 1989. | DATE WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------| | JUN 01 15.12 MAR 1 16.39 MAY 0 16.39 MAY 0 16.78 JUN 0 16.78 JUN 0 17.49 JUL 1 | 11, 1984<br>006<br>11<br>30<br>11<br>21<br>21<br>23<br>14<br>27<br>04, 1985<br>20<br>01<br>11<br>24 | 18.50 FEB<br>16.84 MAR<br>15.94 MAY<br>14.10 JUN<br>14.90 JUL<br>16.85 SEP<br>18.15 OCT<br>17.77 NOV | 09, 1986<br>21<br>19<br>01<br>13<br>22<br>05<br>14<br>19<br>02, 1987<br>25<br>18<br>28<br>12<br>27 | 19.78 FEB<br>17.72 MAR<br>16.60 MAY<br>16.57 JUN<br>16.40 AUG<br>17.14 SEP<br>14.82 OCT<br>15.25 DEC | 14, 1988<br>16<br>30<br>30<br>20<br>01<br>09<br>17<br>02<br>17, 1989<br>16<br>16<br>18 | 18.02<br>18.30<br>18.43<br>18.95<br>19.15<br>19.77<br>20.43<br>21.35<br>21.73<br>21.77<br>21.80<br>22.08<br>22.43 | ## GROUND-WATER LEVELS ## HARRISON COUNTY 414213095431602. Local number, 80-42-34 ABBB2. LOCATION.--Lat 41°42'13", long 95°43'16", Hydrologic Unit 10230007, approximately 2 mi south of the Town of Woodbine and 1 mi west of U.S. Highway 30. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Boyer alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 37 ft, cased to 37 ft, slotted 32-37 ft, gravel-packed. METHOD.--Intermittent measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,045 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.30 ft above land-surface datum. REMARKS.--Well WC-191. topographic map. Measuring point: Top of casing, 2.30 ft above land-surface datum. REMARKS.--Well WC-191. PERIOD OF RECORD.--May 1983 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 4.08 ft below land-surface datum, October 14, 1986; lowest measured, 7.20 ft below land-surface datum, September 9, 1988. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEARS OCTOBER 1982 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------| | MAY 27, 1983<br>JUN 01<br>JUL 06<br>AUG 02<br>SEP 07<br>OCT 04<br>NOV 08<br>DEC 13<br>JAN 11, 1984<br>FEB 07<br>MAR 06<br>APR 11<br>MAY 30<br>JUL 11<br>AUG 21 | 5.4719549645730743<br>5.55566655545.70743 | OCT 03<br>NOV 14<br>DEC 27<br>FEB 04, 1985<br>MAR 20<br>MAY 01<br>JUN 11<br>JUL 24<br>SEP 03<br>OCT 16<br>NOV 25<br>JAN 09, 1986<br>FEB 21<br>MAR 19 | 6.19<br>5.145399<br>6.545777358<br>6.547825<br>6.556.845.35<br>6.556.845.35 | JUN 13<br>JUL 22<br>SEP 05<br>OCT 14<br>NOV 19<br>JAN 02, 1987<br>FEB 25<br>MAR 18<br>APR 28<br>MAY 12<br>JUN 19<br>JUL 27<br>OCT 16<br>NOV 27<br>JAN 14, 1988 | 7.536885.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5 | FEB 16<br>MAR 30<br>MAY 06<br>JUN 20<br>AUG 01<br>SEP 09<br>OCT 17<br>DEC 02<br>JAN 17, 1989<br>FEB 16<br>APR 06<br>MAY 18<br>JUN 29<br>AUG 09 | 6.09<br>5.67<br>6.162<br>6.85<br>7.20<br>6.37<br>6.37<br>6.42<br>6.30<br>7.01 | 414149095422401. Local number, 80-42-35 BDCC1. LOCATION.--Lat 41°41'49", long 95°42'24", Hydrologic Unit 10230007, approximately 3 mi south of the Town of Woodbine, on the west side of U.S. Highway 30. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Glacial drift: in sand and gravel of Pleistocene age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 120 ft, cased to 118 ft, slotted 103-105 ft, gravel-packed, open hole 118-120 ft. Open to Pennsylvanian shale 112-120 ft. ft. METHOD.--Intermittent measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,140 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.70 ft above land-surface datum. REMARKS.--Well WC-193. PERIOD OF RECORD.--June 1983 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 48.96 ft below land-surface datum, October 16, 1987; lowest measured, 54.55 ft below land-surface datum, June 1, 1983. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEARS OCTOBER 1982 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------| | JUN 01, 1983<br>JUL 06<br>AUG 02<br>SEP 07<br>OCT 04<br>NOV 08<br>DEC 13<br>JAN 11, 1984<br>FEB 07<br>MAR 06<br>APR 11<br>MAY 11<br>MAY 30<br>JUL 11<br>AUG 21<br>OCT 03 | 54.55<br>53.69<br>53.76<br>54.07<br>54.11<br>53.97<br>53.88<br>53.98<br>53.98<br>53.94<br>52.77<br>52.50<br>51.69<br>51.03 | NOV 14<br>DEC 27<br>FEB 04, 1985<br>MAR 20<br>MAY 01<br>JUN 11<br>JUL 24<br>SEP 03<br>OCT 16<br>NOV 25<br>JAN 09, 1986<br>FEB 21<br>MAR 19<br>MAY 01<br>JUN 10 | 51. 21<br>50. 88<br>51. 15<br>51. 35<br>51. 35<br>51. 53<br>52. 27<br>52. 16<br>52. 40<br>52. 54<br>51. 75 | JUL 22<br>SEP 05<br>OCT 14<br>NOV 19<br>JAN 02, 1987<br>FEB 25<br>MAR 18<br>APR 28<br>JUN 19<br>JUL 27<br>OCT 16<br>OCT 16<br>OCT 16<br>MAR 30 | 49.65<br>49.665<br>49.665<br>49.657<br>49.28<br>49.15<br>49.15<br>49.104<br>49.04 | MAY 06<br>JUN 20<br>AUG 01<br>SEPT 09<br>OCT 17<br>DEC 02<br>JAN 17, 1989<br>FEB 16<br>APR 06<br>MAY 18<br>JUN 29<br>AUG 09<br>SEP 21 | 49.53<br>50.26<br>50.79<br>51.16<br>51.88<br>52.15<br>52.40<br>52.90<br>53.34<br>53.67 | 415124095361501. Local number, 81-41-03 ACCC1. LOCATION.--Lat 41°51'24", long 95°36'15", Hydrologic Unit 10230007, in the northwest part of the Town of Dunlap, south of Iowa Highway 37 and west of U.S. Highway 30, adjacent to the Illinois Central Gulf Railroad. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Boyer alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 61 ft, cased to 46 ft, slotted 40-46 ft, gravel-packed, open hole 46-61 ft. Open to Pennsylvanian shale, sandstone, and lignite 50-61 ft. METHOD.--Intermittent measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,095 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.20 ft above land-surface datum. REMARKS.--Well WC-189. topographic map. Measuring point: Top of casing, 2.20 ft above land-surface datum. REMARKS.--Well WC-189. PERIOD OF RECORD.--May 1983 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 10.14 ft below land-surface datum, May 30, 1984; lowest measured, 15.59 ft below land-surface datum, August 9, 1989. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEARS OCTOBER 1982 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------| | MAY 26, 1983<br>JUN 02<br>JUL 05<br>AUG 02<br>SEP 07<br>OCT 04<br>NOV 08<br>DEC 08<br>JAN 10, 1984<br>FEB 06<br>MAR 07<br>APR 11<br>MAY 30<br>JUL 11<br>AUG 21 | 11.54<br>11.95<br>11.66<br>14.11<br>14.28<br>14.09<br>13.81<br>14.16<br>13.70<br>13.26<br>10.14<br>11.72 | OCT 03<br>NOV 14<br>DEC 27<br>FEB 04, 1985<br>MAR 20<br>APR 30<br>JUN 11<br>JUL 24<br>SEP 03<br>OCT 16<br>NOV 26<br>JAN 09, 1986<br>FEB 21<br>MAR 19<br>MAY 01 | 14.39<br>13.74<br>12.69<br>13.25<br>13.88<br>13.297<br>14.49<br>14.48<br>14.40<br>14.35<br>14.34<br>11.24 | JUN 13<br>JUL 22<br>SEP 05<br>OCT 14<br>NOV 19<br>JAN 02, 1987<br>MAR 18<br>APR 28<br>MAY 12<br>JUN 19<br>JUL 29<br>OCT 16<br>NOV 27<br>JAN 14, 1988<br>FEB 16 | 12.94<br>12.54<br>13.80<br>12.57<br>13.12<br>13.58<br>13.82<br>11.66<br>12.28<br>12.28<br>12.28<br>13.40<br>13.51 | MAR 30<br>MAY 06<br>JUN 20<br>AUG 01<br>SEP 09<br>OCT 17<br>DEC 02<br>JAN 17, 1989<br>FEB 16<br>APR 06<br>MAY 18<br>JUN 29<br>AUG 09 | 13.02<br>14.28<br>14.66<br>14.80<br>15.00<br>14.91<br>14.97<br>15.52<br>15.59 | 415109095363201. Local number, 81-41-03 CDBB1. LOCATION.--Lat 41°51'09", long 95°36'32", Hydrologic Unit 10230007, in the southwest part of the Town of Dunlap, 0.25 mi west of U.S. Highway 3D and north of County Road F-14. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Boyer alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 50 ft, cased to 40 ft, slotted 35-40 ft, gravel-packed, open hole 40-50 ft. Open to Cretaceous sandstone 40-50 ft. METHOD.--Intermittent measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,090 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.30 ft above land-surface datum. REMARKS.--Weil WC-190. PERIOD OF RECORD.--May 1983 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 8.14 ft below land-surface datum, May 30, 1984; lowest measured, 12.47 ft below land-surface datum, August 9, 1989. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEARS OCTOBER 1982 TO SEPTEMBER 1989 | DA | ATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |---------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------| | MAY 26 JUN 01 JUL 02 AUG 02 SEP 07 OCT 04 NOV 08 DEC 08 JAN 10 FEB 06 MAR 11 MAY 30 JUL 11 AUG 24 | 5<br>27<br>4<br>8<br>8<br>8<br>8<br>9<br>1984 | 8.30<br>8.70<br>8.38<br>9.94<br>10.96<br>11.36<br>11.07<br>10.84<br>10.65<br>10.05<br>8.14<br>10.08 | OCT 03<br>NOV 14<br>DEC 27<br>FEB 04, 1985<br>MAR 20<br>APR 30<br>JUN 11<br>JUL 24<br>SEP 03<br>OCT 16<br>NOV 26<br>JAN 09, 1986<br>FEB 21<br>MAR 19 | 11. 12<br>10. 86<br>9. 97<br>10. 15<br>10. 91<br>10. 45<br>11. 45<br>11. 70<br>11. 62<br>11. 43<br>11. 42<br>8. 71 | JUN 13<br>JUL 22<br>SEP 05<br>OCT 14<br>NOV 19<br>JAN 02, 1987<br>FEB 25<br>MAR 18<br>APR 28<br>MAY 18<br>JUN 19<br>JUL 29<br>OCT 27<br>JAN 14, 1988 | 9.87<br>9.79<br>11.07<br>9.60<br>9.99<br>10.63<br>11.17<br>11.00<br>9.07<br>9.68<br>9.56<br>9.56<br>9.568<br>10.68 | MAR 30<br>MAY 06<br>JUN 20<br>AUG 01<br>SEP 09<br>OCT 17<br>DEC 02<br>JAN 17, 1989<br>FEB 16<br>MAY 18<br>JUN 29<br>AUG 09<br>SEP 21 | 11.16<br>11.40<br>11.52<br>11.70<br>12.06<br>12.08<br>11.80<br>11.87<br>12.35<br>12.27<br>12.27 | 415003095382301. Local number, 81-41-17 ABAA1. LOCATION.--Lat 41°50'03", long 95°38'23", Hydrologic Unit 10230007, 2.5 mi southwest of the Town of Dunlap, 1 mi west of U.S. Highway 30. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER, --Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 166 ft, cased to 166 ft, slotted from 149-166 ft, gravel-packed. Open to Pennsylvanian shale 158-166 ft. METHOD.--Intermittent measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,135 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.55 ft above land-surface datum. REMARKS.--Well WC-11. PERIOD OF RECORD.--June 1981 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 65.77 ft below land-surface datum, May 3, 1983; lowest measured, 72.45 ft below land-surface datum, June 26, 1981. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEARS OCTOBER 1980 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------| | JUN 26, 1981<br>JUL 28<br>NOV 03<br>JAN 13, 1982<br>APR 06<br>MAY 07<br>JUN 03<br>JUL 02<br>AUG 03<br>SEP 09<br>OCT 07<br>NOV 01<br>DEC 02<br>JAN 03, 1983<br>FEB 08<br>MAR 10<br>APR 12<br>MAY 03 | 72. 45<br>71.92<br>72.49<br>72.19<br>71.40<br>71.40<br>69.55<br>70.22<br>70.16<br>70.94<br>70.37<br>70.40<br>69.38<br>69.47<br>69.38<br>69.47<br>65.47 | JUL 06 AUG 02 SEP 07 OCT 04 NOV 08 DEC 13 JAN 11, 1984 FEB 06 MAR 07 APR 11 MAY 30 JUL 11 AUG 20 OCT 03 NOV 14 DEC 27 FEB 04, 1985 MAR 20 | 667.34<br>69.14<br>69.63<br>69.71<br>69.79<br>69.85<br>69.85<br>66.14<br>66.59<br>69.23<br>69.08<br>69.08 | JUN 11<br>JUL 24<br>SEP 03<br>OCT 16<br>NOV 26<br>JAN 09, 1986<br>FEB 21<br>MAR 19<br>MAY 01<br>JUN 13<br>JUL 22<br>SEP 05<br>OCT 14<br>NOV 19<br>JAN 02, 1987<br>FEB 25, 1987<br>FEB 25, MAR 18<br>APR 28 | 69.39<br>70.03<br>70.57<br>70.89<br>70.71<br>68.56<br>68.05<br>68.67<br>69.48<br>67.91<br>69.87<br>69.87<br>69.68 | JUL 29 OCT 16 NOV 27 JAN 14, 1988 FEB 16 MAR 30 MAY 06 JUN 20 AUG 01 SEP 09 OCT 17 DEC 02 JAN 17, 1989 FEB 16 APR 06 MAY 18 JUN 29 AUG 09 | 67.51<br>68.78<br>69.43<br>69.39<br>70.06<br>70.74<br>71.16<br>71.30<br>71.47<br>71.45<br>71.57 | | JUN 02 | 66.75 | APR 30 | 69.24 | JUN 19 | 68.00 | SEP 21 | 70.85 | 414702095395101. Local number, 81-41-31 BDDD1. LOCATION.--Lat 41°47'02", long 95°39'51", Hydrologic Unit 10230007, approximately 4 mi northeast of the Town of Woodbine, on the east side of U.S. Highway 30. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Boyer alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 30 ft, cased to 30 ft, slotted 24-30 ft, gravel-packed. METHOD.--Intermittent measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,065 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.90 ft above land-surface datum. REMARKS.--Well WC-53. FERIOD OF RECORD --June 1982 to current year. PERIOD OF RECORD. -- June 1982 to current year. EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 4.61 ft below land-surface datum, May 3, 1983; lowest measured, 12.51 ft below land-surface datum, August 9, 1989. | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------| | JUN 04, 1982<br>JUL 07<br>AUG 03<br>SEP 09<br>OCT 07<br>NOV 01<br>DEC 02<br>JAN 03, 1983<br>FEB 08<br>MAR 10<br>APR 12<br>MAY 03<br>JUN 02<br>JUN 02<br>JUN 02<br>JUL 06<br>AUG 02<br>SEP 07<br>OCT 04<br>NOV 08 | 8.49<br>8.829<br>10.40<br>8.76<br>9.38<br>7.84<br>4.95<br>4.65<br>6.52<br>9.42<br>9.73 | DEC 03 JAN 11, 1984 FEB 07 MAR 07 APR 11 MAY 30 JUL 11 AUG 21 OCT 03 NOV 14 DEC 27 FEB 04, 1985 MAR 20 MAY 01 JUN 11 JUL 25 SEP 03 OCT 16 | 9.45<br>9.35<br>9.248<br>7.628<br>7.628<br>8.544<br>9.40<br>8.190<br>8.577<br>8.88<br>9.88<br>10.41 | NOV 25 JAN 09, 1986 FEB 21 MAR 19 MAY 01 JUN 13 JUL 22 SEP 05 OCT 14 NOV 19 JAN 02, 1987 FEB 25 MAR 18 AFR 28 MAY 12 JUN 19 JUL 27 OCT 27 | 10.37<br>10.13<br>10.13<br>10.40<br>7.24<br>8.79<br>8.28<br>9.37<br>6.90<br>7.81<br>9.13<br>9.75<br>9.70<br>7.65<br>8.10<br>6.70<br>9.41 | JAN 14, 1988 FEB 16 MAR 30 MAY 06 JUN 20 AUG 01 SEP 09 OCT 17 DEC 02 JAN 17, 1989 FEB 16 APR 06 MAY 18 JUN 29 AUG 09 | 9.36<br>8.23<br>9.80<br>10.10<br>10.28<br>10.78<br>11.43<br>11.78<br>10.35<br>10.55<br>11.47<br>12.13<br>12.20<br>12.51 | ## GROUND-WATER LEVELS ## HARRISON COUNTY 414700095373001. Local number, 81-41-33 CAAA1. LOCATION.--Lat 41\*47'00", long 95\*37'30", Hydrologic Unit 10230007, approximately 4.5 mi south of the Town of Dunlap, and 2 mi east of U.S. Highway 30. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 169 ft, cased to 155 ft, slotted 145-154 ft, gravel-packed. METHOD.--Intermittent measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,182 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.90 ft above land-surface datum. REMARKS.--Well WC-52. PERIOD OF RECORD.--June 1982 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 72.54 ft below land-surface datum, July 27, 1987; lowest measured, 85.03 ft below land-surface datum, June 1982. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEARS OCTOBER 1981 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------| | JUN 04, 1982<br>JUL 07<br>AUG 04<br>SEP 09<br>OCT 07<br>NOV 01<br>DEC 02<br>JAN 03, 1983<br>FEB 08<br>MAR 10<br>APR 12<br>MAY 03<br>JUN 02<br>JUL 06<br>AUG 02<br>SEP 07<br>OCT 04 | 85.03<br>84.94<br>84.40<br>83.71<br>82.96<br>82.99<br>80.08<br>77.23<br>76.92<br>77.32<br>77.32<br>78.79 | NOV 08<br>DEC 13<br>JAN 11, 1984<br>FEB 07<br>MAR 07<br>APR 11<br>MAY 30<br>JUL 12<br>AUG 22<br>OCT 03<br>NOT 14<br>FEB 04, 1985<br>MAR 20<br>JUN 11<br>JUL 24<br>SEP 03<br>OCT 16 | 78.30<br>78.47<br>78.65<br>78.92<br>78.28<br>75.28<br>73.40<br>75.29<br>75.39<br>75.39<br>75.37<br>76.27<br>76.27 | NOV 26<br>JAN 09, 1986<br>FEB 21<br>MAR 19<br>MAY 01<br>JUN 13<br>JUL 22<br>SEP 05<br>OCT 14<br>NOV 19<br>JAN 02, 1987<br>FEB 25<br>MAR 18<br>APR 28<br>JUN 19<br>JUN 19<br>JUN 27<br>NOV 27 | 77.42<br>77.74<br>78.09<br>77.20<br>75.90<br>74.08<br>74.08<br>73.99<br>73.31<br>73.95<br>74.62<br>74.57<br>73.21<br>72.54<br>73.41 | JAN 14, 1988<br>FEB 16<br>MAR 30<br>MAY 06<br>JUN 20<br>AUG 01<br>SEP 09<br>OCT 17<br>DEC 02<br>JAN 17, 1989<br>FEB 16<br>APR 06<br>MAY 18<br>JUN 29<br>AUG 09 | 73.78<br>74.04<br>74.58<br>75.53<br>75.83<br>75.83<br>76.76.76<br>76.79<br>77.98<br>77.98<br>78.78 | 415148095545001. Local number, 81-44-01 ABAB1. LOCATION.--Lat 41°51'48", long 95°54'50", Hydrologic Unit 10230001, approximately 2 mi north of the Town of Pisgah on the west side of Iowa Highway 183. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AOUIFER.--Soldier alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 61 ft, cased to 58 ft, slotted 53-58 ft, gravel packed, open hole 58-61 ft. Pleistocene glacial drift 57-61 ft. METHOD.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,055 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.80 ft above land-surface datum. REMARKS.--Well WC-17. PERIOD OF RECORD.--May 1983 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 7.13 ft below land-surface datum, April 11, 1984; lowest measured, 12.12 ft below land-surface datum, October 17, 1988. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEARS OCTOBER 1982 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------| | MAY 18, 1983<br>JUN 02<br>JUL 06<br>AUG 02<br>SEP 07<br>OCT 04<br>NOV 07<br>DEC 06<br>JAN 11, 1984 | 7.92<br>8.63<br>8.53<br>9.71<br>10.92<br>10.39<br>9.36<br>8.98<br>9.37 | FEB 07<br>MAR 07<br>APR 11<br>JUL 12<br>OCT 15<br>JAN 07, 1985<br>APR 01<br>JUL 11<br>OCT 07<br>JAN 06, 1986 | 9.42<br>8.37<br>7.13<br>9.09<br>10.11<br>8.88<br>9.68<br>10.00<br>11.20<br>10.75 | APR 07<br>JUL 07<br>OCT 08<br>JAN 12, 1987<br>APR 13<br>MAY 13<br>JUL 06<br>OCT 07<br>JAN 11, 1988 | 8.10<br>8.99<br>9.85<br>9.30<br>7.69<br>8.48<br>9.00<br>9.33<br>9.60 | APR 11<br>JUL 18<br>OCT 17<br>JAN 19, 1989<br>APR 03<br>JUL 07 | 9.44<br>10.93<br>12.12<br>11.79<br>11.42<br>11.22 | 414955096000601. Local number, 81-44-18 AADA1. LOCATION.--Lat 41°49′55", long 96°00′06", Hydrologic Unit 10230003, approximately 1.8 mi northeast of the Town of Little Sioux, just west of Iowa Highway 301. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Pennsylvanian: in sandstone of Pennsylvanian age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 126 ft, cased to 126 ft, perforated 108-126 ft, gravel-packed. Open to Pleistocene glacial drift 108-112 ft. Original depth 209 ft, casing plugged at 125 ft. METHOD.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,075 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.80 ft above land-surface datum. REMARKS.--Well WC-23. FERIOD OF RECORD.--January 1982 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 52.33 ft below land-surface datum, July 12, 1984; lowest measured, 64.50 ft below land-surface datum, July 7, 1989. WATER LEVEL. IN FEET BELOW LAND-SURFACE DATUM. WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 17 | 63.76 | JAN 19 | 64.34 | APR 03 | 64.04 | JUL 07 | 64.50 | ## HENRY COUNTY 405810091330502. Local number, 71-06-09 ABAC2. LOCATION.--Lat 40°58'10", long 91°33'05", Hydrologic Unit 07080107, in the city water plant on Adams Street, Mount Pleasant. Owner: City of Mount Pleasant. Owner: Owner: City of Mount Pleasant. Owner: Owner: City of Mount Pleasant. Owner: Owner: City of Mount Pleasant and Early Ordovician age. WELL CHARACTERISTICS.--Drilled municipal artesian water well, diameter 20 to 19 in., depth 1,860 ft, cased to 623 ft, open hole 623-1,860 ft. Open from the Middle Devonian Cedar Valley Formation into the Late Cambrian St. Lawrence Formation. METHOD.--Quarterly airline measurement by personnel from the City of Mt. Pleasant, checked by USGS personnel. METHOD. --Quarterly airline measurement by personnel from the City of Re. Fleadans, checked 2, personnel. DATUM. --Elevation of land-surface datum is 725 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Hole in pump base, 2.25 ft above land-surface datum. REMARKS. --City well No. 4. Water levels affected by pumping. PERIOD OF RECORD. --April 1946 to December 1950, January 1953 to March 1957 and May 1959 to current year. EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 132.00 ft below land-surface datum, May 5, 1946; lowest measured, nonpumping, 208.25 ft below land-surface datum, February 25, 1987. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|---------------------|--------|----------------| | DEC 20 | p228.25 | MAR 22 | p231.25 | JUL 21 p234.25 | AUG 22 | p234.25 | p Well being pumped. #### HENRY COUNTY 405741091334501. Local number, 71-06-09 CBCA1. LOCATION.--Lat 40°57'41", long 91°33'45", Bydrologic Unit 07080107, at Saunders Park in the southwest part of Mount Pleasant. Owner: City of Mount Pleasant. AQUIFER.--Cambrian-Ordovician: in sandstone of Late Cambrian and sandy dolomite of Early Ordovician age. WELL CHARACTERISTICS.--Drilled municipal artesian water well, diameter 16 to 6 in., depth 1,896 ft, cased to 1,689 ft, open hole 1,689-1,896 ft. Well deepened from 1,802 ft to 1,896 ft in 1955. METHOD.--Quarterly airline measurement by personnel from the City of Mt. Pleasant, checked by USGS personnel. METHOD. --Quarterly airline measurement by personnel from the City of Fit. Fleasant, Checked by 5555 personnel. DATUM. --Elevation of land-surface datum is 670 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.32 ft below land-surface datum. REMARKS. --City well No. 3. Water levels affected by pumping. PERIOD OF RECORD. --September 1945 to February 1958 and November 1961 to current year. EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 71.60 ft below land-surface datum, December 31, 1945; lowest measured (pumping), 259.32 ft below land-surface datum, January 1981. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|-------|----------------|--------|----------------| | DEC 20 | p215.32 | MAR 23 | 157.32 | JUL 2 | 21 157.32 | AUG 24 | 175.32 | p Well being pumped. 410852091394301. Local number, 73-07-09 AABD1. LOCATION.--Lat 41°08'52", long 91°39'43", Hydrologic Unit 07080107, north of Main Street near the water tower, Wayland. Owner: Town of Wayland. AQUIFER.--Glacial drift: in material of Pleistocene age. WELL CHARACTERISTICS.--Dug unused water-table well, diameter 4 ft, depth 52 ft. Casing information not WELL CHARACTERISTICS. -- Dug unused water table water available. METHOD. -- Quarterly measurement with chalked tape by USGS personnel. METHOD. -- Quarterly measurement with chalked tape by USGS personnel. DATUM. -- Elevation of land-surface datum is 735 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of cement cover, 0.21 ft above land-surface datum. REMARKS. -- None. PERIOD OF RECORD. -- September 1960 to current year. EXTREMEES FOR PERIOD OF RECORD. -- Highest water level measured, 2.30 ft below land-surface datum, September 1, 1965; lowest measured, 14.69 ft below land-surface datum, February 15, 1977. | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |------------------|----------------|--------|----------------|--------|----------------|--------|----------------| | DEC 14<br>MAR 22 | 13.63<br>12.59 | JUL 21 | 12.55 | AUG 02 | 12.77 | AUG 24 | 13.43 | ## HUMBOLDT COUNTY 424039094103601. Local number, 91-28-20 CAAA. LOCATION.--Lat 42°40'39", long 94°10'36", Hydrologic Unit 07100004, approximately 3 mi south of the Town of Dakota City, on the west side of County Road P-56. Owner: Elmer Gravdlund. AQUIFER.--Glacial drift: in material of Pleistocene age. WELL CHARACTERISTICS.--Unused water-table well, diameter 3 ft, cribbed with filed stone, depth 24.5 ft, casing information unavailable. METHOD.--Monthly measurement with chalked tape or electric line by USGS personnel. DATUM.--Elevation of land-surface datum is 1,135 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, at land-surface datum. REMARKS.--None. PERIOD OF RECORD.--July 1988 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 13.65 ft below land-surface datum, July 14, 1988; lowest measured, 16.72 ft below land-surface datum, March 16, 1989. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEARS OCTOBER 1987 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------------------------------------------|----------------------------------|--------------------------------------------|----------------------------------|--------------------------------------|----------------------------------|----------------------------|-------------------------| | JUL 14, 1938<br>AUG 15<br>SEP 13<br>OCT 11 | 13.65<br>14.35<br>14.11<br>14.77 | NOV 14<br>DEC 15<br>JAN 13, 1989<br>FEB 15 | 15.46<br>15.90<br>15.84<br>16.25 | MAR 16<br>APR 12<br>MAY 15<br>JUN 15 | 16.72<br>16.63<br>16.19<br>15.90 | JUL 10<br>AUG 14<br>SEP 15 | 15.88<br>15.04<br>14.88 | ## IDA COUNTY 422215095390811. Local number, 87-41-05 CCCC11. LOCATION.--Lat 42°22'15", long 95°39'08", Hydrologic Unit 10230005, approximately 0.75 mi east and 6.5 mi south of the Village of Cushing. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 490 ft, cased to 490 ft, perforated 301-305 ft. Original depth 510 ft, cemented back to 490 ft. METHOD.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,344 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.72 ft above land-surface datum. REMARKS.--Well D-10. PERIOD OF RECORD --June 1980 to current year PERIOD OF RECORD. --June 1980 to current year. EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 202.55 ft below 4, 1980; lowest measured, 206.50 ft below land-surface datum, May 7, 1982. 202.55 ft below land-surface datum, June | DATE | WATER<br>LEVEL | DATE WATER<br>LEVEL | DATE WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|---------------------|---------------------|--------|----------------| | OCT 19 | 205 38 | JAN 19 205.42 | APR 04 205.61 | JUL 05 | 206.01 | ### IDA COUNTY 423107095383201. Local number, 89-41-13 CCCC1. LOCATION.-Lat 42°31'07", long 95°38'32", Hydrologic Unit 10230003, at a roadside park on County Road D-15, approximately 1.5 mi east and 3.5 mi north of the Village of Cushing. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.-Mississippian: in limestone of Mississippian age. WELL CHARACTERISTICS.-Drilled observation artesian water well, diameter 2 in., depth 469 ft, cased to 465 ft, sand point 465-468 ft, open hole 468-469 ft. METHOD.-Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,320 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.11 ft above land-surface datum. REMARKS.--Well D-9. PERIOD OF RECORD.--December 1978 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 186.45 ft below land-surface datum, July 27, 1983; lowest measured, 244.55 ft below land-surface datum, July 9, 1980. REVISION.--Lowest water level measured, 244.55 ft below land-surface datum, July 9, 1980. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | WATER | DATE WATER | DATE WATER | DATE WATER | |--------|--------|---------------|---------------|---------------| | | LEVEL | LEVEL | LEVEL | LEVEL | | OCT 19 | 190,48 | JAN 19 190.82 | APR 04 190.89 | JUL 05 191.07 | ### IOWA COUNTY 414709091515801. Local number, 81-09-35 BCAA1. LOCATION.--Lat 41°47′09", long 91°51′58", Hydrologic Unit 07080208, approximately 400 ft northwest of the Iowa River, east of Iowa Highway 149, and approximately 1.1 mi south of the Village of Amana. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Iowa alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 10 in, depth 27 ft, cased to 18 ft, screened 18-27 ft. INSTRUMENTATION.--Water-level recorder. DATUM.--Elevation of land-surface datum is 710 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 4.0 ft above land-surface datum. REMARKS.--Well IRA-24. PERIOD OF RECORD.--December 1984 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level recorded, 2.90 ft below land-surface datum, February 24, 1985; lowest recorded, 12.45 ft below land-surface datum, December 31, 1988, and January 3, 1989. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 NOON VALUES | DAY | OCT | NOA | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-----|-------|-------|-------|-------|-------|-------|-----|-------|--------|-------|-------|-------| | 05 | | 12.28 | 12.36 | 12.43 | 11.96 | 11.93 | | 11.11 | 11.35 | 11.75 | 12.21 | | | 10 | 12.11 | 12.33 | 12.39 | 12.28 | 11.93 | 11.89 | | 11.20 | 11.45 | 11.83 | 12.28 | | | 15 | 12.16 | 12.33 | 12.41 | 12.31 | 11.95 | 11.01 | | 11.25 | a11.50 | 11.90 | 12.33 | 10.98 | | 20 | 12.17 | 12.30 | 12.42 | 12.35 | 11.94 | 10.95 | | 11.34 | 11.55 | | 12.37 | 11.20 | | 25 | 12.23 | 12.33 | 12.44 | 12.34 | 11.95 | 11.03 | | 11.36 | 11.60 | | 12.39 | 11.34 | | EOM | 12.26 | 12.35 | 12.45 | 12.13 | 11.96 | 11.02 | | 11.44 | 11.68 | 12.14 | | 11.42 | WTR YEAR 1989 HIGHEST 10.91 MAY 17, 1989 LOWEST 12.45 DECEMBER 31, 1988 and JANUARY 3, 1989 a Recorded water level has been adjusted. ## IOWA COUNTY 414930092093801. Local number, 81-11-17 CBBC1. LOCATION.--Lat 41°49'30", long 92'09'38", Hydrologic Unit 07080208, approximately 2.2 mi east of the Village of Koszta and 0.5 mi south of the Iowa River. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Iowa alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 30 ft, cased to 27 ft, screened 27-30 ft. METHOD.--Monthly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 745 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.60 ft above land-surface datum. REMARKS.--Well IRA-6. Replaces well IRA 10-B. Records for 1984 to July 1986 are available in the files of the Iowa District Office. PERIOD OF RECORD.--October 1984 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 3.64 ft below land-surface datum, May 28, 1986; lowest measured, 10.55 ft below land-surface datum, January 3, 1989. WATER LEVEL. IN FEET BELOW LAND-SURFACE DATUM. WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |------------------------|-------------------------|------------------------|-------------------------|------------------------|-------------------------------|------------------|----------------| | OCT 06<br>27<br>NOV 28 | 10.29<br>10.49<br>10.49 | JAN 03<br>26<br>MAR 02 | 10.55<br>10.47<br>10.17 | MAY 04<br>24<br>JUN 20 | 9.78<br><b>9</b> .91<br>10.08 | JUL 27<br>SEP 13 | 10.34<br>9.49 | 414816092053401. Local number, 81-11-23 DCCC1. LOCATION.--Lat 41°48'16", long 92°05'34", Hydrologic Unit 07080208, approximately 0.75 mi west of the Town of Marengo, 0.5 mi north of Iowa Highway 212 and 0.5 mi south of the Iowa River. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Iowa alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 31 ft, cased to 28 ft, screened 28-31 ft. METHOD.--Monthly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 745 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.30 ft above land-surface datum. REMARKS.--Well IRA-4A. Replaces well IRA-10A. Records for 1984 to July 1986 are available in the files of the Iowa District Office. PERIOD OF RECORD.--October 1984 to current year. EXTREMES FOR FERIOD OF RECORD.--Highest water level measured, 1.65 ft below land-surface datum, May 28, 1986; lowest measured, 9.19 ft below land-surface datum, July 27, 1989. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |------------------------|----------------------|------------------------|----------------------|------------------------|----------------------|------------------|----------------| | OCT 06<br>27<br>NOV 28 | 8.97<br>9.04<br>9.10 | JAN 03<br>26<br>MAR 02 | 9.13<br>8.85<br>8.66 | MAY 04<br>24<br>TUN 20 | 8.43<br>8.65<br>8.83 | JUL 27<br>SEP 13 | 9.19<br>8.38 | ### GROUND-WATER LEVELS ### IOWA COUNTY 415125092164201. Local number, 81-12-06 ADDA1. LOCATION.--Lat 41°51'25", long 92°16'42", Hydrologic Unit 07080208, approximately 800 ft south of the Iowa River, west side of Iowa Highways 21 and 212, approximately 2 mi south of the Town of Belle Plaine. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Iowa alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in, depth 36 ft, cased to 33 ft, screened 33-36 ft. METHOD.--Monthly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 765 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.60 ft above land-surface datum. REMARKS.--Well IRA-14. PERIOD OF RECORD.--October 1984 to current year. EXTREMES FOR FERIOD OF RECORD.--Highest water level measured, 3.35 ft below land-surface datum, May 28, 1986; lowest measured, 13.47 ft below land-surface datum, July 27, 1989. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------------|----------------|--------------|----------------|--------------|----------------|------------------|----------------| | OCT 06<br>27 | 13.29<br>13.37 | JAN 03<br>26 | 13.23<br>12.38 | MAY 04<br>24 | 12.58<br>12.95 | JUL 27<br>SEP 13 | 13.47<br>11.99 | | NOV 28 | 13.22 | MAR 02 | 12.47 | JUN 20 | 13.09 | SEF 13 | 11.55 | # JACKSON COUNTY 420842090165701. Local number, 85-6E-29 ACAD1. LOCATION.--Lat 42°08'42", long 90°16'57", Hydrologic Unit 07060005, 1 mi east of U.S. Highway 52, 2 mi southeast of the Village of Green Island beside the Chicago, Milwaukee, St. Paul and Pacific Railroad tracks in the Upper Mississippi River Wildlife and Fish Refuge. Owner: U.S. Geological Survey. AQUIFER.--Dresbach: in Mt. Simon sandstone of Early Cambrian age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in. depth 1,804 ft, cased to 1,705 ft, screened 1,705-1,725 ft, open hole 1,725-1,804 ft. METHOD.--Monthly measurement with engineers rule by USGS personnel. DATUM.--Elevation of land-surface datum is 610 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Mark on angle iron attached to well house, 6.05 ft above land-surface datum. REMARKS.--Flowing well. Green Island #1. PERIOD OF RECORD.--May 1983 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 11.81 ft above land-surface datum, May 16, 1988; lowest measured, 7.67 ft above land-surface datum, September 6, 1984. | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|---------------------------|--------|----------------| | NOV 22<br>DEC 14<br>JAN 05 | -10.36<br>-10.90<br>-10.73 | FEB 27<br>MAR 15<br>APR 04 | -10.54<br>-10.46<br>-10.81 | MAY 08<br>JUN 26<br>AUG 01 | -10.37<br>-10.33<br>-9.98 | AUG 06 | -10.19 | #### JACKSON COUNTY 420842090165703. Local number, 85-6E-29 ACAD3. LOCATION.--Lat 42°08'42", long 90°16'57" Hydrologic Unit 07060005, 1 mi east of U.S. Highway 52, 2 mi southeast of the Village of Green Island beside the Chicago, Milwaukee, St. Paul and Pacific Railroad tracks in the Upper Mississippi River Wildlife and Fish Refuge. Owner: U.S. Geological Survey. AQUIFER.--Cambrian-Ordovician: in Prairie du Chien dolomite of Early Ordovician age and St. Peter sandstone of Middle Ordovician age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 910 ft, cased to 604.2 ft, screened 604.2-624.2 ft, open hole 624.2-910 ft. METHOD.--Monthly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 610 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.00 ft above land-surface datum. REMARKS.--Green Island #3. PERIOD OF RECORD.--May 1982 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 5.19 ft below land-surface datum, January 8, 1986; lowest measured 9.90 ft below land-surface datum, August 31, 1983. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |----------------------------|----------------------|----------------------------|----------------------|----------------------------|----------------------|--------|----------------| | NOV 22<br>DEC 14<br>JAN 05 | 7.59<br>7.00<br>7.22 | FEB 27<br>MAR 15<br>APR 04 | 7.47<br>7.50<br>7.17 | MAY 08<br>JUN 26<br>AUG 01 | 7.57<br>7.86<br>8.38 | AUG 06 | 8.00 | 420842090165704. Local number, 85-6E-29 ACAD4. LOCATION.--Lat 42°08'42", long 90°16'57", Hydrologic Unit 07060005, 1 mi east of U.S. Highway 52, 2 mi southeast of the Village of Green Island beside the Chicago, Milwaukee, St. Paul and Pacific Railroad tracks in the Upper Mississippi River Wildlife and Fish Refuge. Owner: U.S. Geological Survey. AQUIFER.--Cambrian-Ordovician: in Galena dolomite of Middle Ordovician age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 400 ft, cased to 299.6 ft, screened 299.6-319.6 ft, open hole 319.6-400 ft. METHOD.--Monthly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 610 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.00 ft above land-surface datum. REMARKS.--Green Island #4. PERIOD OF RECORD.--May 1982 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 11.40 ft below land-surface datum May 15, 1986; lowest measured, 19.46 ft below land-surface datum, September 20, 1988. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |----------------------------|-------------------------|----------------------------|-------------------------|----------------------------|-------------------------|--------|----------------| | NOV 22<br>DEC 14<br>JAN 05 | 18.32<br>18.29<br>17.84 | FEB 27<br>MAR 15<br>APR 04 | 17.63<br>16.73<br>14.93 | MAY 08<br>JUN 26<br>AUG 01 | 16.47<br>17.49<br>18.78 | AUG 06 | 18.36 | ## JASPER COUNTY 414210092592001. Local number, 80-18-31 ABBB1. LOCATION.--Lat 41°42'10", long 92'59'20", Hydrologic Unit 07080105, approximately 3 mi east of the City of Newton just south of U.S. Highway 6. Owner: P.W. Beukema. AQUIFER.--Glacial drift: in material of Pleistocene age. WELL CHARACTERISTICS.--Dug stock water-table well, diameter 36 in., depth 37 ft, cribbed with brick. METHOD.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 940 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of cement platform, 0.70 ft above land-surface datum. REMARKS.--None. PERIOD OF RECORD.--February 1940 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 2.67 ft below land-surface datum, June 10, 1947; lowest measured, 27.15 ft below land-surface datum, December 18, 1948. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | NOV 14 | 14.50 | FEB 10 | 14.97 | APR 07 | 16.30 | JUL 20 | 11.32 | 414147093035401. Local number, 80-19-33 ACAC1. LOCATION.--Lat 41°41′50", long 93°03′53", Hydrologic Unit 07080105, 231 West 10th Street, Newton. Owner: John Coppess. AQUIFER.--Cambrian-Ordovician: in sandstone and sandy dolomite of Late Cambrian and Early Ordovician age. WELL CHARACTERISTICS.--Drilled unused private artesian water well, diameter 12 to 6 in., depth 2,567 ft, cased to 1,750 ft, open hole 1,750-2,567 ft. Open to 461 ft of Early Ordovician Prairie du Chien formation, 262 ft of Late Cambrian St. Lawrence formation, and 94 ft of Middle Cambrian Franconia formation. formation, 262 ft of Late Cambrian St. Lawrence formation, and 94 It of Middle Cambrian Franconia formation. METHOD. --Quarterly measurement with chalked tape by USGS personnel. DATUM. --Elevation of land-surface datum is 915 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Plug in cement well cover, 0.50 ft above land-surface datum. REMARKS. --None. PERIOD OF RECORD. --September 1963 to current year. EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 98.43 ft below land-surface datum, June 14, 1966; lowest measured, 272.07 ft below land-surface datum, July 20, 1989. | DATE | | WATER<br>LEVEL | DATE | | WATER<br>LEVEL | DATE | ; | WATER<br>LEVEL | DATE | | WATER<br>LEVEL | |------|----|----------------|------|----|----------------|------|----|----------------|------|----|----------------| | NOV | 14 | 268.94 | FEB | 10 | 269.80 | APR | 27 | 269.73 | JUL | 20 | 272.07 | 414107091322901. Local number, 79-06-04 AAAA1. LOCATION.--Lat 41°41'07", long 91°32'29", Hydrologic Unit 07080209, at Forest View Trailer Court, northern edge of Iowa City. Owner: Forest View Trailer Court. AQUIFER.--Silurian: in limestone of Silurian age. WELL CHARACTERISTICS.--Drilled unused artesian water well, diameter 6 in., depth 280 ft, cased to 96 ft, open hole 96-280 ft. METHOD.--Monthly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 735 ft above National Geodetic topographic map. Measuring point: Nipple on plate welded to top of casing, 1.62 ft above land-surface datum. topographic map. Heasuring point: Alphie on place solded to the surface datum. REMARKS.--Water levels affected by wells in the area pumping in late spring, summer, and early fall. Water-level recorder removed October 1986. PERIOD OF RECORD.--May 1971 to current year. REVISED RECORDS.--WDR IA-84-1. EXTREMES FOR PERIOD OF RECORD.--Highest water level recorded, 96.93 ft below land-surface datum, March 23, 1979; lowest measured, 148.60 ft below land-surface datum, August 2, 1989. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |----------------------------|----------------------------|-------|-------------------------------------|----------------------------|----------------|----------------------------|----------------------------| | OCT 11<br>NOV 01<br>DEC 02 | 140.04<br>133.47<br>120.51 | FEB ( | 11 124.60<br>02 124.49<br>06 124.89 | APR 04<br>MAY 05<br>JUN 02 | 131.00 | JUL 03<br>AUG 02<br>SEP 05 | 147.84<br>148.60<br>144.76 | 413940091344701. Local number, 79-06-07 DAAC1. LOCATION.--Lat 41°39'40", long 91°34'47", Hydrologic Unit 07080209, in Iowa City, north of Hawkeye Village (married student housing), University of Iowa, and north of County Road F-46. Owner: University of Iowa. AQUIFER.-Silurian: in limestone and dolomite of Silurian age. WELL CHARACTERISTICS.--Drilled unused artesian water well, diameter 12 in., depth 400 ft, cased to 211 ft, open hole 211-400 ft. METHOD.--Monthly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 685 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.81 ft above land-surface datum. REMARKS.--Hawkeye Village #1. Water levels affected by wells in the area pumping in late spring, summer, and early fall. PERIOD OF RECORD.--June 1987 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 45.51 ft below land-surface datum, June 5, 1987; lowest measured, 132.12 ft below land-surface datum, September 2, 1988. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEARS OCTOBER 1986 TO SEPTEMBER 1989 | DATE | Ē | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |-------------------------------------------------------------------------------------------------|--------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------| | JUN 05,<br>22,<br>JUL 06<br>AUG 05<br>SEP 04<br>OCT 05<br>NOV 05<br>DEC 04<br>JAN 04,<br>FEB 05 | 1987<br>1988 | 45.51<br>46.83<br>47.21<br>48.04<br>49.04<br>49.00<br>50.00<br>50.17<br>50.13 | APR 11<br>MAY 02<br>JUN 02<br>JUL 01<br>11<br>18<br>25<br>AUG 01<br>02<br>08 | 49.48<br>49.39<br>p105.74<br>97.84<br>95.51<br>89.05<br>84.80<br>93.25<br>94.66<br>92.96 | 22<br>29<br>SEP 02<br>06<br>12<br>19<br>26<br>OCT 11<br>NOV 01<br>DEC 02 | 95.37<br>90.66<br>p132.12<br>88.57<br>94.57<br>92.33<br>84.63<br>85.59<br>77.40<br>57.73 | FEB 02<br>MAR 06<br>APR 04<br>MAY 05<br>JUN 02<br>JUL 03<br>AUG 02<br>SEP 05 | 58.77<br>60.57<br>57.49<br>68.66<br>84.66<br>96.76<br>92.76<br>90.52 | | MAR 07 | | 49.79 | 15 | 91.36 | JAN 11, 1989 | | | | p Near by well being pumped. 413925091324001. Local number, 79-06-09 DDBC1. LOCATION.--Lat 41°39'34", long 91°32'42", Hydrologic Unit 07080209, at the Quadrangle Dormitory, University of Iowa, Iowa City. Owner: University of Iowa. AQUIFER.--Silurian: in dolomite of Silurian age. WELL CHARACTERISTICS.--Drilled unused artesian water well, diameter 12 in., depth 430.5 ft, cased to 25 ft, open hole 225-430.5 ft. METHOD.--Monthly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 714 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Nipple welded to plate on top of casing, 1.81 ft above land-surface datum. REMARKS.--Water levels affected by nearby wells pumping in late spring, summer, and early fall. PERIOD OF RECORDS.--WDR IA-84-1. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 74.63 ft below land-surface datum, March 21, 1979; lowest measured, 167.63 ft below land-surface datum, August 2, 1988. REVISION.--Highest water level measured, 74.63 ft below land-surface datum, March 21, 1979. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM. WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 11 | 149.92 | JAN 11 | 103.49 | APR 04 | 97.22 | JUL 03 | 162.91 | | NOV 01 | 132.82 | FEB 02 | 100.81 | MAY 05 | 125.64 | AUG 02 | 157.20 | | DEC 02 | 102.22 | MAR 06 | 100.49 | JUN 02 | 146.49 | SEP 05 | 155.86 | 413955991320303. Local number, 79-06-10 BDBC3. LOCATION.--Lat 41°39'58", long 91°32'06", Hydrologic Unit 07080209, at the Currier Hall Dormitory, University of Iowa, Iowa City. Owner: University of Iowa. AQUIFER.--Silurian-Devonian: in limestone and dolomite of Silurian and Devonian age. WELL CHARACTERISTICS.--Drilled unused artesian water well, diameter 12 in., depth 425 ft, cased to 160 ft, open hole 160-425 ft. METHOD.--Monthly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 707 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Nipple welded to plate on top of casing, 7.76 ft below land-surface datum. REMARKS.--Water levels affected by nearby wells pumping in late spring, summer, and early fall. PERIOD OF RECORD.--October 1971 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 62.12 ft below land-surface datum, April 23, 1973; lowest measured, 169.22 ft below land-surface datum, September 5, 1989. | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 12 | 129.10 | JAN 11 | 86.96 | APR 04 | 84.74 | JUL 03 | 166.72 | | NOV 02 | | FEB 02 | 87.33 | MAY 08 | 140.46 | AUG 02 | 168.29 | | DEC 02 | | MAR 06 | 87.19 | JUN 02 | 160.98 | SEP 05 | 169.22 | 413844091323201. Local number, 79-06-16 DDAD1. LOCATION.--Lat 41°38'44", long 91°32'32", Hydrologic Unit 07080209, 1223 South Riverside Drive, Iowa City. Owner: Iowa City Community School District. AQUIFER.--Silurian-Devonian: in dolomite of Silurian age and limestone and dolomite of Devonian age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 6 in., depth 363 ft, cased to 66.5 ft, open hole 66.5-363 ft. METHOD.--Monthly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 652 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Nipple welded to plate on top of casing, 2.12 ft above land-surface datum. topographic map. Measuring point: Nipple welded to plate on top of casing, 2.12 it above land-surface datum. REMARKS.--Warehouse well. Water levels affected by wells in the area pumping in late spring, summer, and early fall. Main water, 214-215 ft, in the Silurian. PERIOD OF RECORD.--April 1974 to current year. REVISED RECORDS.--WDR IA-84-1. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 9.96 ft below land-surface datum, April 11, 1979; lowest measured, 41.50 ft below land-surface detum, July 1, 1988. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 11 | 32.26 | JAN 11 | 19.82 | APR 04 | 18.35 | JUL 03 | 36.12 | | NOV 01 | 31.08 | FEB 02 | 19.80 | MAY 05 | 20.85 | AUG 02 | 35.24 | | DEC 02 | 23.13 | MAR 06 | 19.62 | JUN 02 | 30.74 | SEP 05 | 34.16 | 414458091260201. Local number, 80-05-09 DBEC1. LOCATION.--Lat 41°44′58", long 91°26′02", Hydrologic Unit 07080209, in the southeast corner of the T junction of County Roads F8W and F36 in the Village of Morse. Owner: Mrs. Frank Miller. AQUIFER.--Glacial drift: in material of Pleistocene age. WELL CHARACTERISTICS.--Bored observation water-table well, diameter 1.25 in., depth 15 ft, cased to 13 ft, sand point 13-15 ft. METHOD.--Monthly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 762 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Nipple welded to casing, 2.72 ft above land-surface datum. PERMARKS.--Records for 1950 to September 1985 are available in the files of the Iowa District Office. PERIOD OF RECORD.--August 1950 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.60 ft above land-surface datum, March 14, 1953; lowest measured, 9.22 ft below land-surface datum, September 8, 1955. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 24 | 8.14 | JAN 20 | 7.52 | APR 27 | 4.98 | JUL 21 | 7.44 | | NOV 23 | 7.74 | FEB 22 | 7.76 | MAY 25 | 6.18 | AUG 21 | 7.84 | | DEC 21 | 8.01 | MAR 23 | 6.87 | JUN 23 | 6.89 | SEP 25 | 6.59 | 414315091252001. Local number, 80-05-22 CBCB1. LOCATION.--Lat 41°43'15", long 91°25'20", Hydrologic Unit 07080209, along the Chicago, Rock Island and Pacific Railroad track, southeast of the overpass on Rapid Creek Road over the track, approximately 5.5 mi northeast of the junction of Interstate 80 and Iowa Highway 1. Owner: Chicago, Rock Island and Pacific Railroad Co. ACUIFER.—Glacial drift: in material of Pleistocene age. WELL CHARACTERISTICS.—Drilled unused water-table well, diameter 2.25 in., depth 18.43 ft, cased to 18 ft, screened 18-20 ft. Depth originally 20 ft, re-measured June 23, 1989. METHOD.—Monthly measurement with chalked tape by USGS personnel. DATUM.—Elevation of land-surface datum is 753 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Nipple welded to casing, 4.47 ft above land-surface datum. REMARKS.—At the site of the former Elmira depot. PERIOD OF RECORD.—October 1941 to September 1956, January 1958 to current year. EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 5.78 ft below land-surface datum, September 20, 1977; lowest measured dry, November 10, 15, 20, 25, and 30, 1964, December 5, 10, 15, 20, 25 and 31, 1964, December 1 and 10, 1975, October 21, 1976, November 23, 1976, December 17, 1976, January 20, 1977, and February 18, 1977. REVISIONS.—Lowest water level measured, dry, November 10, 15, 20, 25, and 30, 1964, December 5, 10, 15, 20, 25, and 31, 1964, Dec. 1 and 10, 1975, Oct. 21, 1976, Nov. 23, 1976, Dec. 17, 1976, Jan. 20, 1977, and Feb. 18, 1977. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 24 | 14.74 | JAN 20 | 16.00 | APR 27 | 17.20 | JUL 21 | 16.93 | | NOV 23 | 15.29 | FEB 22 | 16.49 | MAY 26 | 16.92 | AUG 21 | 17.02 | | DEC 22 | 15.67 | MAR 23 | 16.91 | JUN 23 | 16.85 | SEP 25 | 16.93 | 414315091252002. Local number, 80-05-22 CBCB2. LOCATION.--Lat 41°43′15", long 91°25′20", Hydrologic Unit 07080209, along the Chicago, Rock Island and Pacific Railroad track, southeast of the overpass on Rapid Creek Road over the track, approximately 5.5 mi northeast of the junction of Interstate 80 and Iowa Highway 1. Owner: Chicago, Rock Island and Pacific Railroad Co. AQUIFER.--Devonian: in Cedar Valley limestone of Middle Devonian age. WELL CHARACTERISTICS.--Drilled unused artesian water well, diameter 5 in., depth 82 ft. Casing information not available. mation not available. METHOD.--Monthly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 753 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Nipple welded to plate on top of casing, 4.01 ft above land-surface datum. surface datum. REMARKS.--At the site of the former Elmira depot. PERIOD OF RECORD.--December 1941 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 8.15 ft below lan 21, 1952; lowest measured, 21.65 ft below land-surface datum, August 21, 1989. land-surface datum, April | DATE | | WATER<br>LEVEL | |-------------------|----------------|-------------------------|----------------------------|---|-------------------------|-------------------|----------------|-------------------------|-------------------|----------------|-------------------------| | OCT<br>NOB<br>DEC | 24<br>23<br>21 | 20.37<br>20.33<br>20.56 | JAN 20<br>FEB 22<br>MAR 23 | 2 | 20.34<br>20.24<br>19.82 | APR<br>MAY<br>JUN | 27<br>26<br>23 | 18.63<br>19.55<br>19.84 | JUL<br>AUG<br>SEP | 21<br>21<br>25 | 20.94<br>21.65<br>20.43 | | | | | | | | | | | | | | 414149091331501. Local number, 80-06-33 BDBB. LOCATION.--Lat 41°41'49", long 91°33'15", Bydrologic Unit 07080209, north of Iowa City approximately 0.5 mi and west of County Road W-66. Owner: River Products Quarry. AQUIFER.--Silurian-Devonian: in dolomite of Silurian and limestone and dolomite of Devonian age. WELL CHARACTERISTICS.--Drilled industrial supply well, diameter 18 in., depth 150 ft, cased to 7 ft, open hole 7-150 ft. METHOD.--Monthly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 670 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 44.00 ft below land-surface datum. REMARKS.--Water levels affected by quarrying operations and by wells in the area pumping in late spring summer, and early fall. PERIOD OF RECORD.--March 1971 to current year EXTREMES FOR PERIOD OF RECORD.--Highest water level measured (flowing), 44.00 ft below land-surface datum, December 28, 1979, January 3 and 10, 1980, February 8 and 22, 1980, March 10 and 21, 1980, April 4 and 21, 1980, March 25, 1981, April 15, 1981, December 21, 1981, January 21, 1982, February 19, 1982, March 18, 1982, April 20, 1982, December 27, 1983, January 27, 1983, February 28, 1983, March 28, 1983, March 28, 1983, December 27, 1984, January 30, 1984, March 1 and 29, 1984, April 30, 1984, November 29, 1984, December 27, 1984, January 31, 1985, February 26, 1985, March 19, 1985, April 18, 1985, December 6, 1985, January 6, 1986, February 6, 1986, March 6, 1986, April 6, 1986, and May 7, 1986; lowest measured, 92.54 ft below land-surface datum, July 30, 1975. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |----------------------------|-------------------------|----------------------------|-------------------------|----------------------------|-------------------------|------------------|----------------| | NOV 01<br>DEC 02<br>JAN 11 | 70.66<br>63.69<br>69.00 | FEB 02<br>MAR 06<br>APR 04 | 69.57<br>70.60<br>68.50 | MAY 05<br>JUN 02<br>JUL 03 | 70.96<br>77.52<br>84.54 | AUG 02<br>SEP 05 | 86.97<br>79.29 | 414853091425101. Local number, 81-07-19 BCBB1. LOCATION.--Lat 41°48'53", long 91°42'51", Hydrologic Unit 07080208, approximately 0.75 mi west and 2.25 mi south of the Town of Swisher. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Silurian-Devonian: in dolomite of Silurian age and limestone and dolomite of Devonian age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 6 in., depth 535 ft, cased to 130 ft, open hole 130-535 ft. INSTRUMENTATION.--Water-level recorder. DATUM.--Elevation of land-surface datum is 745 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 3.50 ft above land-surface datum. REMARKS.--Plum Creek well. Water-level recorder removed September 30, 1989. PERIOD OF RECORD.--November 1976 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level recorded, 64.46 ft below land-surface datum, May 31, 1983; lowest recorded, 76.97 ft below land-surface datum, October 6, 1988. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 NOON VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-----------------------------------|----------------------------------------------------|----------------------------------|----------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|----------------------------------------|------------------------------------------------| | 05<br>10<br>15<br>20<br>25<br>EOM | 76.95<br>76.37<br>76.12<br>76.04<br>75.90<br>76.13 | 75.20<br>75.33<br>75.14<br>75.00 | 73.96<br>73.53 | 73.43<br>73.18<br>73.09<br>72.92<br>72.83<br>72.28 | 72.69<br>72.48<br>72.30<br>72.12<br>72.12<br>71.78 | 71.64<br>71.69<br>71.17<br>71.31<br>71.12<br>71.07 | 71.09<br>71.36<br>71.41<br>71.34<br>71.05<br>71.02 | 71.09<br>71.19<br>71.17<br>71.13<br><br>a71.20 | 71.32<br>71.42<br>a71.30<br>71.35<br>71.86<br>71.83 | 72.07<br>72.56<br>73.09<br>73.31<br>73.56<br>a73.36 | a73.30<br>a73.56<br><br>73.95<br>73.88 | a73.85<br>73.50<br>73.51<br>73.35<br><br>73.18 | WTR YEAR 1989 HIGHEST 70.95 APRIL 29, 1989 LOWEST 76.97 OCT 6, 1988 ## a Recorded water level has been adjusted. 415052091483801. Local number, 81-08-05 CCCD1. LOCATION.--Lat 41°50'52", long 91°48'38", Hydrologic Unit 07080208, approximately 7 mi west of the Town of Swisher, on the north side of County Road F-12. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Silurian-Devonian: in dolomite of Silurian and limestone and dolomite of Devonian age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 5 in., depth 533 ft, cased to 135 ft, open hole 133-533 ft. METHOD.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 818 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.23 ft above land-surface datum. REMARKS.--First Hole/Swisher. PERIOD OF RECORD.--June 1972, March 1973, November 1975 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 70.73 ft below land-surface datum, March 28, 1973; lowest measured, 90.38 ft below land-surface datum, September 11, 1989. | WATER LEVEL. IN FEET BELOW LAND-SURFACE DATUM. | WATER YEARS | OCTOBER 1 | 1971 TO | SEPTEMBER : | 1989 | |------------------------------------------------|-------------|-----------|---------|-------------|------| |------------------------------------------------|-------------|-----------|---------|-------------|------| | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------| | JUN 06, 1972 MAR 28, 1973 NOV 13, 1975 DEC 09 JUL 12, 1976 FEB 18, 1977 JUN 14 JUL 06 AUG 09 SEP 08 SCT 21 NOV 04 DEC 16 DEC 16 JEN 11, 1978 FEB 07 | 73.18<br>70.73<br>78.79<br>78.43<br>81.45<br>83.28<br>83.61<br>83.74<br>83.10<br>81.69<br>81.70<br>80.48<br>80.48 | JUL 18 AUG 16 SEP 12 OCT 12 NOV 09 DEC 07 APR 03, 1979 MAY 08 JUN 05 JUL 09 AUG 08 SEP 13 OCT 09 DEC 07 | 75.01<br>79.00<br>79.65<br>79.52<br>79.42<br>79.40<br>78.93<br>77.77<br>78.18<br>78.44<br>78.78<br>78.81<br>79.48<br>80.09<br>78.98 | MAY 28 JUL 18 SEP 17 NOV 18 FEB 03, 1981 MAR 18 OCT 20 DEC 07 APR 22, 1982 SEP 27 MAR 17, 1983 AUG 24 OCT 05 APR 17, 1984 AUG 17 | 81.34<br>82.53<br>82.30<br>82.18<br>82.96<br>79.98<br>78.86<br>78.81<br>78.90<br>78.90<br>79.32<br>79.88<br>79.70<br>79.32 | MAY 02<br>AUG 21<br>NOV 26<br>MAR 21, 1986<br>JUN 18<br>AUG 25<br>DEC 01<br>MAR 25, 1987<br>JUN 09<br>AUG 10<br>OCT 13<br>MAR 10, 1988<br>JUN 07<br>SEP 12<br>OCT 12 | 79.57<br>81.27<br>80.73<br>80.73<br>80.14<br>79.53<br>79.12<br>80.97<br>82.71<br>81.24<br>83.61<br>87.60 | | MAR 22<br>APR 25<br>MAY 30 | 80.00<br>79.93<br>79.20 | JAN 08, 1980<br>FEB 04<br>MAR 15 | 79.71<br>79.70<br>78.51 | SEP 18<br>NOV 08<br>MAR 05, 1985 | 79.98<br>79.76<br>79.15 | MAR 30, 1989<br>JUN 14<br>SEP 11 | 88.04<br>87.30<br>90.38 | ### JONES COUNTY 415808091160501. Local number, 83-04-25 CBBB1. LOCATION.-Lat 41°58'08", long 91°16'05", Hydrologic Unit 07080103, 4 mi north of the Town of Mechanicsville and 1 mi west of County Road X-40. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.-Silurian: in dolomite of Silurian age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 6 in. to 41 ft, 5 in. to 517 ft, depth 517 ft, cased to 41 ft, open hole 41 to 517 ft. METHOD.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 811 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Nipple welded to plate on top of casing, 2.16 ft above land-surface datum. REMARKS.--White Oak Creek well. PERIOD OF RECORD.--July 1976 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 1.24 ft below land-surface datum, April 3, 1979; lowest measured, 6.21 ft below land-surface datum, September 11, 1989. WATER LEVEL. IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | WATER | DATE WATER | DATE WATER | DATE WATER | |--------|-------|-------------|-------------|-------------| | | LEVEL | LEVEL | LEVEL | LEVEL | | OCT 19 | 5 76 | MAR 30 5.88 | THE 13 5.93 | SEP 11 6.21 | #### LEE COUNTY 403630091240801. Local number, 67-05-14 BAAD1. LOCATION.--Lat 40°36'30", long 91°24'08", Hydrologic Unit 07080104, approximately 1 mi east of U.S. Highway 61 and 0.5 mi north of the Atchison, Topeka, and Santa Fe railroad tracks, approximately 1.4 mi west and 1.1 mi south of the City of Fort Madison. Owner: U.S. Geological Survey. AQUIFER.--Alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.--Driven observation water-table well, diameter 1.25 in., depth 12 ft, cased to 10 ft, sand point 10-12 ft. METHOD.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 530 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Nipple welded to casing, 3.55 ft above land-surface datum. REMARKS.--Records for 1950 to 1981 and September 1985 are available in the files of the Iowa District Office. Well destroyed August, 1989. PERIOD OF RECORD.--June 1950 to September 1981. September 1985 to July 1989. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 1.29 ft below land-surface datum, November 19, 1986; lowest measured, 9.70 ft below land-surface datum, January 29, 1953. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | | ATER<br>EVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|--------------|-------|----------------| | OCT 26 | 5.26 | MAR 23 | 5.43 | JUL 5 | 5.46 | ### LINN COUNTY 415534091251502. Local number, 82-05-10 CBAA2. LOCATION.--Lat 41°55'26", long 91°25'11", Hydrologic Unit 07080206, next to the water tower, north of Main Street, 3 blocks west of Iowa Highway 1 in Mt. Vernon. Owner: City of Mt. Vernon. AQUIFER.--Cambrian-Ordovician: in sandstone of Late Cambrian age and sandstone and sandy dolomite of Early Ordovician age. WELL CHARACTERISTICS.--Drilled unused municipal artesian water well, diameter 12 to 8 in., depth 1,557 ft, cased to 1,054 ft, open hole 1,054-1,557 ft. METHOD.--Monthly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 895 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Nipple on plate welded to casing, 1.59 ft above land-surface datum. REMARKS.--None. PERIOD OF RECORD.--March 1987 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 329.96 ft below land-surface datum, October 22, 1987; lowest measured, 337.96 ft below land-surface datum, September 25, 1989. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 DATE WATER LEVEL WATER LEVEL WATER DATE DATE LEVEI. LEVEL OCT NOV DEC 24 23 21 335.83 JUL 336.81 335.78 337.96 336.53 FEB MAR 415556091313001. Local number, 82-06-10 AABB1. LOCATION.--Lat 41°55'56", long 91°16'41", Hydrologic Unit 07080206, approximately 1.25 mi south of the Town of Bertram, 1.5 mi east of Iowa Highway 13, and 0.5 mi north of U.S. Highway 30. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Silurian: in limestone and dolomite of Silurian age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 6 in., depth 471 ft, cased to 126 ft, open hole 126-471 ft. METHOD.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 755 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.21 ft above land-surface datum. REMARKS.--Bertram well. FERIOD OF RECORD.--June 1976 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 44.18 ft below land-surface datum, March 16, 1983; lowest measured, 52.95 ft below land-surface datum, September 11, 1989. | WATER LEVEL. | IN FF | ET R | TION LA | ND-SIRPACE | DATIM | MATED 1 | PEADS | OCTORER | 1975 TO | CEPTEMBED | 1080 | |--------------|-------|------|---------|------------|-------|---------|-------|---------|---------|-----------|------| | | | | | | | | | | | | | | | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------| | JUN<br>FEB<br>JUN<br>JUL<br>AUG<br>SEP<br>OCT<br>NOV<br>JAN<br>FEB<br>MAR<br>APR<br>MAY<br>JUL<br>AUG | 18, 1977<br>14<br>06<br>09<br>08<br>21<br>27<br>23<br>24, 1978<br>28,<br>24<br>17<br>16 | 47.00<br>50.42<br>51.09<br>51.16<br>50.30<br>49.36<br>47.63<br>47.52<br>47.52<br>47.52<br>48.58<br>46.69<br>46.69<br>46.65 | NOV 08<br>DEC 19<br>AFR 03, 1979<br>MAY 08<br>JUN 05<br>JUL 09<br>AUG 08<br>SEP 14<br>OCT 10<br>NOV 05<br>DEC 04<br>JAN 09, 1980<br>FEB 06<br>MAR 07<br>APR 22<br>JUN 20 | 47.74<br>48.18<br>44.36<br>44.31<br>45.23<br>45.44<br>45.50<br>46.93<br>47.10<br>48.19<br>48.19<br>48.22<br>48.40<br>48.66 | FEB 25, 1981<br>APR 16<br>JUN 23<br>SEP 03<br>OCT 20<br>DEC 09<br>APR 21, 1982<br>SEP 27<br>MAR 16, 1983<br>AUG 24<br>OCT 05<br>APR 19, 1984<br>AUG 07<br>SEP 11<br>NOV 13<br>MAR 21, 1985<br>MAY 07 | 50.31<br>49.622<br>49.22<br>48.40<br>48.66<br>48.05<br>46.02<br>46.02<br>47.108<br>47.108<br>47.108<br>48.39<br>48.39<br>48.89<br>48.89 | DEC 20<br>MAR 20, 1986<br>JUN 18<br>AUG 25<br>DEC 01<br>MAR 24, 1987<br>JUN 09<br>AUG 10<br>OCT 13<br>MAR 10, 1988<br>JUN 07<br>SEP 12<br>OCT 19<br>MAR 30, 1989<br>JUN 14<br>SEP 11 | 49.23<br>47.45<br>44.45<br>45.58<br>46.77<br>47.58<br>48.94<br>47.33<br>491.46<br>551.33<br>551.32<br>552.95 | | SEP | 11 | 47.59 | ÖCT 17 | 48.87 | Alig 21 | 50.04 | | | 415442091343001. Local number, 82-06-17 CBAB1. LOCATION.--Lat 41°54'42", long 91°34'30", Hydrologic Unit 07080206, approximately 2.5 mi north of the Town of Ely, on the north side of County Road W-8E. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.-Silurian-Devonian: in dolomite of Silurian age and limestone and dolomite of Devonian age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 6 in., depth 541 ft, cased to 64 ft, open hole 64-541 ft. METHOD.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 825 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.55 ft above land-surface datum. REMARKS.--Ely North well. Records for April 1976 to September 1988 are available in the files of the Iowa District Office. PERIOD OF RECORD.--1976 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 69.67 ft below land-surface datum, May 8, 1979; lowest measured, 85.59 ft below land-surface datum, August 9, 1977. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 19 | 81.08 | MAR 30 | 82.79 | JUN 14 | 83.50 | SEP 11 | 85.02 | 415422091422601. Local number, 82-07-18 CDCD1. LOCATION.--Lat 41°54'22", long 91°42'26", Hydrologic Unit 07080205, on 76th Avenue SW, approximately 1.5 mi west of U.S. Highway 218, Cedar Rapids. Owner: Lester Petrak. AQUIFER.--Glacial drift: in material of Pleistocene age. WELL CHARACTERISTICS.--Dug unused water-table well, diameter 4 ft, depth 13.5 ft, cribbed with brick. METHOD.--Monthly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 835 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Base of recorder shelter, 0.37 ft above land-surface datum. REMARKS.--Water-level recorder removed October 1987. PERIOD OF RECORD.--July 1959 to current year. REVISED RECORDS.--WDR IA-84-1. EXTREMES FOR PERIOD OF RECORD.--Highest water level recorded, 1.09 ft below land-surface datum, August 4, 1968; lowest recorded, ell.75 ft below land-surface datum, February 8, 1977. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------------------------------------|---------------------------------|----------------------------|------------------------|----------------------------|----------------------|-----------------------|----------------------| | OCT 24<br>NOV 23<br>DEC 21<br>JAN 20 | 10.49<br>9.76<br>10.39<br>10.19 | FEB 22<br>MAR 23<br>APR 24 | 10.66<br>10.04<br>6.62 | MAY 26<br>JUN 23<br>JUL 21 | 5.74<br>6.36<br>7.37 | AUG 8<br>21<br>SEP 25 | 7.91<br>8.32<br>6.06 | ### e Estimated. 415343091360101. Local number, 82-07-25 AAAB1. LOCATION.--Lat 41°53'43", long 91°36'01", Hydrologic Unit 07080208, 0.5 mi northwest of the Town of Ely at the southwest corner of the junction of County Roads E-70 and W-6E. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Silurian: in limestone and dolomite of Silurian age. WELL CHARACTERISTICS.-Drilled observation artesian water well, diameter 6 in., depth 401 ft, cased to 121.5 ft, open hole 121.5-401 ft. METHOD.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 772 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.76 ft above land-surface datum. REMARKS.--Ely (Northwest) Railroad well. Records for May 1976 to September 1988 are available in the files of the Iowa District Office. PERIOD OF RECORD.--May 1976 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 6.08 ft below land-surface datum, Decem-1, 1986; lowest measured, 19.96 ft below land-surface datum, July 6, 1977. | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 19 | 14.46 | MAR 30 | 16.03 | JUN 14 | 16.32 | SEP 11 | 17.21 | 415509091461801. Local number, 82-08-20 ACBB1. LOCATION.--Lat 41°55'09", long 91°46'18", Hydrologic Unit 070802005, approximately 1.5 mi southwest of the Town of Fairfax, just northwest of Iowa Highway 149. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Silurian-Devonian: in dolomite of Silurian age and limestone and dolomite of Devonian age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 5 in., depth 569 ft, cased to 100.5 ft, open hole 100.5-569 ft. METHOD.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 842 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Nipple welded to plate on top of casing, 2.39 ft above land-surface datum. REMARKS.--Rock Pile well. PERIOD OF RECORD.--March 1973 to current year. REVISED RECORDS.--WDR IA-84-1. EXTREMES FOR FERIOD OF RECORD.--Highest water level measured, 96.70 ft below land-surface datum, June 21, 1974; lowest measured, 109.17 ft below land-surface datum, September 11, 1989. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 to SEPTEMBER 1989 | DATE | WATER | DATE WATER | DATE WATER | DATE WATER | |--------|--------|---------------|---------------|---------------| | | LEVEL | LEVEL | LEVEL | LEVEL | | OCT 12 | 107.30 | MAR 30 107.07 | JUN 14 107.95 | SEP 11 109.17 | 415834091351601. Local number, 83-06-30 ABBA1. LOCATION.--Lat 41°58'34", long 91°35'16", Hydrologic Unit 07080206, approximately 200 ft west of 5201 Mount Vernon Road SE, Cedar Rapids. Owner: B.L. Anderson. AQUIFER.--Silurian-Devonian: in dolomite of Silurian and limestone and dolomite of Devonian age. WELL CHARACTERISTICS.--Drilled unused artesian water well, diameter 6 in., depth 76.5 ft. Casing information not available. Devonian rock reported to yield little, if any, water. METHOD.--Monthly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 755 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Hole in pump base, 0.50 ft above land-surface datum. REMARKS.--Katz well. Records for 1940 to September 1985 are available in the files of the Iowa District Office. Office. PERIOD OF RECORD. --May 1940 to current year. EXTREMES OF PERIOD OF RECORD. --Highest water level measured, 41.93 ft below land-surface datum, April 25, 1973; lowest measured, 53.90 ft below land-surface datum, December 21, 1970. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 24 | 51.41 | JAN 20 | 51.44 | APR 24 | 51.46 | JUL 21 | 51.83 | | NOV 23 | 51.32 | FEB 22 | 51.52 | MAY 26 | 51.52 | AUG 21 | 52.05 | | DEC 21 | 51.55 | MAR 23 | 51.44 | JUN 23 | 51.69 | SEP 25 | 51.95 | 415816091393401. Local number, 83-07-28 ADDA1. LOCATION.--Lat 41°58'16", long 91°39'34", Hydrologic Unit 07080205, 320 11th Avenue SE, Cedar Rapids. Owner: Robert Chadima. AQUIFER.--Silurian: in limestone of Silurian age. WELL CHARACTERISTICS.--Drilled unused artesian water well, diameter 10 in., depth 420 ft, cased to 75 ft, open hole 75-420 ft. METHOD.--Monthly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 735 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of recorder platform, 2.95 ft below land-surface datum. REMARKS.--Formerly The Kacena Co., Inc. Water-level recorder removed October 1987. PERIOD OF RECORD.--January 1962 to current year. REVISED RECORDS.--WDR IA-84-1. EXTREMES FOR PERIOD OF RECORD.--Highest water level recorded, 51.10 ft below land-surface datum, February 25, 1963; lowest recorded, 101.40 ft below land-surface datum, July 27, 1981. WATER LEVEL. IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 24 | 92.90 | JAN 20 | 85.53 | APR 27 | 87.95 | JUL 21 | 92.23 | | NOV 23 | 88.74 | FEB 22 | 84.30 | MAY 26 | 89.41 | AUG 21 | 92.88 | | DEC 21 | 87.25 | MAR 23 | 84.24 | JUN 23 | 91.05 | SEP 25 | 92.63 | 415725091410101. Local number, 83-07-32 ACDC1. LOCATION.--Lat 41°57'25", long 91°41'01", Hydrologic Unit 07080205, northwest corner of 22nd Avenue SW and 11th Street SW, Cedar Rapids. Owner: Floyd Fetter. AQUIFER.--Silurian: in limestone of Silurian age. WELL CHARACTERISTICS.--Drilled unused artesian water well, diameter 5 in., depth 282 ft. Casing infor- well CHARACTERISTICS. --Drilled unused artesian water well, grameter 5 in., depos 202 2... mation not available. METHOD. --Monthly measurement with chalked tape by USGS personnel. DATUM. --Elevation of land-surface datum is 805 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Plug in well cover at land-surface datum. REMARKS. --Water levels may be affected by pumping of near by wells. PERIOD OF RECORD. --July 1840 to current year. EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 75.88 ft below land-surface datum, January 26, 1942; lowest measured, 107.00 ft below land-surface datum, September 16, 1976. REVISION. --Highest water level measured, 75.88 ft below land-surface datum, January 26, 1942. | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|------|----------------|--------|----------------| | OCT 24 | 97.05 | JAN 20 | 97.38 | | 97.93 | JUL 21 | 101.74 | | NOV 23 | 96.69 | FEB 22 | 97.53 | | 100.64 | AUG 21 | 102.36 | | DEC 21 | <b>96.99</b> | MAR 23 | 98.15 | | 100.82 | SEP 25 | 99.41 | 420126091484801. Local number, 83-08-06-DDAD1. LOCATION.--Lat 42°01'26", long 91°48'48", Hydrologic Unit 07080205, approximately 2.5 mi southwest of the Town of Palo, south of County Road E-40 near the former site of the Lincoln Church. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Silurian-Devonian: in dolomite of Silurian and limestone and dolomite of Devonian age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 5 in., depth 561 ft, cased to 83 ft, open hole 83-561 ft. METHOD.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 842 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.97 ft above land-surface datum. REMARKS.--Lincoln Church well. Records for October 1972 to September 1988 are available in the files of the lowa District Office. PERIOD OF RECORD.--October 1972 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 61.72 ft below land-surface datum, June 9, 1974; lowest measured, 88.27 ft below land-surface datum, January 31, 1976. WATER LEVEL. IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 12 | 85.55 | MAR 30 | 84.11 | JUN 14 | 84.75 | SEP 11 | 86.52 | 420300091325801. Local number, 84-06-33 ABBB1. LOCATION.--Lat 42°03'00", long 91°32'58" Hydrologic Unit 07080206, near the City of Marion on the east side of Iowa Highway 13, approximately 1 mi north of U.S. Highway 151. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Silurian: in dolomite of Silurian age. WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 6 in., depth 481 ft, cased to 142 ft, open hole 142-481 ft. METHOD.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 838 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 0.90 ft above land-surface datum. REMARKS.--Marion well. PERIOD OF RECORD.--June 1976 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 42.15 ft below land-surface datum, June 18, 1986; lowest measured, 50.19 ft below land-surface datum, July 6, 1977. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEARS OCTOBER 1975 TO SEPTEMBER 1989 | | | | | , | | | | |-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------| | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | | JUN 22, 1976 FEB 18, 1977 JUN 14 JUL 06 AUG 09 SEP 08 OCT 21 OCT 27 NOV 23 JAN 24, 1978 FEB 28 MAR 24 APR 22 MAY 31 JUL 17 AUG 16 SEP 12 OCT 11 | 44.00<br>49.27<br>49.179<br>50.19<br>49.45<br>47.89<br>44.527<br>45.56<br>46.627<br>45.02<br>45.02<br>45.03<br>46.14<br>46.27 | NOV 18<br>DEC 06<br>APR 03, 1979<br>MAY 08<br>JUN 05<br>JUL 09<br>AUG 08<br>SEP 13<br>OCT 10<br>NOV 06<br>DEC 03<br>JAN 09, 1980<br>FEB 06<br>MAR 07<br>APR 22<br>JUN 20<br>AUG 14<br>OCT 17 | 46.63<br>46.81<br>44.29<br>44.10<br>45.56<br>45.98<br>46.53<br>46.53<br>47.22<br>47.22<br>47.28<br>48.55<br>47.541<br>47.84<br>48.68<br>47.66 | FEB 25, 1981<br>APR 16<br>JUN 23<br>SEP 03<br>OCT 20<br>DEC 09<br>APR 21,1982<br>SEP 27<br>MAR 17,1983<br>AUG 24<br>OCT 05<br>APR 19,1984<br>AUG 07<br>SEP 13<br>NOV 13<br>MAY 21,1985<br>MAY 21,1985 | 47.86<br>46.697<br>45.566<br>44.512<br>44.527<br>47.24<br>47.83<br>45.69<br>45.84<br>46.825<br>46.09 | DEC 20 MAR 21, 1986 JUN 18 AUG 25 DEC 01 MAR 20, 1987 JUN 09 AUG 10 OCT 13 MAR 10, 1988 JUN 07 SEP 12 OCT 19 MAR 30, 1989 JUN 14 SEP 11 | 46.73<br>45.90<br>42.15<br>44.62<br>46.40<br>47.40<br>45.69<br>47.69<br>48.19<br>49.32<br>49.32<br>49.37 | 420526091370701. Local number, 84-07-13 BCBB1. LOCATION.--Lat 42°05'26", long 91°37'07", Hydrologic Unit 07080206, approximately 0.25 mi south of the junction of County Roads W-58 and E-34, on the east side of the road, or approximately 3.75 mi north of the City of Marion. Owner: U.S. Geological Survey. AQUIFER.--Glacial drift: in material of Pleistocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 1.25 in., depth 17 ft, cased to 15 ft, screened 15-17 ft. METHOD.--Twice a month measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 882 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Nipple welded to casing, 1.24 ft above land-surface datum. REMARKS.--USGS13E2 well. PERIOD OF RECORD.--September 1948 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.93 ft below land-surface datum, May 18, 1982; lowest measured, 15.19 ft below land-surface datum, January 20, 1977. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------------|----------------|--------------|----------------|--------|----------------|--------|----------------| | OCT 10<br>24 | 9.00<br>5.23 | JAN 17<br>20 | 7.85<br>8.09 | APR 17 | 7.22<br>3.50 | JUL 15 | 6.92<br>5.16 | | NOV 11 | 8.39 | FEB 14 | 7.62 | MAY 12 | 3.83 | AUG 12 | 8.15 | | 23 | 6.22 | 22 | 8.06 | 25 | 4.65 | 21 | 7.94 | | DEC 15 | 5.88 | MAR 10 | 8.44 | JUN 13 | 5.35 | SEP 12 | 4.99 | | | 8.08 | 23 | 7.63 | 23 | 6.32 | 25 | 7.47 | 420508091395811. Local number, 84-07-16 DBBB1. LOCATION.--Lat 42°05'16", long 91°40'02", Hydrologic Unit 07080205, approximately 0.5 mi south of County Road E-34, north of the Town of Robins. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.-Silurian: in dolomite of Silurian age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 5 in., depth 520 ft, cased to 173 ft, open hole 173-520 ft, 18 ft of Devonian rock open. METHOD.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 873 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.20 ft above land-surface datum. REMARKS.--Robins well. Records for April 1975 to September 1988 are available in the files of the Iowa District Office. PERIOD OF RECORD.--April 1975 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 36.74 ft below land-surface datum, April 11, 1979; lowest measured, 55.27 ft below land-surface datum, September 11, 1989. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 19 | 52.06 | MAR 30 | 52.57 | JUN 14 | 51.13 | SEP 11 | 55.27 | 420338091431601. Local number, 84-08-25 ACAD1. LOCATION.--Lat 42°03'38", long 91°43'16", Hydrologic Unit 07080205, approximately 1.5 mi northwest of the Town of Hiawatha near the Morrison Cemetary and the KCRG-TV Radio Tower. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Silurian: in dolomite Silurian age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 6 in., depth 468 ft, cased to 153 ft, open hole 153-468 ft. METHOD.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 805 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.38 ft above land-surface datum. REMARKS.--Hiawatha well. Records for October 1973 to September 1988 are available in the files of the Iowa District Office. PERIOD OF RECORD.--October 1973 to current year. EXTREMES FOR PERIOD OF RECORD.--Etober 1973 to below land-surface datum, July 7, 1974; lowest measured, 46.41 ft below land-surface datum, October 19, 1988. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 19 | 46.41 | MAR 30 | 43.97 | JUN 14 | 44.22 | SEP 11 | 45.95 | 420320091472201. Local number, 84-08-28 CBDD1. LOCATION.--Lat 42°03'20", long 91°47'22", Bydrologic Unit 07080205, 0.5 mi southeast of the Town of Palo, 0.25 mi east of Iowa Highway 94. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Silurian: in dolomite of Silurian age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 5 in., depth 442 ft, cased to 148 ft, open hole 148-442 ft. METHOD.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 743 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 3.08 ft above land-surface datum. REMARKS.--Palo well. Records for April 1976 to September 1988 are available in the files of the Iowa District Office. PERIOD OF RECORD.--April 1976 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 3.64 ft below land-surface datum, April 5, 1979; lowest measured, 13.26 ft below land-surface datum, July 17, 1977. | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 12 | 12.60 | MAR 30 | 11.93 | JUN 14 | 11.96 | SEP 11 | 12.76 | 421149091403301. Local number, 85-07-04 CCCC1. LOCATION.--Lat 42°11'49", long 91°40'33", Hydrologic Unit 07080205, approximately 5 mi east of the Town Town of Center Point, north side of County Road E-16. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Silurian-Devonian: in dolomite of Silurian age and limestone and dolomite of Devonian age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 6 in., depth 435 ft, cased to 41 ft, 5 in. liner 129-147 ft, open hole 41-129 ft and 147-435 ft. METHOD.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 912 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Nipple welded to plate on top of casing, 1.21 ft above land-surface datum. REMARKS.--Alice well. PERIOD OF RECORD.--July 1973 to current year. REVISED RECORDS.--WDR IA-84-1. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 17.06 ft below land-surface datum, June 10, 1974; lowest measured, 33.61 ft below land-surface datum, September 11, 1989. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|---------|----------------|--------|----------------| | OCT 12 | 32.22 | MAR 30 | 32.66 | TIIN 14 | 32.11 | SEP 11 | 33.61 | WATER LEVEL, IN FEET, BELOW LAND-SURFACE DATUM Measured level 420954091480801. Local number, 85-08-20 ABCD1. LOCATION.--Lat 42°09'54", long 91°48'08", Hydrologic Unit 07080205, approximately 1.5 mi south of the Town of Center Point near the Lewis Bottoms Access County Park on the south side of County Road W-36. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER:--Silurian-Devonian: in dolomite of Silurian age and limestone and dolomite of Devonian age. WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 5 and 4 in., depth 433 ft, cased to 39.5 ft and a liner 147.7-177 ft, open hole 39.5-147.7 ft, and 177-437 ft. METHOD.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 805 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.84 ft above land-surface datum. REMARKS.--Center Point Bridge well. Records for March 1974 to September 1988 are available in the files of the Iowa District Office. PERIOD OF RECORD.--March 1974 to current year. EXTREMES FOR PERIOD OF RECORD.--Bighest water level measured, 21.50 ft below land-surface datum, June 14 and 15, 1974; lowest measured, 34.58 ft below land-surface datum, September 11, 1989. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 12 | 32.89 | MAR 30 | 32.74 | JUN 14 | 33.08 | SEP 11 | 34.58 | 420730091490401. Local number, 85-08-31 DDCD1. LOCATION.-Lat 42°07'30", long 91°49'04", Hydrologic Unit 07080205, at the fenced north end of Pleasant Creek Reservoir near the beach house in the beach area. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.-Silurian: in dolomite of Silurian age. WELL CHARACTERISTICS.-Drilled observation artesian water well, diameter 5 in., depth 481 ft, cased to 214 ft, open hole 214-481 ft. METHOD.--Quarterly measurement with chalked tape by USGS personnel. DATUM.-Elevation of land-surface datum is 833 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.17 ft above land-surface datum. REMARKS.--Pleasant Creek Reservoir/Silurian well. Records for May 1975 to September 1988 are available in the files of the Iowa District Office. PERIOD OF RECORD.--May 1975 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 84.17 ft below land-surface datum, April 5, 1976; lowest measured, 105.90 ft below land-surface datum, September 11, 1989. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 12 | 101.45 | MAR 30 | 100.97 | JUN 14 | 104.70 | SEP 11 | 105.90 | ## LYON COUNTY 431812096302701. Local number, 98-48-16 DDAD1. LOCATION.--Lat 43°18'12", long 96°30'27", Hydrologic Unit 10170203, approximately 3.5 mi east of the City of Canton, S.D., south of U.S. Highway 18. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AOUIFER.--Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 358 ft, cased to 358 ft, perforated 335-355 ft. Open to Late Precambrian Sioux quartzite from 353-358 ft. METHOD.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,268 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.00 ft above land-surface datum. REMARKS.--Well D-20. PERIOD OF RECORD.--December 1978 to December 1980, May 1982 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 91.89 ft below land-surface datum, July 8, 1986; lowest measured, 101.30 ft below land-surface datum, July 6, 1989. | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 18 | 97,75 | JAN 19 | 98.82 | APR 04 | 99.06 | JUL 06 | 101.30 | ## LYON COUNTY 432140095595301. Local number, 99-44-26 DDDD1. LOCATION.--Lat 43°21'40", long 95'59'53", Hydrologic Unit 10170204, 1 mi north of the City of George, west of Iowa Highway 339. Owner: State of Iowa. AQUIFER.--Glacial drift: in material of Pleistocene age. WELL CHARACTERISTICS.--Drilled unused water-table well, diameter 20 in., depth 38 ft, lined with tile. METHOD.--Intermittent measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,400 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Plug in well cover, 2.01 ft above land-surface datum. REMARKS.-None. PERIOD OF RECORD.--October 1940 to June 1943, May 1947 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.41 ft above land-surface datum, May 9, 1979; lowest measured, 9.74 ft below land-surface datum, October 24, 1940. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |----------------------------------|------------------------------|----------------------------|----------------------|----------------------------|----------------------|----------------------------|----------------------| | OCT 04<br>18<br>NOV 16<br>DEC 21 | 4.88<br>5.41<br>5.58<br>5.37 | JAN 19<br>FEB 08<br>MAR 22 | 5.68<br>5.32<br>4.29 | APR 04<br>MAY 03<br>JUN 14 | 3.52<br>3.03<br>4.89 | JUL 06<br>AUG 02<br>SEP 13 | 2.90<br>3.61<br>4.05 | 432553096105701. Local number, 99-45-05 ABAC1. LOCATION.--Lat 43°25'53", long 96°10'55", Hydrologic Unit 10170204, 0.05 mi south of Iowa Highway 9 on 2nd Street, Rock Rapids. Owner: City of Rock Rapids. AQUIFER.--Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled unused artesian water well, diameter 10 in., depth 375 ft, cased to 296 ft, open hole 296-375 ft. METHOD.--Intermittent measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,368 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Plug in cover over casing, 1.00 ft above land-surface datum. REMARKS.--City test well No. 3. PERIOD OF RECORD.--August 1960 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 100.08 ft below land-surface datum, July 27, 1964; lowest measured, 114.68 ft below land-surface datum, September 12, 1989. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |----------------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------| | OCT 04<br>NOV 16<br>DEC 21 | 114.07<br>113.79 | FEB 08<br>MAR 22 | 114.42<br>114.06 | MAY 03<br>JUN 13 | 114.23<br>114.30 | AUG 03<br>SEP 12 | 114.44<br>114.68 | #### LYON COUNTY 432601096335511. Local number, 100-48-31 CCCC11. LOCATION.--Lat 43°26'01", long 96°33'55", Hydrologic Unit 10170203, 0.5 mi west and 2.5 mi south of the Village of Granite. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 657 ft, cased to 657 ft, perforated 450-455 ft and 630-655 ft. METHOD.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,417 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing at land-surface datum. REMARKS.--Well D-19. topographic map. Measuring point: Top of casing at land-surface datum. REMARKS.--Well D-19. PERIOD OF RECORD.--December 1978 to December 1980, May 1982 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 152.17 ft below land-surface datum, October 9, 1986; lowest measured, 157.53 ft below land-surface datum, August 12, 1982. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 18 | 156.24 | JAN 19 | 156.48 | APR 04 | 156.23 | JUL 06 | 156.80 | ## MADISON COUNTY 411727093483001. Local number, 75-26-23 AAAC1. LOCATION.--Lat 41°17'27", long 93°48'30", Hydrologic Unit 07100008, near the shelter house in the city park, St. Charles. Owner: City of St. Charles. AQUIFER.--Mississippian: in limestone of Mississippian age. WELL CHARACTERISTICS.--Drilled unused artesian water well, diameter 8 in., depth 867 ft, cased to 657 ft, open hole 657-867 ft. METHOD.--Intermittent measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,067 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Plug in well cover, 1.20 ft above land-surface datum. REMARKS.--City well No. 1. PERIOD OF RECORD.--November 1962 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 261.62 ft below land-surface datum, November 20, 1962; lowest measured, 275.80 ft below land-surface datum, March 31, 1987. | DATE | | WATER<br>LEVEL | DATE | | WATER<br>LEVEL | DAT | E | WATER<br>LEVEL | |------|----|----------------|------|----|----------------|-----|----|----------------| | NOV | 16 | 274.27 | MAR | 22 | 274.63 | JUL | 27 | 274.81 | ## MARION COUNTY 411323093142601. Local number, 74-21-11 DBCC1. LOCATION.--Lat 41°13'23", long 93°14'26", Hydrologic Unit 07100008, north of the water tower in the town square, Melcher. Owner: Town of Melcher. AQUIFER.--Glacial drift: in material of Pleistocene age. WELL CHARACTERISTICS.--Drilled unused water-table well, diameter 18 in., depth 12.2 ft, lined with tile. Depth originally 25 ft, re-measured in 1981. METHOD.--Twice a month measurement with chalked tape by observer. DATUM.--Elevation of land-surface datum is 948 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of tile casing at land-surface datum. REMARKS.--Town well No. 2. topographic map. Measuring point: Top of tile casing at land-surface datum. REMARKS.--Town well No. 2. PERIOD OF RECORD.--March 1950 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.30 ft below land-surface datum, May 23, 1966; lowest measured, 16.27 ft below land-surface datum, October 22, 1953. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | 3 | WATER<br>LEVEL | DATE | | WATER<br>LEVEL | DATE | ; | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |------|----------|----------------------|------------|----------|----------------|------|----------|----------------|--------------|----------------| | OCT | 11<br>17 | 6.40<br>6.84 | JAN<br>FEB | 23<br>10 | 6.69<br>6.71 | APR | 24<br>25 | 6.51<br>6.55 | JUL 11 | 7.55<br>7.26 | | NOV | 09<br>23 | 7.12 | MAR | 24<br>10 | 6.70<br>6.06 | MAY | 09<br>22 | 5.77<br>6.23 | AUG 10 | | | DEC | 10<br>22 | 6.70<br>6.57<br>6.72 | APR | 23<br>10 | 6.40<br>5.59 | JUN | 12<br>23 | 5.89<br>6.59 | SEP 11<br>25 | 5.00<br>5.65 | | JAN | 10 | 6.28 | | | | | | | | | 411329093142902. Local number, 74-21-11 DBBB2. LOCATION.--Lat 41°13'29", long 93°14'29", Hydrologic Unit 07100008, southeast corner of the T junction of North B Street and Main Street, Melcher. Owner: Town of Melcher. AQUIFER.--Glacial drift: in sand and gravel of Pleistocene age. WELL CHARACTERISTICS.--Drilled unused artesian water well, diameter 6 in., depth 119 ft, cased to 76 ft, open hole 76-119 ft. Sand and gravel 103-117 ft. Fennsylvanian shale 117-119 ft. METHOD.--Twice a month measurement with chalked tape by observer. DATUM.--Elevation of land-surface datum is 943 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Nipple welded to plate on top of casing, 1.82 ft above land-surface datum. REMARKS.--Town well No. 3, well 11K1. FERIOD OF RECORD.--July 1945 to December 1955, October 1976 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 13.43 ft below land-surface datum, May 21, 1986; lowest measured (nearby well pumping), 108.85 ft below land-surface datum, December 4, 6-7, 1949. 1986; 1949. | DATE | | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |------|----|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT | 11 | 22.14 | JAN 23 | 22.28 | APR 24 | 22.19 | JUL 11 | 21.98 | | | 17 | 22.16 | FEB 10 | 22.25 | 25 | 22.20 | 24 | 22.18 | | NOV | 09 | 22.37 | 24 | 22.28 | MAY 09 | 20.58 | AUG 10 | 22.44 | | | 23 | 22.26 | MAR 10 | 21.91 | 22 | 21.18 | 23 | 22.52 | | DEC | 10 | 22.23 | 23 | 22.03 | JUN 12 | 20.33 | SEP 11 | 19.88 | | | 22 | 22.26 | APR 10 | 22.23 | 23 | 21.43 | 25 | 20.43 | | JAN | 10 | 22.03 | | | | | | | #### MARION COUNTY 411328093143503. Local number, 74-21-11 CAAD3. LOCATION.--Lat 41°13'28", long 93°14'35", Hydrologic Unit 07100008, northeast corner of the junction of West ist Street and North A Street, Melcher. Owner: Town of Melcher. AQUIFER.--Glacial drift: in sand of Pleistocene age. WELL CHARACTERISTICS.--Drilled unused artesian water well, diameter 1.25 in., depth 96.5 ft, cased to 80 ft, screened 80-82 ft, open hole 82-96.5 ft. METHOD.--Twice a month measurement with chalked tape by observer. DATUM.--Elevation of land-surface datum is 944 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Nipple welded to casing, 0.51 ft above land-surface datum. REMARKS.--Town well No. 5, well 11L1. PERIOD OF RECORD.--January 1956 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 10.55 ft below land-surface datum, May 21, 1986; lowest measured (nearby well pumping), 55.22 ft below land-surface datum, January 26, 1956. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |---------|----------------|--------|----------------|--------|-----------------|--------|----------------| | OCT 11 | 13.35 | JAN 23 | 13.28 | APR 24 | 13.19 | JUL 11 | 13.09 | | | 13.29 | FEB 10 | 13.28 | 25 | 13.14 | 24 | 13.3 | | NOV 09 | 13.54 | 24 | 13.29 | MAY 09 | 12.88 | AUG 10 | 13.61 | | 23 | 13.54 | MAR 10 | 13.17 | 22 | 12.89 | 23 | 13.81 | | DEC 10 | 13.37 | 23 | 13.08 | JUN 12 | 12.49 | SEP 11 | 13.02 | | 22 | 13.37 | APR 10 | 13.18 | 23 | 12.69 | 25 | 12.71 | | .TAN 10 | 13 26 | | | | ·· <del>-</del> | | | ## MARSHALL COUNTY 420355092534701. Local number, 84-18-24 CDCA1. LOCATION.--Lat 42°03'55", long 92°53'47", Hydrologic Unit 07080208, east of Riverview Park and south of the sewage treatment plant, Marshalltown. Owner: City of Marshalltown. AQUIFER.--Glacial drift: in sand and gravel of Pleistocene age. WELL CHARACTERISTICS.--Drilled unused artesian water well, diameter 8 in., depth 200 ft, cased to 190 ft, screened 190-200 ft. METHOD.--Quarterly measurement with electric line or chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 871 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing at land-surface datum. PERIOD OF RECORD.--May 1949 to August 1971, March 1973 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 4.92 ft below land-surface datum, July 13, 1951; lowest measured, 54.95 ft below land-surface datum, May 8, 1981. | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |------------------|----------------|--------|----------------|--------|----------------|--------|----------------| | DEC 14<br>MAR 20 | 42.56<br>32.39 | JUL 06 | 42.35 | SEP 06 | 29.18 | SEP 14 | 40.02 | ### GROUND-WATER LEVELS ## MONONA COUNTY 415456095414101. Local number, 82-42-14 ADCA1. LOCATION.--Lat 41°54′56", long 95°41′41", Hydrologic Unit 10230007, approximately 6 mi southeast of the Town of Soldier, on the north side of Iowa Highway 37. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artelsan water well, diameter 2 in., depth 341 ft, cased to 336 ft, slotted 311-336 ft, gravel-packed. METHOD.--Quarterly measurement with chalked tape or electric line by USGS personnel. DATUM.--Elevation of land-surface datum is 1,340 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.02 ft above land-surface datum. REMARKS.--Well WC-4. PERIOD OF RECORD.--May 1981 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 240.25 ft below land-surface datum, January 10, 1984; lowest measured, 246.69 ft below land-surface datum, July 28, 1981. | WATER LEVEL, | IN FEET BEI | LOW LAND-SURFA | ACE DATUM, | WATER YEARS | OCTOBER 1980 | TO SEPTEMBER | 1989 | |----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------| | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | | MAY 06, 1981<br>19<br>JUN 10<br>26<br>JUL 28<br>NOV 03<br>FEB 05, 1982<br>APR 07<br>MAY 06<br>JUN 03<br>JUL 06<br>AUG 11<br>SEP 09<br>OCT 07 | 244 81 1<br>245 00 1<br>246 69 1<br>246 13 2<br>245 93 1<br>245 22<br>245 22<br>244 19 2<br>244 52 2 | NOV 01<br>DEC 10<br>JAN 03, 1983<br>FEB 08<br>MAR 10<br>APR 12<br>MAY 03<br>JUN 02<br>JUL 05<br>AUG 02<br>SEP 08<br>OCT 04<br>NOV 08<br>DEC 08 | 243.86<br>244.40<br>244.21<br>243.79<br>243.79<br>242.91<br>242.86<br>243.20<br>242.86<br>243.20<br>243.29<br>243.63<br>243.63<br>241.73 | JAN 10, 1984<br>FEB 06<br>MAR 07<br>APR 11<br>JUL 11<br>OCT 15<br>JAN 07, 1985<br>JAPR 01<br>JUL 11<br>OCT 07<br>APR 07<br>JAN 06, 1986<br>APR 07<br>JUL 07<br>OCT 08 | 244.76<br>243.51<br>244.98<br>242.34<br>242.47<br>241.52<br>242.63<br>243.69<br>243.97 | JAN 12, 1987<br>APR 13<br>JUL 06<br>OCT 07<br>JAN 11, 1988<br>APR 11<br>JUL 18<br>OCT 17<br>JAN 19, 1989<br>APR 03<br>JUL 07 | 243.47<br>243.01<br>243.07<br>245.53<br>242.32<br>242.76<br>243.87<br>244.64<br>224.22<br>245.19 | 420004095451501. Local number, 83-42-17 ACDD1. LOCATION.--Lat 42°00'04", long 95°45'15", Hydrologic Unit 10230001, approximately 1.75 mi northeast of the Town of Soldier, 0.25 mi west of Iowa Highway 183. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AOUIFER.--Glacial drift: in material of Pleistocene age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 161 ft, cased to 161 ft, slotted 149-154 ft. Open to 8 ft of Pennsylvanian shale and limestone, 153-161 ft. METHOD.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,160 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.20 ft above land-surface datum. REMARKS.--Well WC-176. PERIOD OF RECORD.--May 1983 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 55.17 ft below land-surface datum, January 7, 1985; lowest measured, 64.09 ft below land-surface datum, September 7, 1983. WATER LEVEL. IN FEET BELOW LAND-SURFACE DATUM, WATER YEARS OCTOBER 1982 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------| | MAY 19, 1983<br>JUN 02<br>JUL 05<br>AUG 02<br>SEP 07<br>OCT 04<br>NOV 07<br>DEC 08 | 60.42<br>60.35<br>60.92<br>61.96<br>64.09<br>62.10<br>61.25<br>60.43 | FEB 06<br>MAR 07<br>APR 10<br>JUL 11<br>OCT 15<br>JAN 07, 1985<br>APR 01<br>JUL 10<br>OCT 07 | 60.35<br>59.96<br>59.95<br>60.28<br>60.09<br>55.17<br>59.95<br>61.67 | JAN 06, 1986<br>APR 06<br>JUL 07<br>OCT 08<br>JAN 12, 1987<br>APR 13<br>JUL 06<br>OCT 07<br>JAN 11 1988 | 60.35<br>60.70<br>60.37<br>60.04<br>59.39<br>59.57<br>61.21<br>60.27 | APR 11<br>JUL 18<br>OCT 17<br>JAN 19, 1989<br>APR 03<br>JUL 07 | 59.78<br>63.40<br>62.50<br>61.42<br>61.36<br>63.64 | # MONONA COUNTY 420139095155701. Local number, 83-43-04 CBCB1. LOCATION.--Lat 42°01'39", long 95°15'57", Hydrologic Unit 10230005, approximately 5.5 mi northwest of the Town of Soldier and 1.5 mi north of Iowa Highway 37. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 321 ft, cased to 315 ft, slotted 297-315 ft, gravel-packed, open hole 315-321 ft. METHOD.--Quarterly measurement with chalked tape or electric line by USGS personnel. DATUM.--Elevation of land-surface datum is 1,235 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.53 ft above land-surface datum. REMARKS.--Well WC-5. PERIOD OF RECORD.--May 1981 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 184.67 ft below land-surface datum, October 15, 1984; lowest measured, 189.96 ft below land-surface datum, February 2, 1982. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEARS OCTOBER 1980 TO SEPTEMBER 1989 | | | | | - | | | | |--------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------| | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | | MAY 19<br>JUN 10<br>25<br>JUL 28<br>NOV 02 | 981 189.01<br>188.92<br>187.55<br>188.59<br>189.58<br>189.98<br>189.96<br>188.09<br>188.73<br>188.27<br>187.75 | OCT 07<br>NOV 01<br>DEC 10<br>JAN 03, 1983<br>FEB 08<br>MAR 10<br>APR 12<br>MAY 02<br>JUN 02<br>JUN 05<br>AUG 01<br>SEP 08<br>OCT 04 | 188.27<br>187.22<br>187.75<br>187.70<br>187.33<br>187.28<br>187.16<br>186.07<br>186.20<br>186.39<br>186.99 | NOV 09<br>MAY 15, 1984<br>JUL 11<br>OCT 15<br>JAN 07, 1985<br>APR 01<br>JUL 10<br>OCT 07<br>JAN 06, 1986<br>APR 07<br>JUL 07<br>OCT 08<br>JAN 12, 1987 | 185.91<br>185.99<br>184.67<br>185.15<br>185.27<br>186.60<br>185.82<br>186.60<br>185.48<br>185.27 | APR 13<br>JUL 06<br>OCT 07<br>JAN 11, 1988<br>APR 11<br>JUL 18<br>OCT 17<br>JAN 19, 1989<br>APR 03<br>JUL 07 | 185.31<br>185.21<br>185.02<br>184.86<br>185.56<br>185.91<br>186.59<br>186.83<br>186.42 | 420730095510701. Local number, 84-43-04 ABAA1. LOCATION.--Lat 42°07'30", long 95°51'07", Bydrologic Unit 10230005, approximately 4 mi southwest of the Town of Mapleton, on the north side of Iowa Highway 175. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Maple alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 72 ft, cased to 58 ft, slotted 53-58 ft, gravel-packed, open hole 58-72 ft. METHOD.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,090 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.40 ft above land-surface datum. topographic map. Measuring point: Top of casing, 2.40 ft above land-surface datum. REMARKS.--Well WC-163. PERIOD OF RECORD.--May 1983 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 6.90 ft below land-surface datum, May 5, 1983; lowest measured, 15.21 ft below land-surface datum, July 7, 1989. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEARS OCTOBER 1982 TO SEPTEMBER 1989 | | | | | | | | <b></b> | | |-------------------------------------------------------------------------------------------------|------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------| | DA | TE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | | MAY 0.5<br>JUN 0.2<br>JUL 0.5<br>AUG 0.1<br>SEP 0.7<br>OCT 0.4<br>NOV 0.9<br>DEC 0.7<br>JAN 1.1 | , 1983<br>. 1984 | 6.90<br>8.83<br>7.82<br>9.71<br>10.66<br>12.57<br>14.13<br>13.28 | FEB 07<br>MAR 07<br>APR 09<br>JUL 11<br>OCT 15<br>JAN 07, 1985<br>APR 01<br>JUL 10<br>OCT 07 | 13.24<br>12.36<br>11.54<br>7.38<br>14.27<br>11.91<br>13.27<br>12.89 | JAN 06, 1986<br>APR 07<br>JUL 07<br>OCT 08<br>JAN 12, 1987<br>APR 13<br>JUL 06<br>OCT 07 | 14.19<br>11.82<br>12.15<br>13.52<br>13.77<br>10.84<br>11.88<br>12.07 | APR 11<br>JUL 18<br>OCT 17<br>JAN 19, 1989<br>APR 03<br>JUL 07 | 13.48<br>14.20<br>14.81<br>14.70<br>14.68<br>15.21 | ## GROUND-WATER LEVELS ## MONONA COUNTY 420406095543301. Local number, 84-44-24 DCAD1. LOCATION.--Lat 42°04'06", long 95°54'33", Hydrologic Unit 10230005, on the south side of the Town of Castana, 0.25 mi east of Iowa Highway 175. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. ACUIFER.--Maple terrace: in sand and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 74 ft, cased to 71 ft, slotted 66.5-71 ft, gravel-packed, open hole 71-74 ft. METHOD.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,105 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.10 ft above land-surface datum. REMARKS.--Well WC-166. PERIOD OF RECORD.--May 1983 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 18.79 ft below land-surface datum, April 13, 1987; lowest measured, 22.54 ft below land-surface datum, October 7, 1985. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEARS OCTOBER 1982 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------------|------------------------------------------------|----------------------------------------------------|----------------------------------------------------| | MAY 10, 1983<br>JUN 02<br>JUL 05<br>AUG 01<br>SEP 07<br>OCT 04<br>NOV 09<br>DEC 06<br>JAN 11, 1984 | 19.92 MAI<br>19.95 API<br>19.36 JUI<br>21.14 OC<br>21.76 JAI<br>20.83 API<br>20.77 JUI | B 07<br>R 07<br>R 10<br>L 11<br>T 15<br>N 07, 1985<br>R 01<br>L 10<br>T 07 | 19.34 OC<br>20.03 JAI<br>19.89 API<br>20.10 JUI | R 06<br>L 07<br>F 08<br>N 12, 1987<br>R 13<br>L 06<br>F 07 | 19.45 JUI<br>19.45 OC<br>19.90 JAI<br>19.60 AP | R 11<br>L 18<br>F 17<br>N 19, 1989<br>R 03<br>L 07 | 19.56<br>20.25<br>20.66<br>20.24<br>19.90<br>20.66 | 421018095582001. Local number, 85-44-16 CDAA1. LOCATION.--Lat 42°10'18", long 95°58'20", Hydrologic Unit 10230003, approximately 1.25 mi west of the Town of Ticonic on the north side of County Road E-16. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 81 ft, cased to 77 ft, slotted 67-77 ft, gravel-packed, open hole 77-81 ft. METHOD.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,060 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.25 ft above land-surface datum. REMARKS.--Well WC-155. PERIOD OF RECORD.--October 1982 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 7.57 ft below land-surface datum, July 5, 1983; lowest measured, 15.77 ft below land-surface datum, 7, 1989. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEARS OCTOBER 1982 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |---------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------| | OCT 18,<br>NOV 02,<br>DEC 02<br>JAN 03,<br>FEB 08<br>MAR 10<br>APR 12<br>MAY 02<br>JUN 02<br>JUN 05<br>AUG 01 | 13.92<br>13.50 | OCT 04<br>NOV 07<br>DEC 07<br>JAN 11,<br>FEB 07<br>MAR 07<br>APR 09<br>JUL 11<br>OCT 15 | 13.34<br>13.81<br>13.24<br>1984 13.74<br>13.91<br>12.44<br>10.23<br>9.52<br>13.85<br>1985 9.88 | APR 07<br>JUL 07<br>OCT 08 | 13.08<br>13.12<br>14.00<br>986 14.33<br>11.18<br>11.44<br>13.07<br>987 13.34<br>11.25<br>12.04<br>12.87 | OCT 07<br>JAN 11, 1988<br>APR 11<br>JUL 18<br>OCT 17<br>JAN 19, 1989<br>APR 03<br>JUL 07 | 13.25<br>14.00<br>13.27<br>14.84<br>15.77<br>15.48<br>15.30<br>15.77 | ## MONONA COUNTY 421006095580301. Local number, 85-44-16 DCDD1. LOCATION.--Lat 42°10'06", long 95°58'03", Hydrologic Unit 10230003, approximately 0.75 mi west of the Town of Ticonic on the north side of County Road E-16. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Little Sioux alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 43 ft, cased to 40 ft, slotted 35-40 ft, gravel-packed. Open to Dakota sandstone 40-43 ft. METHOD.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,060 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.50 ft above land-surface datum. REMARKS.--Well WC-156. topographic map. Measuring point: Top of casing, 2.50 ft above land-surface datum. REMARKS.--Well WC-156. PERIOD OF RECORD.--October 1982 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 3.92 ft below land-surface datum, March 10, 1983; lowest measured, 13.92 ft below land-surface datum, July 7, 1989. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM. WATER YEARS OCTOBER 1982 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------| | OCT 18, 1982<br>NOV 02<br>DEC 02<br>JAN 03, 1983<br>FEB 08<br>MAR 10<br>APR 12<br>MAY 02<br>JUN 02<br>JUL 05<br>AUG 01 | 10.48<br>11.41<br>11.04<br>10.26<br>10.54<br>3.92<br>4.82<br>5.51<br>8.53<br>4.37<br>9.48 | SEP 07<br>OCT 04<br>NOV 07<br>DEC 07<br>JAN 11, 1984<br>FEB 07<br>MAR 07<br>APR 09<br>JUL 11<br>OCT 15<br>JAN 07, 1985 | 11.49<br>11.97<br>11.72<br>10.82<br>11.50<br>11.66<br>10.11<br>7.40<br>7.33<br>12.32<br>11.54 | APR 01<br>JUL 10<br>OCT 07<br>JAN 06, 1986<br>APR 07<br>JUL 07<br>OCT 08<br>JAN 12, 1987<br>APR 03<br>MAY 13<br>JUL 06 | 11.25<br>11.51<br>11.85<br>11.94<br>8.66<br>9.39<br>10.78<br>11.21<br>9.09<br>10.53<br>11.45 | OCT 07<br>JAN 11, 1988<br>APR 11<br>JUL 18<br>OCT 17<br>JAN 19, 1989<br>APR 03<br>JUL 07 | 11.57<br>12.30<br>11.12<br>13.04<br>13.86<br>13.35<br>13.16<br>13.92 | WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM. WATER YEARS OCTOBER 1982 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------| | OCT 19, 1982<br>NOV 02<br>DEC 02<br>JAN 03, 1983<br>FEB 08<br>MAR 10<br>APR 12<br>MAY 02<br>JUN 02<br>JUL 05 | 54.71<br>54.68<br>53.67<br>52.58<br>51.80<br>51.36 | AUG 01<br>SEP 07<br>OCT 04<br>NOV 07<br>DEC 07<br>JAN 11, 1984<br>FEB 07<br>MAR 07<br>APR 09<br>JUL 11 | 52.57 J<br>53.01 A<br>53.29 J<br>53.46 O<br>53.60 J<br>53.90 A<br>53.16 J<br>52.52 O | CT 15<br>AN 07, 1985<br>PR 01<br>UL 10<br>CT 07<br>AN 06, 1986<br>PR 07<br>UL 07<br>CT 08<br>AN 12, 1987 | 52.16<br>51.80<br>52.29<br>51.89<br>53.15<br>53.67<br>52.46<br>51.45<br>52.68<br>52.73 | APR 13<br>JUL 06<br>OCT 07<br>JAN 11, 1988<br>APR 11<br>JUL 18<br>OCT 17<br>JAN 19, 1989<br>APR 03<br>JUL 07 | 51.83<br>51.54<br>52.09<br>52.37<br>52.68<br>53.42<br>54.50<br>54.81<br>54.75<br>54.88 | ### MONTGOMERY COUNTY 410057095075101. Local number, 72-37-29 BABA1. LOCATION.--Lat 41°00'57", long 95°07'51", Hydrologic Unit 10240005, approximately 4.35 mi east of the City of Red Oak, just south of County Road H-34. Owner: John Ogden. AQUIFER.--Glacial drift: in material of Pleistocene age. WELL CHARACTERISTICS.--Bored observation water-table well, diameter 3 in., depth 40 ft, cased to 40 ft, perforated. Interval of perforation not available. METHOD.--Intermittent measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,275 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.00 ft above land-surface datum. PERMARKS.--None. PERIOD OF RECORD.--June 1937 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 2.94 ft below land-surface datum, June 20, 1984; lowest measured, dry, July 8, 1953 and February 3, 1964. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |----------------------------------|----------------------------------|-------------------------------|----------------------------------|---------------------------|-------------------------|--------------------------|-------------------------| | OCT 12<br>25<br>NOV 17<br>DEC 16 | 21.43<br>21.70<br>20.80<br>22.41 | JAN 4<br>24<br>FEB 9<br>MAR 1 | 23.72<br>25.06<br>25.23<br>25.95 | APR 18<br>MAY 10<br>JUN 2 | 24.69<br>25.90<br>26.88 | JUL 5<br>AUG 15<br>SEP 9 | 18.49<br>20.31<br>11.53 | ## MUSCATINE COUNTY 412120091080401. Local number, 76-02-30 CBAA1. LOCATION.--Lat 41°21'20", long 91°08'04", Hydrologic Unit 07080101, west of the Town of Fruitland on an Iowa State University Agricultural Experiment Farm. Owner: U.S. Geological Survey. AQUIFER.--Alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 6 in., depth 27 ft, cased to 24 ft, screened 24-27 ft. METHOD.--Intermittent measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 546 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Base of recorder shelter, 3.70 ft above land-surface datum. PERIOD OF RECORD.--May 1956 to current year. REVISED RECORDS.--WDR IA-84-1. EXTREMES FOR PERIOD OF RECORD.--Highest water level recorded, 8.51 ft below land-surface datum, May 16, 1973; lowest measured, 17.86 ft below land-surface datum, August 2, 1989. | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 14 | 17.57 | DEC 14 | 17.59 | MAR 22 | 17.27 | JUL 21 | 17.59 | | NOV 04 | 17.59 | FEB 02 | 17.42 | JUL 13 | 17.48 | AUG 02 | 17.86 | ### O'BRIEN COUNTY 425610095250611. Local number, 94-39-26 BADB11. LOCATION.--Lat 42°56'10", long 95°25'06", Hydrologic Unit 10230003, near a dead-end road just south of the Little Sioux River, 0.9 mi north of Iowa Highway 10, approximately 5 mi southeast of the Town of Sutherland. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2.50 in., depth 329 ft, cased to 329 ft, perforated 291-295 ft. METHOD.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,212 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing at land-surface datum. REMARKS.--Well D-3. PERIOD OF RECORD.--April 1980 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 35.25 ft below land-surface datum, June 8, 1986 and January 6, 1987; lowest measured, 36.85 ft below land-surface datum, December 15, 1980. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |------|----|----------------|--------|----------------|--------|----------------|--------|----------------| | JAN | 18 | 35.95 | MAR 29 | 35.94 | JUN 06 | 35.97 | AUG 30 | 36.47 | 425808095480311. Local number, 94-42-09 DDDD11. LOCATION.--Lat 42°58'08", long 95°48'03", Hydrologic Unit 10230003, west of Iowa Highway 143, 1 mi west and 1 mi north of the Village of Germantown. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 638 ft, cased to 638 ft, perforated 516-536 ft. METHOD.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,440 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 4.00 ft above land-surface datum. REMARKS.--Well D-42. PERIOD OF RECORD.--July 1980 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 215.09 ft below land-surface datum, May 6, 1982; lowest measured, 260.64 ft below land-surface datum, July 10, 1980. | DATE | WATER<br>LEVEL | DATE WATER LEVEL | DATE WATER<br>LEVEL | DATE WATER<br>LEVEL | |--------|----------------|------------------|---------------------|---------------------| | OCT 18 | 240.79 | JAN 19 241,12 | APR 04 241.58 | JUL 06 242.23 | #### O'BRIEN COUNTY 430930095350401. Local number, 96-40-05 DDDA1. LOCATION.--Lat 43°09'30", long 95°35'04", Hydrologic Unit 10230003, approximately 3 mi east of the Town of Sanborn and 2 mi south of U.S. Highway 18. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Ordovician and Dakota: in sandy shale of Ordovician age and sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 701 ft, cased to 701 ft, perforated 661-701 ft. METHOD.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,560 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 4.00 ft above land-surface datum. topographic map. Measuring point: Top of casing, 4.00 ft above land-surface datum. REMARKS.--Well D-41. PERIOD OF RECORD.--June 1980 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 358.39 ft below land-surface datum, July 8, 1986; lowest measured, 361.40 ft below land-surface datum, July 16, 1980. WATER LEVEL. IN FEET BELOW LAND-SURFACE DATUM. WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |------|----|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT | 18 | 360.55 | JAN 19 | 359.88 | APR 04 | 359.90 | JUL 05 | 360.11 | #### OSCEOLA COUNTY 431620095250501. Local number, 98-39-26 CDAD1. LOCATION.--Lat 43°16'20", long 95°25'05", Hydrologic Unit 10230003, 3.5 mi south and 2.5 mi east of the Village of May City. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Cambrian-Ordovician: in St. Peter sandstone of Middle Ordovician age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 662 ft, cased to 662 ft, perforated 622-662 ft. METHOD.--Intermittent measurement with chalked tape by observer or electric line by USGS personnel. DATUM.--Elevation of land-surface datum is 1,402 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of low pipe, 1.47 ft above land-surface datum. REMARKS.--Well D-38, Deep Hibbing. PERIOD OF RECORD.--June 1980 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 197.68 ft below land-surface datum, May 8, 1984; lowest measured, 199.52 ft below land-surface datum, August 5, 1980. | DATE | | WATER<br>LEVEL | DATE | E | WATER<br>LEVEL | DATE | | WATER<br>LEVEL | DATE | í | WATER<br>LEVEL | |------------|----------|------------------|------|----|----------------|------|----|----------------|------|----|----------------| | JAN<br>MAR | 18<br>20 | 198.23<br>198.79 | APR | 13 | 198.17 | MAY | 23 | 198.41 | AUG | 31 | 198.19 | #### OSCEOLA COUNTY 431620095250511. Local number, 98-39-26 CDAD11. LOCATION.--Lat 43°16'20", long 95°25'05", Hydrologic Unit 10230003, 3.5 mi south and 2.5 mi east of the Village of May City. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.-Drilled observation artesian water well, diameter 2 in., depth 345 ft, cased to 345 ft, perforated 335-345 ft. METHOD.--Intermittent measurement with chalked tape by observer or electric line by USGS personnel. DATUM.--Elevation of land-surface datum is 1,402 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of high pipe, 2.60 ft above land-surface datum. REMARKS.--Well D-38, Shallow Hibbing. PERIOD OF RECORD.--June 1980 to current year. EXTREMES FOR FERIOD OF RECORD.--Highest water level measured, 192.20 ft below land-surface datum, September 10, 1981; lowest measured, 194.11 ft below land-surface datum, July 25, 1982. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |------------------|------------------|--------|----------------|--------|----------------|--------|----------------| | JAN 18<br>MAR 20 | 193.89<br>192.80 | APR 13 | 193.89 | MAY 23 | 193.92 | AUG 31 | 193.48 | 431613095251801. Local number, 98-39-26 CDCC1. LOCATION.-Lat 43°16'13", long 95°25'18", Hydrologic Unit 10230003, 3.5 mi south and 2.5 mi east of the Village of May City. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.-Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.-Drilled observation artesian water well, diameter 2 in., depth 500 ft, cased to 500 ft, perforated 490-500 ft. METHOD.-Intermittent measurement with chalked tape by observer or electric line by USGS personnel. DATUM.--Elevation of land-surface datum is 1,398 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.70 ft above land-surface datum. REMARKS.--Well D-39. PERIOD OF RECORD.--June 1980 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 189.99 ft below land-surface datum, September 6, 1984. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |------------------|------------------|--------|----------------|--------|----------------|--------|----------------| | JAN 18<br>MAR 20 | 191.40<br>192.40 | APR 13 | 191.57 | MAY 23 | 191.55 | AUG 31 | 191.57 | 431620095482402. Local number, 98-42-33 AABB2. LOCATION.--Lat 43°16'20", long 95°48'24", Hydrologic Unit 10170204, approximately 2.75 mi south of the Town of Ashton, west of Iowa Highway 60, near the Chicago and Northwestern Railroad tracks. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.-Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 400 ft, cased to 400 ft, perforated 385-395 ft. METHOD.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,440 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.80 ft above land-surface datum. REMARKS.--Well D-40. PERIOD OF RECORD.--May 1980 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 195.87 ft below land-surface datum, June 1, 1983; lowest measured, 226.19 ft below land-surface datum, July 06, 1989. | DATE | WATER | DATE WATER | DATE WATER | DATE WATER | |--------|--------|---------------|---------------|---------------| | | LEVEL | LEVEL | LEVEL | LEVEL | | OCT 18 | 223.70 | JAN 19 224.61 | APR 04 225.24 | JUL 06 226.19 | #### OSCEOLA COUNTY 432828095283611. Local number, 100-39-17 DCCB11. LOCATION.--Lat 43°28'28", long 95°28'36", Hydrologic Unit 10230003, approximately 2 mi west and 2 mi north of the Town of Harris, east of County Road M-12. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 5 in. to 461 ft, 4 in. to 760 ft, depth 760 ft, cased to 760 ft, perforated 680-700 ft. METHOD.--Quarterly measurement with electric line or chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,560 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 3.00 ft above land-surface datum. REMARKS.--Well D-13. PERIOD OF RECORD.--July 1980 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 341.80 ft below land-surface datum, August 5, 1980; lowest measured, 344.88 ft below land-surface datum, January 18, 1989. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | JAN 18 | 344.88 | MAR 20 | 344.68 | JUN 06 | 344.52 | AUG 31 | 343,95 | ## PAGE COUNTY 404257095150801. Local number, 68-38-07 CCAA1. LOCATION.--Lat 40°42'57", long 95°15'08", Hydrologic Unit 10240005, approximately 2 mi south of the Village of Norwich and 1.5 mi west of County Road M-48. Owner: William Brayman. AQUIFER.--Glacial drift: in material of Pleistocene age. WELL CHARACTERISTICS.--Drilled unused water-table well, diameter 12 in., depth 44 ft, lined with tile. METHOD.--Intermittent measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,087 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of pipe inserted through board cover, 1.00 ft above land-surface datum. surface datum. REMARKS.--None. PERIOD OF RECORD.--May 1934 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 2.09 ft below land-surface datum, March 26, 1946; lowest measured, 22.76 ft below land-surface datum, June 23, 1947. | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |------------------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 27<br>DEC 13 | 14.92<br>14.98 | JAN 26 | 15.02 | APR 21 | 14.31 | JUL 07 | 14.10 | #### PLYMOUTH COUNTY 424850096074801. Local number, 92-45-02 CBCB1. LOCATION.--Lat 42\*48'50", long 96\*07'48", Hydrologic Unit 10230002, approximately 3.8 mi west and 0.6 mi south of the Village of Oyens. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Cambrian-Ordovician: in dolomite of Cambrian and Ordovician age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 5 in. to 161 ft, 4 in. to 598 ft, 2 in. to 1,340 ft, depth 1,340 ft, cased to 598 ft, open hole 598-1,340 ft. Well deepened from 1,089 to 1,340 ft in May, 1984. Well penetrates Precambrian-aged rocks. METHOD.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,245 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.80 ft above land-surface datum. REMARKS.--Well D-21. topographic map. Measuring point: Top of casing, 2.80 ft above land-surface datum. REMARKS. --Rell D-21. PERIOD OF RECORD. --May 1979 to January 1981, May 1982 to current year. EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 86.38 ft below land-surface datum, October 8, 1987; lowest measured, 102.10 ft below land-surface datum, August 6, 1980. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 18 | 91.11 | JAN 19 | 89.39 | APR 04 | 89.05 | JUL 06 | 91.99 | 424833096324701. Local number, 92-48-06 DDDA1. LOCATION.--Lat 42°48'33", long 96°32'47", Hydrologic Unit 10170203, just south of the curve on Iowa Highway 3, 1 mi south of the Town of Akron. Owner: Geological Survey Bureau, DNR and U.S. Geological Highway 3, 1 mi south of the ton. Survey. AQUIFER.--Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, depth 581 ft, diameter 4 in. to 184 ft, 2 in. to 581 ft, cased to 576 ft, perforated 430-434 ft and 510-515 ft, open hole 576-581 ft. Paleozoic rock open 576-581 ft. Paleozoic rock open 576-581 ft. METHOD.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,282 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 4.80 ft above land-surface datum. topographic map. Measuring point: Top of casing, 4.80 ft above land-surface datum. REMARKS.--Well D-35. FERIOD OF RECORD.--December 1979 to December 1980, May 1982 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 137.35 ft below land-surface datum, April 22, 1987; lowest measured, 159.82 ft below land-surface datum, August 6, 1980. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | | WATER<br>LEVEL | DATE | | WATER<br>LEVEL | DATE | ; | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |------|----|----------------|------|----|----------------|------|----|----------------|--------|----------------| | OCT | 06 | 138.00 | MAR | 15 | 137.85 | APR | 19 | 137.94 | JUL 29 | 137.90 | 425249096125001. Local number, 93-46-12 DDDD1. LOCATION.--Lat 42°52'49", long 96°12'50", Hydrologic Unit 10230002, 1 mi west and 1 mi south of the Village of Struble. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2.5 in., depth 570 ft, cased to 570 ft, perforated 356-360 ft. METHOD.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,280 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of coupling, 4.80 ft above land-surface datum. REMARKS.--Well D-2. PERIOD OF RECORD.--March 1980 to December 1980, May 1982 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 117.78 ft below land-surface datum, April 9, 1980; lowest measured, 122.35 ft below land-surface datum, July 6, 1989. | DATE | WATER<br>LEVEL | DATE WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|---------------------|--------|----------------|----------|----------------| | OCT 18 | 122 13 | .TAN 10 120 92 | APR 04 | 120 62 | JIII. 06 | 122.35 | #### POTTAWATTAMIE COUNTY 411024095095502. Local number, 74-38-36 BAAA2. LOCATION.--Lat 41°10'24", long 95°09'55", Hydrologic Unit 10240003, approximately 1.5 mi north of the Town of Elliott on the soutwest corner of the junction of County Roads M-55 and G-66. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--East Nishnabotna alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 40 ft, cased 34-39 ft, gravel-packed. Original depth was 101 ft, back-filled with sand and a bentonite seal to 40 ft. METHOD.--Twice a month measurement with chalked tape by observer. DATUM.--Elevation of land-surface datum is 1,073 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.20 ft above land-surface datum. REMARKS.--Well SW-34 B/L. PERIOD OF RECORD.--August 1986 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 2.07 ft below land-surface datum, September 10, 1989; lowest measured, 9.95 ft below land-surface datum, May 25, 1989. WATER LEVEL. IN FEET BELOW LAND-SURFACE DATUM. WATER YEARS OCTOBER 1985 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |------------------------|----------------------|--------------|----------------------|--------------|----------------|--------------|----------------| | AUG 06, 1986<br>OCT 23 | 6.39 | JUL 10<br>25 | 3.57 | JAN 11, 1988 | 7.34 | DEC 10<br>26 | 9.46<br>9.41 | | DEC 09 | 3.80<br>5.54 | AUG 03 | 5.30<br>4.80<br>5.03 | 26<br>FEB 10 | 7.49<br>7.58 | JAN 10, 1989 | 9.43 | | JAN 10, 1987 | 5.94<br>6.68 | 10<br>25 | 5.49 | 25<br>MAR 10 | 7.74<br>7.91 | 28<br>FEB 10 | 9.55<br>9.52 | | 25<br>FEB 05 | 6.87<br>7.20<br>7.29 | 26<br>28 | 4.78<br>4.46<br>4.89 | 25<br>APR 10 | 8.50<br>8.24 | 26<br>MAR 10 | 9.42<br>8.51 | | 10<br>25 | 7.55 | 30<br>SEP 01 | 5.20 | 25<br>MAY 10 | 8.38<br>8.52 | 25<br>APR 10 | 9.17<br>9.62 | | MAR 10<br>25 | 7.29<br>6.64 | 03<br>05 | 5.50<br>5.75 | 25<br>JUN 10 | 8.66<br>8.75 | 25<br>MAY 10 | 9.76<br>9.85 | | APR 01<br>10 | 6.31<br>5.64 | 07<br>10 | 5.51<br>5.81 | 25<br>JUL 10 | 8.88<br>8.71 | 25<br>JUN 10 | 9.95<br>9.10 | | 25<br>MAY 01 | 5.17<br>5.36 | OCT 10 | 5.08<br>6.16 | 25<br>AUG 10 | 8.85<br>9.15 | 25<br>JUL 10 | 5.13<br>7.87 | | 10<br>21 | 5.86<br>5.69 | 12<br>25 | 6.13<br>6.57 | 27<br>SEP 10 | 9.27<br>9.54 | 25<br>AUG 10 | 8.67<br>9.14 | | 25<br>JUN 01 | 5.00<br>2.11 | NOV 05<br>10 | 6.98<br>6.98 | 25<br>OCT 10 | 9.48<br>9.45 | 27<br>SEP 10 | 9.31<br>2.07 | | 10<br>25 | 3.97<br>5.47 | 29<br>DEC 10 | 7.14<br>6.89 | 25<br>NOV 10 | 9.53<br>9.55 | 25 | 7.48 | | JUL 07 | 5.80 | 25 | 7.22 | 25 | 9.20 | | | 411359095171901. Local number, 74-39-01 CCCC1. LOCATION.--Lat 41°13'59", long 95°17'19", Hydrologic Unit 10240002, approximately 6.5 mi east of the Town of Carson, on the northeast corner of the junction of Iowa Highway 92 and County Road M-41. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Buried channel: in sand and gravel of Pleistocene age. WELL CHARACTERISTICS.--Drilled observation well, diameter 2 in., depth 216 ft, cased to 206 ft, slotted 189-206 ft, gravel-packed, open to Pennsylvanian shale 207-216 ft. METHOD.--Monthly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,245 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.32 ft above land-surface datum. REMARKS.--Well SW-21. PERIOD OF RECORD.--August 1986 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 124.86 ft below land-surface datum, April 4, 1988; lowest measured, 128.02 ft below land-surface datum, September 29, 1989. WATER LEVEL. IN FEET BELOW LAND-SURFACE DATUM. WATER YEARS OCTOBER 1985 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------| | AUG 20, 1986<br>OCT 23<br>DEC 09<br>10<br>15<br>JAN 02, 1987<br>12<br>22<br>FEB 02<br>04<br>05<br>24 | 129.38 MAR<br>127.08 APR<br>127.09 126.70<br>126.70 JUN<br>126.56 JUL<br>126.53 JUL<br>127.02 AUG<br>126.74 AUG | 18<br>15<br>21<br>21<br>27<br>01<br>18<br>07 | 126.83 AUG<br>126.05 SEP<br>126.22 OCT<br>126.67 NOV<br>126.19 DEC<br>126.09 JAN<br>126.16 FEB<br>126.08 APR<br>125.97 MAY<br>126.08 JUN<br>126.08 JUN<br>125.97 AUG | 29<br>12<br>12<br>17<br>16<br>03, 1988<br>24<br>04<br>04<br>16<br>28 | 125.78 OCT<br>125.73 DEO<br>125.36 FEE<br>125.15 MAR<br>125.59 APR<br>125.45 MAY<br>125.66 JUN<br>124.86 AUG | 21<br>09, 1989<br>01<br>19<br>31 | 125.95<br>126.05<br>126.59<br>127.21<br>126.93<br>127.17<br>127.23<br>127.20<br>127.66<br>128.02 | ## POTTAWATTAMIE COUNTY 411246095502001. Local number, 74-43-18 BCCC1. LOCATION.--Lat 41°12'46", long 95°50'20", Hydrologic Unit 10230006, approximately 0.4 mi east of Lake Manawa in Manawa State Park, 1.4 mi south of Interstate 80, south of the City of Council Bluffs. Owner: U.S. Geological Survey. AQUIFER.--Alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.--Bored observation water-table well, diameter 1.25 in., depth 16 ft, cased to 14 ft, sand point 14-16 ft. METHOD.--Monthly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 975 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 0.25 ft above land-surface datum. REMARKS.--None. PERIOD OF RECORD.--November 1950 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.45 ft below land-surface datum, May 2, 1951; lowest measured, 11.86 ft below land-surface datum, June 26, 1956. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|-------------|----------------|------|----------------|------|----------------| | OCT 26 | 8.38 | J <b>AN</b> | 27 6.83 | APR | 24 6.48 | JUL | 26 7.00 | | NOV 28 | 7.33 | FEB | 28 6.54 | MAY | 24 6.74 | AUG | 24 7.37 | | DEC 21 | 7.11 | MAR | 27 6.07 | JUN | 23 6.99 | SEP | 27 6.94 | ## SAC COUNTY 422500095084801. Local number, 88-37-22 CCCC1. LOCATION.--Lat 42°25'00", long 95°08'48", Hydrologic Unit 10230007, approximately 3 mi south of the Town of Early or 0.5 mi south of the junction of U.S. Highways 20 and 71. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Pennsylvanian and Dakota: in limestone of Pennsylvanian age and sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 435 ft, cased to 435 ft, perforated 417-435 ft. METHOD.--Quarterly measurement with electric line or chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,320 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.50 ft above land-surface datum. REMARKS.--Weil D-16. PERIOD OF RECORD.--December 1978 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 163.93 ft below land-surface datum, May 12, 1984; lowest measured, 165.40 ft below land-surface datum, December 16, 1980. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | | WATER<br>LEVEL | DATE | | WATER<br>LEVEL | DATE | ; | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |------|----|----------------|------|----|----------------|------|----|----------------|--------|----------------| | DEC | 29 | 163.92 | MAR | 29 | 164.85 | MAY | 31 | 164.95 | SEP 01 | 165.16 | #### SAC COUNTY 422850095171501. Local number, 89-38-36 CBCC1. LOCATION.--Lat 42°28'50", long 95°17'15", Hydrologic Unit 10230005, just east of Iowa Highway 110, 0.75 mi south of the Town of Schaller and 0.25 mi north of U.S. Highway 20. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 521 ft, cased to 512 ft, perforated 410-430 ft, open hole 512-521 ft. Open to 9 ft open for rock. METHOD.--Quarterly measurement with electric line or chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,445 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 4.00 ft above land-surface datum. topographic map. Measuring point: Top of casing, 4.00 ft above land-surface datum. REMARKS.--Well D-17. PERIOD OF RECORD.--December 1978 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 288.05 ft below land-surface datum, June 2, 1980; lowest measured, 292.28 ft below land-surface datum, May 31, 1989. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE WAT<br>LEV | | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |-------|----------------|-----------------|--------|----------------|------|----------------| | JAN 1 | 18 291.48 | MAR 29 291. | 82 MAY | 31 292.28 | SEP | 01 291.78 | #### SCOTT COUNTY 413544090212901. Local number, 78-5E-03 AADA1. LOCATION.--Lat 41°35′44", long 90°21′29", Bydrologic Unit 07080101, at the Bridgeview Elementary School, corner of 12th and Davenport Streets, Le Claire. Owner: City of Le Claire. AQUIFER.--Cambrian-Ordovician: in sandstone of Late Cambrian and sandstone and sandy dolomite of Early AQUIFER. --Cambrian-Ordovician: in sandstone of Late Cambrian and sandstone and sandy uploated of Ordovician age. Ordovician age. WELL CHARACTERISTICS. --Drilled unused municipal artesian water well, diameter 16 to 12 in., depth 1,607 ft, cased to 1,128 ft, open hole 1,128-1,607 ft. METHOD. --Monthly measurement with chalked tape by USGS personnel. DATUM. --Elevation of land-surface datum is 703 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Nipple on plate welded to casing, 2.11 ft above land-surface datum. REMARKS. --Le Claire Well No. 3. REMARKS. --Le Claire Well No. 3. REFRIOD OF RECORD. --July 1975 to current year. REVISED RECORDS. --WRD IA-84-1. EXTREMES FOR FERIOD OF RECORD. --Highest water level recorded, 247.46 ft below land-surface datum, July 8, 1975; lowest recorded, 276.88 ft below land-surface datum, September 1, 1978. REVISION. --Lowest water level recorded, 276.88 ft below land-surface datum, September 1, 1978. WATER LEVEL. IN FEET BELOW LAND-SURFACE DATUM. WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE . | WATER<br>LEVEL | |----------------------------|----------------------------|------------------|------------------|------------------|------------------|------------------|------------------| | NOV 21<br>DEC 14<br>JAN 04 | 261.76<br>260.66<br>260.74 | FEB 27<br>APR 04 | 260.00<br>260.26 | MAY 08<br>JUN 26 | 260.91<br>262.71 | JUL 31<br>SEP 18 | 266.17<br>267.46 | #### SHELBY COUNTY 413255095070401. Local number, 78-37-17 DDDD1. LOCATION.--Lat 41°32'55", long 95°07'04", Hydrologic Unit 10240003, 3 mi south and 3 mi west of the Town of Elkhorn on the east side of County Road M-56 near Elkhorn Creek. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.-Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 181 ft, cased to 181 ft, slotted 121-179 ft, gravel-packed, open to Pennsylvanian shale and limestone 140-181 ft. METHOD.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,208 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.80 ft above land-surface datum. REMARKS.--Well WC-16. PERIOD OF RECORD.--August 1981 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 37.33 ft below land-surface datum, October 9, 1987; lowest measured, 42.86 ft below land-surface datum, September 24, 1981. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEARS OCTOBER 1980 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------|------|----------------------------------------------------------------------| | AUG 19, 1981<br>SEP 24<br>NOV 03<br>FEB 05, 1982<br>APR 06<br>JUN 07<br>JUL 07<br>AUG 03<br>SEP 01<br>OCT 07<br>NOV 04<br>DEC 07 | 42.85<br>42.86<br>42.13<br>41.83<br>42.06<br>41.07<br>41.48<br>41.89<br>42.00<br>41.71 | JAN 04, 1983<br>FEB 08<br>MAR 10<br>APR 11<br>MAY 03<br>JUN 06<br>JUL 01<br>AUG 02<br>SEP 06<br>OCT 03<br>NOV 10<br>JAN 10, 1984<br>FEB 06 | 41.18 AP<br>39.93 JU<br>39.57 OC<br>38.65 JA<br>39.19 AP<br>39.08 JU<br>40.32 JA<br>41.33 AP<br>41.42 JU | R 09°<br>L 09<br>I 06 | 40.42 JI<br>38.79 OX<br>40.29 JA<br>40.03 AI<br>39.33 JI<br>40.88 OX<br>41.51 JA<br>42.05 AI | 几 20 | 39.67<br>39.45<br>37.33<br>39.67<br>41.36<br>42.65<br>42.65<br>42.65 | 413442095193101. Local number, 78-39-10 BBBA1. LOCATION.--Lat 41°34'42", long 95°19'31", Hydrologic Unit 10240002, approximately 4.5 mi south of the City of Harlan and 0.25 mi east of the Town of Corely on the north side of County Road F-58. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--West Nishmabotna alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 44 ft, cased to 44 ft, slotted 40-44 ft, gravel-packed. METHOD.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,168 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.50 ft above land-surface datum. REMARKS.--Well WC-200. PERIOD OF RECORD.--June 1983 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 18.97 ft below land-surface datum, July 9, 1986; lowest measured, 22.98 ft below land-surface datum, October 19, 1988. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM. WATER YEARS OCTOBER 1982 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------------|---------------------------------|-------------------------------------------------------------| | JUN 07, 1983<br>JUL 06<br>AUG 02<br>SEP 06<br>OCT 03<br>NOV 08<br>JAN 12, 1984<br>FEB 09 | 19.57 AP<br>21.00 JU<br>21.97 OC<br>22.29 JA<br>22.29 AP | N 09, 1985<br>R 02<br>L 11 | 21.14 JAN<br>20.50 APR<br>19.21 JUL<br>21.40 OCT<br>21.13 JAN<br>21.83 APR<br>21.92 JUL<br>22.40 OCT | 09<br>09<br>06<br>14, 1987<br>15<br>09 | 21.10 OCT<br>21.27 JAN<br>19.40 APR | 12 <sup>2</sup><br>. 20<br>. 19 | 21.57<br>22.27<br>22.42<br>22.98<br>22.49<br>22.75<br>22.31 | ## SHELBY COUNTY 413359095182701. Local number, 78-39-11 CCBC1. LOCATION.--Lat 41°33′59", long 95°18′27", Hydrologic Unit 10240002, approximately 5.5 mi south of the City of Harlan, 0.75 mi south of County Road F-58, and 1.5 mi east of U.S. Highway 59. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Fremont buried channel: in sand and gravel of Pleistocene age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 541 ft, cased to 541 ft, slotted 520-535 ft, gravel-packed. Open to Pennsylvanian shale 537-541 ft. METHOD.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,310 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.65 ft above land-surface datum. REMARKS.--Well WC-227. PERIOD OF RECORD.--July 1983 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 146.61 ft below land-surface datum, September 6, 1983; lowest measured, 153.16 ft below land-surface datum, July 5, 1989. WATER LEVEL. IN FEET BELOW LAND-SURFACE DATUM. WATER YEARS OCTOBER 1982 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------|----------------------------|------------------------------------------------| | JUL 21, 1983<br>AUG 02<br>SEP 06<br>OCT 03<br>NOV 08<br>JAN 12, 1984<br>FEB 09<br>MAR 06 | 149.12 APR<br>149.07 JUL<br>146.61 OCT<br>147.56 JAN<br>150.98 APR<br>150.40 JUL<br>150.59 OCT<br>149.63 JAN | 10<br>17<br>09, 1985<br>02<br>11<br>09 | 150.32 APR<br>150.39 JUL<br>150.41 OCT<br>150.17 JAN<br>149.87 APR<br>150.23 OCT<br>150.24 JAN<br>150.15 APR | 09<br>06<br>14, 1987<br>15<br>09<br>14, 1988 | 149.62 OCT<br>150.68 JAN<br>149.37 APR | 20<br>19<br>20, 1989<br>05 | 150.39<br>152.70<br>152.11<br>152.72<br>153.16 | 413031095204901. Local number, 78-39-32 DDAA1. LOCATION.--Lat 41°30'31", long 95°20'49", Hydrologic Unit 10240002, approximately 2 mi north of the Town of Avoca, 0.60 mi west of U.S. Highway 59. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--West Nishnabotna alluvial: in sand and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 27 ft, cased to 24 ft, slotted 21-24 ft, gravel-packed, open hole 24-27 ft. METHOD.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,144 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.95 ft above land-surface datum. REMARKS.--Well WC-197. PERIOD OF RECORD.--June 1983 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 8.04 ft below land-surface datum, July 10, 1984; lowest measured, 18.17 ft below land-surface datum, July 5, 1989. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEARS OCTOBER 1982 TO SEPTEMBER 1989 | | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |-------------------------------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------|----------------------------------------|--------------------------------|----------------------------------------------------------------|----------------------------------------------------| | JUN<br>JUL<br>AUG<br>SEP<br>OCT<br>NOV<br>DEC<br>JAN<br>FER | 02<br>06<br>03<br>08 | 12.04 MAR<br>9.52 APR<br>12.10 JUL<br>14.08 OCT<br>16.51 JAN<br>15.11 APR<br>15.36 JUL<br>15.70 OCT<br>15.71 JAN | 10<br>10<br>17<br>09, 1985<br>02<br>11 | 11.75 APR | 09<br>06<br>14, 1987<br>15<br>13<br>09 | 9.84<br>11.71<br>11.12<br>8.34 | APR 12<br>JUL 20<br>OCT 19<br>JAN 20, 1989<br>APR 05<br>JUL 05 | 15.42<br>16.55<br>17.64<br>17.76<br>17.71<br>18.17 | #### GROUND-WATER LEVELS #### SHELBY COUNTY 414624095252301. Local number, 80-39-06 AADC1. LOCATION.--Lat 41\*46'24", long 95\*25'23", Hydrologic Unit 10230006, west of the Town of Earling on the north side of Iowa Highway 37 near the junction of Iowa Highways 37 and 191. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 370 ft, cased to 370 ft, slotted 332-347 ft, open to Pennsylvanian sandstone, shale, and limestone 347-370 ft. METHOD.--Quarterly measurement with chalked tape or electric line by USGS personnel. DATUM.--Elevation of land-surface datum is 1,305 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.60 ft above land-surface datum. REMARKS.--Well WC-10. PERIOD OF RECORD.--June 1981 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 93.87 ft below land-surface datum, July 28, 1981; lowest measured, 116.56 ft below land-surface datum, July 5, 1989. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEARS OCTOBER 1980 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------| | JUN 26, 1981<br>JUL 28<br>SEP 24<br>NOV 03<br>FEB 04, 1982<br>APR 06<br>JUN 07<br>JUL 02<br>AUG 04<br>SEP 01<br>OCT 07<br>NOV 01 | 94.45<br>93.87<br>97.61<br>98.02<br>99.85<br>97.41<br>97.44<br>97.46<br>97.99<br>97.88<br>96.76 | DEC 02<br>JAN 04, 1983<br>FEB 08<br>MAR 10<br>APR 12<br>MAY 02<br>JUN 02<br>JUL 05<br>AUG 02<br>SEP 06<br>OCT 03<br>NOV 08<br>DEC 08 | 96.36<br>96.29<br>96.53<br>96.53<br>95.30<br>96.43<br>97.10<br>98.27<br>97.91 | JAN 10, 1984<br>FEB 06<br>MAR 07<br>APR 10<br>JUL 11<br>OCT 17<br>JAN 09, 1985<br>APR 02<br>JUL 11<br>OCT 09<br>JAN 08, 1986<br>APR 09<br>JUI, 09 | 95.20<br>94.88<br>95.07<br>89.91<br>95.13<br>95.30<br>95.30<br>95.88<br>96.43<br>97.14<br>96.22 | OCT 06<br>JAN 14, 1987<br>APR 15<br>JUL 09<br>OCT 09<br>JAN 14, 1988<br>APR 12<br>JUL 20<br>OCT 19<br>JAN 20, 1989<br>AFR 05<br>JUL 05 | 98.45<br>97.29<br>97.68<br>100.98<br>101.76<br>109.29<br>105.55<br>104.66<br>106.68<br>116.56 | 414856095160101. Local number, 81-38-21 ADAD1. LOCATION.--Lat 41\*48'56", long 95\*16'01", Hydrologic Unit 10240002, approximately 3.75 mi east of the Town of Defiance on the west side of County Road M-36. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Fremont buried channel: in sand and gravel of Pleistocene age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 535 ft, cased to 535 ft, slotted 525-535 ft, gravel-packed. Open to Pennsylvanian shale 530-535 ft. METHOD.--Quarterly measurement with chalked tape or electric line by USGS personnel. DATUM.--Elevation of land-surface datum is 1,370 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.90 ft above land-surface datum. REMARKS.--Well WC-222. PERIOD OF RECORD.--August 1983 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 208.09 ft below land-surface datum, April 15, 1987; lowest measured, 210.95 ft below land-surface datum, July 5, 1989. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM. WATER YEARS OCTOBER 1982 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------| | AUG 02, 1983<br>SEP 06<br>OCT 03<br>NOV 08<br>DEC 00<br>JAN 10, 1984<br>FEB 06<br>MAR 06 | 209.70 APR<br>209.91 JUL<br>209.75 JAN<br>209.61 APR<br>209.14 JUL<br>209.43 OCT<br>209.25 JAN<br>209.02 APR | 11<br>09, 1985<br>02<br>11<br>09<br>08, 1986 | 209.08 JUL<br>209.05 OCT<br>208.93 JAN<br>208.57 APR<br>208.91 JUL<br>209.10 OCT<br>208.95 JAN<br>208.57 APR | 06<br>14, 1987<br>15<br>09<br>09<br>14, 1988 | 208.41 JUL<br>206.50 OCT<br>208.20 JAN<br>208.09 APR<br>208.31 JUL<br>208.56<br>208.35<br>208.40 | 19<br>20, 1989<br>05 | 208.90<br>210.17<br>210.13<br>210.42<br>210.95 | ## SIOUX COUNTY 430140095573101. Local number, 95-43-07 AAAA1. LOCATION.--Lat 43°04'10", long 95°57'32", Hydrologic Unit 10230002, just south of County Road B-40, 1 mi east of the Village of Newkirk. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 681 ft, cased to 681 ft, perforated 641-681 ft. Open to Paleozoic rock from 674-681 ft. METHOD.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,390 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 3.70 ft above land-surface datum. REMARKS.--Well D-43. FERIOD OF RECORD.--July 1980 to December 1980, May 1982 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 213.66 ft below land-surface datum, March 13, 1984; lowest measured, 218.24 ft below land-surface datum, October 8, 1987. REVISION.--Highest water level measured, 213.66 ft below land-surface datum, March 13, 1984. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 18 | 217.38 | JAN 19 | 216.94 | APR 04 | 216.78 | JUL 06 | 217.36 | 430913096033201. Local number, 96-44-08 ADAA1. LOCATION.--Lat 43°09'13", long 96°03'32", Hydrologic Unit 10230002, west side of County Road K-64, approximately 2.5 mi west of the Town of Boyden and approximately 2.2 mi south of U.S. Highway 18. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 682 ft, cased to 682 ft, perforated 647-667 ft. Open to Paleozoic rock 681-682 ft. METHOD.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,373 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 3.70 ft above land-surface datum. REMARES.--Well D-44. PERIOD OF RECORD.--August 1980 to December 1980, May 1982 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 187.85 ft below land-surface datum, October 16, 1984; lowest measured, 195.12 ft below land-surface datum, July 6, 1989. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 18 | 195.09 | JAN 19 | 194.59 | APR 04 | 194.34 | JUL 06 | 195.12 | ## STORY COUNTY 420137093361501. Local number, 83-24-02 DBAD1. LOCATION.--Lat 42°01'37", long 93°36'15", Hydrologic Unit 07080105, in Ames, north of the Chicago and Northwestern Railroad and County Road E-41, approximately 0.75 mi east of U.S. Highway 69. Owner: City of Ames. AQUIFER.--Glacial drift: in sand and gravel of Pleistocene age. WELL CHARACTERISTICS.--Drilled municipal well, depth 124 ft, casing information unavailable. METHOD.--Quarterly measurement with chalked tape or electric line by USGS personnel. DATUM.--Elevation of land-surface datum is 926 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 0.82 ft above land-surface datum. REMARKS.--City well #4. topographic map. Measuring point: Top of casing, 0.82 ft above land-surface datum. REMARKS.--City well #4. PERIOD OF RECORD.--September 1987 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 55.50 ft below land-surface datum, September 17, 1987; lowest measured, 60.76 ft below land-surface datum, September 20, 1988. WATER LEVEL. IN FEET BELOW LAND-SURFACE DATUM. WATER YEARS OCTOBER 1986 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------------|----------------|--------|----------------|--------------|----------------|--------|----------------| | SEP 17, 1987 | 55.50 | JUN 22 | 58.98 | DEC 15 | 59.16 | JUL 07 | 56.47 | | MAR 22, 1988 | 56.10 | SEP 20 | 60.76 | MAR 08, 1989 | 55.73 | SEP 14 | 57.94 | #### WASHINGTON COUNTY 411300091320701. Local number, 74-06-15 BDAC1. LOCATION.--Lat 41°13'00", long 91°32'07", Hydrologic Unit 07080107, in the water treatment plant, beneath the water tower in Crawfordsville. Owner: Town of Crawfordsville. AQUIFER.--Mississippian: in dolomite of Mississippian age. MELL CHARACTERISTICS.--Drilled unused municipal artesian water well, diameter 6.5 in., depth 215 ft, cased to 132 ft, open hole 132-215 ft. METHOD.--Monthly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 725 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Nipple on plate welded to casing, 1.10 ft above land-surface datum. REMARKS.--Water level for September 13, 1983, 72.69 ft below land-surface datum. REMARKS.--Water level for September 13, 1983, 72.69 ft below land-surface datum. PERTIOD OF RECORD.--September 1983, March 1987 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 69.23 ft below land-surface datum, March 25, 1987; lowest measured, 76.22 ft below land-surface datum, September 5, 1989. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 03 | 75.76 | JAN 04 | 74.86 | APR 04 | 74.14 | JUL 03 | 74.92 | | NOV 01 | 75.21 | FEB 02 | 74.68 | MAY 05 | 74.26 | AUG 02 | 75.98 | | DEC 02 | 75.02 | MAR 06 | 74.38 | JUN 02 | 74.64 | SEP 05 | 76.22 | 411244091323501. Local number, 74-06-15 CBDD1. LOCATION.--Lat 41°12'41", long 91°32'19", Hydrologic Unit 07080107, just west of U.S. Highway 218, approximately 0.4 mi southeast of the water tower in Crawfordsville. Owner: Town of Crawfordsville. AQUIFER.--Mississippian: in dolomite of Mississippian age. MELL CHARACTERISTICS.--Drilled unused municipal artesian water well, diameter 8 in., depth 217 ft, cased to 142 ft, open hole 142-217 ft. METHOD.--Monthly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 725 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Nipple on plate welded to casing, 1.67 ft above land-surface datum. REMARKS.--Water level for Sep. 13, 1983, 75.46 ft below land-surface datum. PERIOD OF RECORD.--September 1983, March 1987 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 71.62 ft below land-surface datum, March 25, 1987; lowest measured, 78.50 ft below land-surface datum, September 5, 1989. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 03 | 78.11 | JAN 04 | 77.36 | APR 04 | 76.53 | JUL 03 | 77.21 | | NOV 01 | 77.77 | FEB 02 | 77.19 | MAY 05 | 76.79 | AUG 02 | 78.19 | | DEC 02 | 77.60 | MAR 06 | 76.84 | JUN 02 | 76.99 | SEP 05 | 78.50 | #### WASHINGTON COUNTY 421829091304701. Local number, 75-06-14 ABBB1. LOCATION.--Lat 41°18'27", long 91°30'47", Hydrologic Unit 07080209, 1 mi north and 1.5 mi east of the junction of U.S. Highway 218 and Iowa Highway 92. Owner: Mrs. David Armstrong. AQUIFER.--Glacial drift: in material of Pleistocene age. WELL CHARACTERISTICS.--Bored unused water-table well, diameter 12 in., depth 45 ft, lined with tile. METHOD.--Monthly measurement with chalked tape by USGs personnel. DATUM.--Elevation of land-surface datum is 745 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Nipple welded to barrel, 4.08 ft above land-surface datum. DATUM. --Elevation of lamia surface datum. topographic map. Measuring point: Nipple welded to barrel, 4.08 ft above land-surface datum. REMARKS.--None. PERIOD OF RECORD. --December 1983 to current year. EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 1.53 ft below land-surface datum, May 23, 1984; lowest measured, 12.55 ft below land-surface datum, November 1, 1988. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |------------------------------|----------------------------------|----------------------------------|----------------------------------|--------------------------------------|--------------------------------|----------------------------|----------------------| | OCT 03<br>11<br>NOV 01<br>15 | 12.01<br>12.27<br>12.65<br>12.06 | DEC 02<br>14<br>JAN 04<br>FEB 02 | 11.85<br>12.35<br>11.85<br>11.94 | MAR 06<br>APR 04<br>MAY 05<br>JUN 02 | 11.66<br>10.07<br>5.66<br>7.77 | JUL 03<br>AUG 02<br>SEP 05 | 7.58<br>8.61<br>7.81 | 412037091564701. Local number, 76-09-31 CBBC1. LOCATION.--Lat 41°20'37", long 91°56'47", Hydrologic Unit 07080107, at Pepper Quarry on County Road V-15, 1 mi south of the City of Keota. Owner: River Products Co. AQUIFER.--Mississippian: in limestone of Mississippian age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 5 in., depth 136 ft, cased to 19 ft, open hole 19-136 ft. INSTRUMENTATION.--Water-level recorder. DATUM.--Elevation of land-surface datum is 745 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.88 ft above land-surface datum. PERIOD OF RECORD.--August 1979 to current year. REVISED RECORDS.--WDR IA-84-1. EXTREMES FOR PERIOD OF RECORD.--Highest water level recorded, 9.38 ft below land-surface datum, March 4, 1985; lowest recorded, 25.29 ft below land-surface datum, August 23 and 24, 1989. # WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 NOON VALUES | DAY | OCT | NOA | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-----------------------------------|----------------------------------------------------|----------------------------------------------------|-------------------------------------------------------|-----------------------------------------|-------|-------------------------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|-------------------------------------------| | 05<br>10<br>15<br>20<br>25<br>EOM | 24.12<br>24.15<br>24.21<br>24.37<br>24.57<br>24.69 | 24.70<br>24.80<br>24.68<br>24.81<br>24.82<br>24.90 | 24.92<br>a25.00<br>a25.00<br>25.17<br>25.22<br>a24.90 | a24.25<br><br>a23.75<br>a23.25<br>20.75 | 23.99 | 19.76<br>20.37<br>20.81<br>20.95<br>20.86 | 21.00<br>20.72<br>20.92<br>21.01<br>21.04<br>20.03 | 20.21<br>20.66<br>21.07<br>20.45<br>20.84 | 20.01<br>20.71<br>21.07<br>21.58<br>23.85<br>24.06 | 24.30<br>24.50<br>24.56<br>24.70<br>24.82<br>24.96 | 24.70<br>24.91<br>25.06<br>25.20<br>25.27<br>25.19 | 18.15<br>20.68<br>21.42<br>24.05<br>24.33 | WTR YEAR 1989 HIGHEST 16.68 SEP 9, 1989 LOWEST 25.29 AUG 23 AND 24, 1989 Recorded water level has been adjusted. ## WASHINGTON COUNTY 412750091495201. Local number, 77-09-24 AADA1. LOCATION.--Lat 41°27'54", long 91°49'47", Hydrologic Unit 07080209, north of the city sewage treatment plant and west of First Avenue SE, Wellman. Owner: City of Wellman. AQUIFER.--Mississippian: in dolomite of Mississippian age. WELL CHARACTERISTICS.--Drilled unused artesian water well, diameter 8 in., depth 110 ft, cased to 47 ft, open hole 47 to 110 ft. METHOD.--Monthly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 695 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Nipple on plate welded to casing, 1.87 ft above land-surface datum. REMARKS.--City test well No. 1. PERIOD OF RECORD.--May 1963 to October 1971, May 1973 to current year. REVISED RECORDS.--WDR IA-84-1. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 1.35 ft above land-surface datum, November 3, 1977, March 28, 1979, and April 13, 1983; lowest measured, 6.80 ft below land-surface datum, October 20, 1964. REVISION.--Lowest water level measured, 6.80 ft below land-surface datum, October 20, 1964. WATER LEVEL, IN FEET BELOW LAND SURFACE-DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |-------|----------------------|------------------------------|--------------------------------------|------------------------------|----------------------------------|------------------------------|------------------------|----------------------| | NOV C | 03<br>01<br>02<br>14 | 6.30<br>6.52<br>6.27<br>6.46 | JAN 04<br>FEB 02<br>MAR 06<br>APR 04 | 6.62<br>6.30<br>6.23<br>6.13 | MAY 05<br>JUN 02<br>09<br>JUL 13 | 5.37<br>4.48<br>5.12<br>5.22 | AUG 02<br>24<br>SEP 05 | 5.69<br>5.49<br>5.43 | ## WEBSTER COUNTY 421550094041001. Local number, 86-28-14 ADAB1. LOCATION.--Lat 42°15'50", long 94°04'10", Hydrologic Unit 07100004, in the town water plant, next to the water tower, Dayton. Owner: Town of Dayton. AQUIFER.--Devonian and Mississippian: in limestone of Devonian and Mississippian age. WELL CHARACTERISTICS.--Drilled municipal artesian water well, diameter 13 to 10 in., depth 1,240 ft, cased to 505 ft, 8 in. liner 770-966 ft, open hole 505-770 ft and 966-1,240 ft. METHOD.--Intermittent measurement with airline by USGS personnel. DATUM.--Elevation of land-surface datum is 1,121 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Pump base, 0.80 ft above land-surface datum. PERIOD OF RECORD.--September 1942 to December 1948, January 1952 to November 1971, March 1974 to current year. year. REVISIONS.--WRD IA-85-1 EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 69.93 ft below land-surface datum, November 17, 1942; lowest measured, 153.20 ft below land-surface datum, February 10, 1987. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | | WATER<br>LEVEL | DATE | | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |------|----|----------------|------|----|----------------|--------|----------------| | MAY | 23 | 127.20 | AUG | 03 | 124.20 | SEP 14 | 126.20 | ## WEBSTER COUNTY 421837094083601. Local number, 87-28-29 CCCD1. LOCATION.--Lat 42°18'37", long 94°08'36", Hydrologic Unit 07100006, 3 mi north and 2 mi east of the Town of Harcourt. Owner: Grace Helms. AQUIFER.--Glacial drift: in material of Pleistocene age. WELL CHARACTERISTICS.--Drilled unused water-table well, diameter 12 in., depth 42 ft, lined with tile. METHOD.--Monthly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,165 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 0.75 ft above land-surface datum. REMARKS.--None. FERIOD OF RECORD.--October 1942 to June 1956, March 1958 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.05 ft below land-surface datum, August 1, 1972; lowest measured, 13.62 ft below land-surface datum, March 12, 1956. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |------------------------|------------------------|--------------------|----------------------|------------|----------------|----------------------|-------|-------------------------------| | OCT 11 21 | 9.94<br>9.81 | JAN 20<br>FEB 15 | 8.50<br>8.27 | APR | 21<br>27 | 7.99<br>7.95<br>7.72 | | 10 5.98<br>24 4.55<br>14 5.63 | | NOV 14<br>21<br>DEC 16 | 10.14<br>10.02<br>8.63 | 24<br>MAR 15<br>21 | 8.29<br>7.99<br>8.10 | MAY<br>JUN | 15<br>22<br>15 | 7.85<br>6.54 | SEP 1 | 21 6.05<br>14 5.48 | | JAN 11 | 8.72<br>8.43 | APR 12 | 8.22 | | 20 | 6.60 | 2 | 21 5.45 | 423018094214701. Local number, 89-30-23 CCBB1. LOCATION.--Lat 42°30'18", long 94°21'47", Hydrologic Unit 07100004, 75 ft west of the new school addition, Barnum. Owner: Johnson Township Consolidated School. AQUIFER.-Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.-Drilled unused artesian water well, diameter 4 in., reported depth 208 ft, cased to 208 ft, perforated 203-208 ft. METHOD.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,174 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing at land-surface datum. REMARKS.--None. PERIOD OF RECORD.--October 1942 to September 1945, May 1947 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 30.36 ft below land-surface datum, October 21, 1942; lowest measured, 45.85 ft below land-surface datum, July 28, 1980. REVISIONS.--Highest water level measured, 30.36 ft below land-surface datum, October 21, 1942; lowest measured, 45.85 ft below land-surface datum, July 28, 1980. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 WATER WATER DATE WATER DATE DATE LEVEL LEVEL LEVEL 43.78 JUN 06 43.51 AUG 30 DEC 28 MAR 22 42.97 42.80 ## WOODBURY COUNTY 422058095573701. Local number, 87-44-15 CBBB1. LOCATION.--Lat 42°20'58", long 95°57'37", Hydrologic Unit 10230003, approximately 3.5 mi west and 5.5 mi north of the Village of Oto. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 197 ft, cased to 197 ft, perforated 185-189 ft. METHOD.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,185 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.50 ft above land-surface datum. topographic map. Measuring point: Top of casing, 1.50 ft above land-surface datum. REMARKS.--Well D-34. PERIOD OF RECORD.--April 1980 to December 1980, May 1982 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 54.21 ft below land-surface datum, January 11, 1988; lowest measured, 63.56 ft below land-surface datum, November 2, 1982. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 17 | 57.14 | JAN 19 | 57.66 | APR 03 | 57.60 | JUL 07 | 58.63 | 422830096000511. Local number, 88-44-16 BAAB11. LOCATION.--Lat 42°28'30", long 96°00'05", Hydrologic Unit 10230004, approximately 3 mi east and 0.5 mi south of the Town of Moville. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.-Drilled observation artesian water well, diameter 2 in., depth 337 ft, cased to 337 ft, perforated 332-337 ft. METHOD.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,340 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 3.50 ft above land-surface datum. REMARKS.--Well D-33. PERIOD OF RECORD.--October 1979 to December 1980, May 1982 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 199.09 ft below land-surface datum, April 13, 1987; lowest measured, 202.90 ft below land-surface datum, October 17, 1979. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 WATER LEVEL WATER LEVEL WATER LEVEL DATE WATER LEVEL DATE DATE DATE 199.84 .TIT. 05 200.42 OCT 17 199.84 JAN 19 200.04 APR 03 ## WOODBURY COUNTY 423015096034601. Local number, 89-44-20 DCDC1. LOCATION.--Lat 42°30'15", long 96°03'46", Hydrologic Unit 10230004, east of Iowa Highway 140, approximately 1 mi north of the Town of Moville. Owner: Geological Survey Bureau, DNR and U.S. Geological imately 1 mi north of the Town of Moville. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER. --Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS. --Drilled observation artesian water well, diameter 2 in., depth 221 ft, cased to 221 ft, perforated 205-221 ft. METHOD. --Quarterly measurement with chalked tape by USGS personnel. DATUM. --Elevation of land-surface datum is 1,168 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 4.00 ft above land-surface datum. REMARKS. --Well D-32. PERIOD OF RECORD. --October 1979 to December 1980, May 1982 to current year. EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 22.64 ft below land-surface datum, August 8, 1984; lowest measured, 26.65 ft below land-surface datum, December 11, 1980. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 17 | 25.79 | JAN 19 | 25.64 | APR 03 | 25.67 | JUL 05 | 26,22 | 422910096135811. Local number, 89-46-36 BBDC11. LOCATION.--Lat 42°29'10", long 96°13'58", Hydrologic Unit 10230004, approximately 0.75 mi northeast of the Eberly Cemetery or 2.5 mi west and 0.75 mi north of the Village of Lawton. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 500 ft, cased to 500 ft, perforated 358-362 ft. METHOD.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,268 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 3.00 ft above land-surface datum. topographic map. Measuring point: Top of casing, 3.00 ft above land-surface datum. REMARKS.--Well D-30. PERIOD OF RECORD.--April 1980 to December 1980, May 1982 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 128.32 ft below land-surface datum, July 8, 1987; lowest measured, 135.35 ft below land-surface datum, November 2, 1982. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | DATE | WATER<br>LEVEL | |--------|----------------|--------|----------------|-------|----------------|--------|----------------| | OCT 17 | 130.83 | JAN 19 | 130.82 | APR 0 | 3 130.97 | JUL 05 | 131.65 | | | | | ` | MOUND WAI | LA QUALIT. | DAIA | | | | | |-----------------------|------------------|-----------------------|----------------------------------|----------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------| | DATE | TIME | GEO-<br>LOGIC<br>UNIT | FLOW<br>RATE<br>(G/M)<br>(00058) | PUMP<br>OR FLOW<br>PERIOD<br>PRIOR<br>TO SAM-<br>PLING<br>(MIN)<br>(72004) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | PH<br>(STAND-<br>ARD<br>UNITS)<br>(00400) | HARD-<br>NESS<br>TOTAL<br>(MG/L<br>AS<br>CACO3)<br>(00900) | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915) | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925) | | | 205000 | | | | IR COUNTY | | 00.507.1 | ova .o. | - 6473 | | | 41<br>MAY 1989 | 2852094 | 275101 077 | /31WU/CAAL | 1 | 977MENLO 3 | 3 (LAT 41 | 28 52N L | ONG 094 2 | / 21M) | | | 23 | 1145 | 111ALVM | 10 | | 12.0 | 520 | 7.70 | 240 | 75 | 12 | | AUG<br>03 | 1415 | 111ALVM | 12 | 480 | 14.0 | 500 | 7.30 | | | | | 413 | 2340945 | 52401 0783 | SSW19BCDB | | BON COUNTY<br>76BRAYTON | | 1 32 34N | LONG 094 | 55 24W) | | | AUG 1989<br>24 | 0845 | 111ENRV | 55 | 30 | 12.0 | 960 | 7.00 | 390 | 100 | 33 | | 413 | 5370945 | 32701 0783 | SSW04BCBD | 19 | 69EXIRA 11 | (LAT 41 | 35 37N L | ONG 094 5 | 3 27W) | | | MAY 1989<br>31 | 1100 | 111ENRV | 165 | 30 | 13.0 | 690 | 7.25 | 330 | 94 | 23 | | JUL<br>14 | 1145 | 111ENRV | 140 | 30 | 15.5 | 640 | 7.15 | | | | | SEP<br>28 | 1025 | 111ENRV | 140 | 20 | 15.0 | 720 | 7.15 | | | | | | | | | BLACK 1 | HAWK COUNT | Y. | | | | | | | 0921156 | 01 08712W2 | SCBCD | 1961L | A PORTE CI | TY 3 (LA | T 42 18 5 | 7N LONG 0 | 92 11 56W | ) | | JUL 1989<br>24 | 0930 | 350SLRN | 90 | 60 | 11.0 | | 7.23 | | | | | 4228010 | 92 <b>15</b> 280 | 1 08812W04 | BBBC 123 | 72 1960ELI | K RUN HEIG | HTS 1 (L | AT 42 28 | 01N LONG | 092 15 28 | 4) | | AUG 1989<br>09 | 0900 | 344CDVL | | 20 | 12.0 | 500 | 7.43 | 280 | 78 | 21 | | 42304 | 2092265 | 801 08914W | 124BBAA | 19610 | CEDAR FALL | S 5 (LAT | 42 30 421 | N LONG 09 | 2 26 58W) | | | MAY 1989 | | | | | | | | | | | | 24<br>AUG | 0800 | 344CDVL | 2400 | 60 | 12.0 | 560 | 7.50 | 280 | 81 | 20 | | 08 | 0915 | 344CDVL | 2000 | 25 | 11.0 | 630 | 7.19 | | | | | 42390 | 2092272 | 501 09114 | 35ADD 1 | BREI<br>1754 1959. | MER COUNTY<br>JA JANESVI | | AT 42 39 | 02N LONG | 092 27 25 | ٧) | | MAY 1989 | 1520 | 2500170 | 100 | 20 | ••• | 420 | 7.10 | 250 | e s | 21 | | 24<br>AUG | 1536 | 350SLRN | 100 | 20 | 12.0 | 430 | 7.10 | 250 | 65 | 21 | | 08 | 1030 | 350SLRN | 100 | 30 | 12.0 | 500 | 6.99 | | | | | 424 | 3190922 | 83401 0911 | 4W03CABB | 190 | 57WAVERLY | 5 (LAT 4 | 2 43 19N 1 | LONG 092 | 28 34W) | | | MAY 1989<br>24 | 0930 | 340DVSL | 1560 | 20 | 11.0 | 590 | 7.01 | 280 | 75 | 23 | | AUG<br>08 | | 340DVSL | 1400 | 60 | 11.0 | 610 | 6.63 | | | | | | | | | | | | | | | | | | 8092315 | 601 09314W | 720CC 1 | 1138 1959 | PLAINFIELD | 1 (LAT | 42 50 58N | LONG 092 | 31 56W) | | | JUL 1989<br>25 | 1415 | 344DVNNM | 175 | 15 | 10.5 | | 7.04 | 220 | 64 | 15 | | 4228 | 3309143 | 1701 08908 | W36DCAA | | ANAN COUNT<br>OWINTHROP | | 2 28 33N 1 | LONG 091 | 43 17W) | | | AUG 1989<br>18 | 1130 | 340DVSL | 290 | 20 | 10.0 | 760 | 7.50 | 340 | 74 | 37 | | | | | VII OCT 1 | 00000 100 | | 4 /T Am | 27 402 1 | ONG CO. | E& 0011) | | | | 1009154 | 0001 09009 | MIUCBA | 06208 195 | SHAZLETON | I (LAT 4) | 2 3/ 1UN 1 | LUNG 091 | 34 UUW) | | | JUN 1989<br>01<br>AUG | 1330 | 350SLRN | 50 | 15 | 12.0 | 514 | 7.26 | 280 | 66 | 27 | | 01 | 120 <b>0</b> | 350SLRN | 130 | 20 | 11.0 | 510 | 7.26 | | | | | | | | | | | | | | | | | DATE | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | ALKA-<br>LINITY<br>LAB<br>(MG/L<br>AS<br>CACO3)<br>(90410) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)<br>(00945) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)<br>(00950) | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2)<br>(00955) | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L)<br>(70300) | NITRO-<br>GEN,<br>NO2+NO3<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00631) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | |-----------------------|---------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------| | 4 | 128520942 | 75101 077 | 31W07CAAE | | IR COUNTY<br>977MENLO | 3 (LAT 41 | 28 52N L | ONG 094 2 | 7 51W) | | | MAY 1989<br>23 | 15 | 0.70 | | 12 | 32 | 0.25 | 26 | 306 | 1.70 | <0.100 | | AUG<br>03 | | | | | | | | | 1.70 | <0.100 | | 41 | 1323409455 | 2401 0783 | 5W19BCDB | | ON COUNTY<br>76BRAYTON | 1 (LAT 4 | 1 32 34N | LONG 094 | 55 24W) | | | AUG 1989<br>24 | 23 | 1.2 | 302 | 41 | 110 | 0.35 | 19 | | 0.100 | 0.100 | | 41 | 1353709453 | 2701 0783 | 5W04BCBD | 19 | 69EXIRA 1 | l (LAT 41 | 35 37N L | ONG 094 5 | 3 27W) | | | MAY 1989<br>31 | 21 | 5.6 | 232 | 35 | 71 | 0.25 | 15 | 416 | 1.10 | 0.300 | | JUL<br>14<br>SEP | | | | | | | | | 2.40 | 0.200 | | 28 | | | | | | | | | 3.50 | <0.100 | | 42185 | 5709211560 | 1 08712W2 | 5CBCD | | K HAWK COL<br>A PORTE C | | T 42 18 5 | 7N LONG 0 | 92 11 56W | )) | | JUL 1989<br>24 | | | | 0.50 | | 1.3 | 7.0 | 366 | 0.100 | 1.50 | | 422801 | 1092152801 | 08812W04 | BBBC 123 | 372 1960EL | K RUN HEI | SHTS 1 (L | AT 42 28 | 01N LONG | 092 15 28 | W) | | AUG 1989<br>09 | 14 | 2.0 | | 28 | 44 | 0.15 | 18 | 290 | 3.50 | <0.100 | | | 420922658 | 01 08914% | 124BBAA | 1961 | CEDAR FALI | LS 5 (LAT | 42 30 42 | N LONG 09 | 2 26 58W) | | | MAY 1989<br>24<br>AUG | 13 | 1.8 | | 28 | 36 | 0.20 | 12 | 324 | 3.60 | <0.100 | | 08 | | | 220 | | | | | | .3.30 | <0.100 | | | 9020922725 | 01 091146 | 735ADD 1 | | MER COUNTY<br>JANESVILLI | | 42 39 02N | LONG 092 | 27 25W) | | | MAY 1989<br>24 | 5.0 | 1.0 | | 10 | 21 | 0.15 | 13 | 264 | 9.10 | <0.100 | | AUG<br>08 | | | 201 | | | | | | 3.60 | <0.100 | | 42 | 2431909228 | 3401 0911 | .4W03CABB | 19 | 67WAVERLY | 5 (LAT 4 | 2 43 19N | LONG 092 | 28 34W) | | | MAY 1989<br>24 | 9.2 | 1.1 | | 16 | 26 | 0.15 | 14 | 334 | 6.70 | <0.100 | | AUG<br>08 | | | 247 | | | | | | 6.30 | <0.100 | | 4250 | 580923156 | 01 09314W | 120CC 1 | 1138 1959 | PLAINFIELI | 1 (LAT | 42 50 58N | LONG 092 | 31 56W) | | | JUL 1989<br>25 | 10 | 1.2 | | 14 | <b>2</b> 2 | 0.15 | 12 | 274 | 6.60 | <0.100 | | 422 | 2833091431 | 701 08908 | W36DCAA | | UCHANAN CO | | 2 28 33N | LONG 091 | 43 17W) | | | AUG 1989<br>18 | 24 | 4.1 | 320 | 1.0 | 90 | 0.40 | 11 | 436 | <0.100 | 3.00 | | 423 | 3710091540 | 001 09009 | W10CBA | 06208 195 | 3HAZLETON | 1 (LAT 4 | 2 37 10N | LONG 091 | ,<br>54 0 <b>0W</b> ) | | | JUN 1989<br>01 | 4.4 | 1.1 | | 14 | 20 | 0.10 | 14 | 238 | 8.90 | <0.100 | | AUG<br>01 | | | | | | | | | 9.70 | <0.100 | | DATE | PHOS-<br>PHOROUS<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | IRON,<br>DIS-<br>SOLVED<br>(UG/L<br>AS FE)<br>(01046) | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(UG/L<br>AS MN)<br>(01056) | (39630)<br>AD | CYAN-<br>AZINE<br>TOTAL<br>(UG/L)<br>cide conce<br>(81757) | (81408) | (77825) | (39356) | (99901) | TRI-<br>FLURA-<br>LIN<br>TOTAL<br>RECOVER<br>(UG/L)<br>rable]<br>(39030) | |-----------------------|---------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------|------------------------------------------------------------|--------------------|------------|------------|-----------|--------------------------------------------------------------------------| | MAY 1989 | | | | • | .0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | , <b>(22.2</b> · 2 | | | , J, | | | 23<br>AUG | 0.300 | 50 | <20 | 0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 03 | 0.200 | | | 0.16 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | | 1323409455 | 2401 0783 | 5W19BCDB | | BON COUNTY<br>76BRAYTON | | 32 34N I | LONG 094 : | 55 24W) | | | AUG 1989<br>24 | <0.100 | 7000 | 1000 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | | 353709453 | 2701 0783 | 5W04BCBD | 19 | 69EXIRA 11 | (LAT 41 | 35 37N LC | ONG 094 5 | 3 27W) | | | MAY 1989<br>31<br>JUL | <0.100 | 90 | 760 | 0.43 | 0.89 | <0.10 | <0.10 | 0.47 | <0.10 | <0.10 | | 14<br>SEP | <0.100 | | | 2.0 | 1.1 | <0.10 | <0.10 | 0.88 | <0.10 | <0.10 | | 28 | <0.100 | | | 0.69 | 0.37 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | | 709211560 | 1 08712W2: | 5CBCD | | HAWK COUN<br>A PORTE CI | | 42 18 57 | 'N LONG 09 | 92 11 56W | ) | | JUL 1989<br>24 | <0.100 | | | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 422801 | .092152801 | 08812W04 | BBBC 1237 | 72 1960EL | K RUN HEIG | HTS 1 (LA | T 42 28 0 | 1N LONG | 92 15 28 | W) | | AUG 1989<br>09 | <0.100 | 30 | <20 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 4230 | 420922658 | 01 08914W | 24BBAA | 1961 | CEDAR FALI | S 5 (LAT | 42 30 421 | LONG 092 | 2 26 58W) | | | MAY 1989<br>24 | <0.100 | <20 | <20 | 0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | AUG<br>08 | <0.100 | | | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | | | | | | REMER COUN | | | | | | | | 020922725 | 01 09114W | 35ADD 11 | 1754 1959 | JANESVILLE | 2 (LAT 4 | 2 39 02N | LONG 092 | 27 25W) | | | MAY 1989<br>24 | <0.100 | <20 | <20 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | AUG<br>08 | <0.100 | | | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 42 | 431909228 | 3401 0911 | 4W03CABB | 19 | 67WAVERLY | 5 (LAT 42 | 2 43 19N I | ONG 092 2 | 28 34W) | | | MAY 1989<br>24 | <0.100 | <20 | <20 | 0.23 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | AUG<br>08 | <0.100 | | | 0.19 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 4250 | 580923156 | 01 09314W2 | 20CC 11 | 138 1959 | PLAINFIELD | 1 (LAT 4 | 2 50 58N | LONG 092 | 31 56W) | | | JUL 1989<br>25 | <0.100 | <20 | <20 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 422 | 833091431 | 701 0890 <b>8</b> 4 | N36DCAA 3 | | HANAN COUN | | 28 33N I | ONG 091 4 | .3 17W1 | | | AUG 1989 | <0.100 | 1000 | 40 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | | | •• | | | | - · • • | | | | <del>-</del> | | 423<br>JUN 1989 | 710091540 | 001 09009 | V10CBA ( | 06208 195 | 3HAZLETON | 1 (LAT 42 | 37 10N I | ONG 091 : | 54 00W) | | | 01<br>AUG | 0.200 | <20 | <20 | 0.36 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 01 | <0.100 | | | 0.32 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | DATE | TIME | GEO-<br>LOGIC<br>UNIT | FLOW :<br>RATE<br>(G/M) | PUMP<br>OR FLOW<br>PERIOD<br>PRIOR<br>IO SAM-<br>PLING<br>(MIN)<br>(72004) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | PH<br>(STAND-<br>ARD<br>UNITS)<br>(00400) | HARD-<br>NESS<br>TOTAL<br>(MG/L<br>AS<br>CACO3)<br>(00900) | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915) | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925) | |-----------------------|---------|-----------------------|-------------------------|----------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------| | 4238 | 0709203 | 2601 09010 | W05BCDD | | HANAN COUN<br>7FAIRBANK | | 2 38 07N I | ONG 092 | 03 26W) | | | JUL 1989<br>20 | 1430 | 344CDVL | 98 | 20 | 10.0 | 340 | 7.05 | 250 | 69 | 20 | | 4251 | 4409459 | 0401 09335 | W21BADC | | VISTA COU | | 2 51 44N T | .ONG 094 | 59 04W) | | | AUG 1989 | | | | | | - | | | - | 20 | | 01 | 1500 | 110QRNR | 110 | 60<br>BUT | 15.5<br>LER COUNTY | 1250 | 6.98 | 490 | 130 | 39 | | | 0923736 | 01 09015W3 | 3BCA 078 | 54 1956N | EW HARTFOR | D 2 (LAT | 42 34 011 | LONG 09 | 2 37 36W) | | | AUG 1989<br>08 | 1300 | 344CLVL | 100 | 5 | 11.0 | 458 | 7.85 | 240 | 64 | 20 | | 4235 | 1209252 | 1001 09017 | W29AAAA | 196 | 2APLINGTON | 2 (LAT | 42 35 12N | LONG 092 | 52 10W) | | | AUG 1989<br>08 | 1505 | 341LMCK | | 60 | 10.5 | 670 | 7.70 | 300 | 69 | 31 | | 1010 | 1500/// | A7A4 A8CSS | | | OUN COUNTY | | 10 16 15V | 1 ONG . O. | // 6717 | | | 4216<br>JUL 1989 | 1509444 | 0701 08633 | W07DCBB | 197 | 2LAKE CITY | 3 (LAT | 42 16 15N | LONG 094 | 44 07W) | | | 28 | 1245 | 217DKOT | 430 | 20 | 14.0 | 1200 | 7.20 | 560 | 150 | 44 | | 415 | 4350944 | 92801 0823 | 4W17DDBA | | OLL COUNTY<br>69DEDHAM 4 | | 54 35N LC | NG 094 4 | 9 28W) | | | AUG 1989<br>02 | 1130 | 111SRRV | 45 | 30 | 14.0 | 650 | 7.50 | 320 | 89 | 24 | | 42073 | 3004465 | 301 085346 | 35CCCB 08 | nne 1956 | I TODEDDAI E | 2 (TAT ) | 42 N7 33N | IONG 004 | 46 53W1 | | | AUG 1989 | 3094403 | 301 003344 | SJCCCB 00 | 000 1930 | LIDUERDALE | Z (LAI | 42 U/ JJN | LONG US4 | 40 334) | | | 02 | 1430 | 217DKOT | 25 | 60 | 16.0 | 690 | 6,90 | 360 | 98 | 27 | | 41 | 1818095 | 045801 075 | 37W10DDBD | | SS COUNTY<br>916LEWIS 1 | (LAT 41 | 18 18N LC | NG 095 0 | 4 58W) | | | MAY 1989<br>31 | 1400 | 112PLSC | 110 | 30 | 12.5 | 785 | 6.80 | 400 | 100 | 36 | | JUL<br>14 | 1400 | 112PLSC | 110 | 30 | 13.0 | 820 | 6.80 | | | | | SEP<br>28 | 1330 | 112PLSC | 110 | 20 | 12.5 | 800 | 6.82 | | | | | 41: | 2706095 | 065501 077 | 37W21CBDB | 1 | 959MARNE 3 | (LAT 41 | 27 06N LC | NG 095 0 | 6 55W) | | | MAY 1989<br>31 | 1245 | 111HLCN | 3.0 | 45 | 13.0 | 1240 | 6.70 | 690 | 170 | 65 | | JUL<br>14 | 1250 | 111HLCN | 3.5 | 30 | 13.0 | 1200 | 6.70 | | | | | SEP<br>28 | 1210 | 111HLCN | 3.5 | 20 | 11.0 | 1180 | 6.80 | | | | | 41 | 2714094 | 460701 077 | 35W21BDDD | 1 | 960ANITA 3 | (LAT 41 | 27 14N LC | NG 094 4 | 6 07W) | | | AUG 1989<br>24 | 1000 | 217DKOT | 90 | 30 | 12.0 | 625 | 7.30 | 260 | 71 | 21 | | 4248 | 4709543 | 0001 09241 | .W05CBDA | CHER<br>197 | OKEE COUNT<br>6CLEGHORN | Y<br>2 (LAT 4) | 2 48 47N I | ONG 095 | 43 00W) | | | AUG 1989 | 0830 | 217DKOT | 60 | 30 | 13.0 | 1380 | | 550 | 150 | 43 | | | | | | CHICK | ASAW COUNT | Y | • | | | | | | 7250923 | 22801 0941 | .4W18CAAD | 19 | 79NASHUA 4 | (LAT 42 | 47 25N LC | NG 092 3 | 2 28W) | | | MAY 1989<br>24<br>JUL | 1100 | 340DVNN | 450 | 20 | 10.0 | 670 | 7.10 | 320 | 86 | 25 | | 25 | 1315 | 340DVNN | | | 10.0 | | 6.80 | | | | | | | | | MILL WILL | mr downii | 1 Dain | | | | | |----------------|---------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------| | DATE | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | ALKA-<br>LINITY<br>LAB<br>(MG/L<br>AS<br>CACO3)<br>(90410) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)<br>(00945) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)<br>(00950) | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2)<br>(00955) | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L)<br>(70300) | NITRO-<br>GEN,<br>NO2+NO3<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00631) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | | 423 | 807092032 | 601 N <b>Q</b> 010 | いばい ちをぐわわ | | ANAN COUN | | 2 38 07N | LONG 092 ( | 13 26₩1 | | | JUL 1989 | 0070920320 | 001 09010 | HUJBCDD | 197 | /FAIRDANK | 4 (LAI 4 | 2 38 07N | LONG 092 | 75 20 <del>4</del> 7 | | | 20 | 9.5 | 2.5 | | 2.0 | 20 | 0.75 | 8.9 | 304 | <0.100 | 0.200 | | 425 | 144094590 | 401 09335 | W21BADC | | VISTA COU | | 2 51 44N | LONG 094 | 59 04W) | | | AUG 1989<br>01 | 47 | 5.2 | 389 | 2.5 | 190 | 0.30 | 31 | 676 | <0.100 | 0.500 | | | | | | BU | TLER COUN | TY | | | | | | | 109237360 | 1 09015W3 | 3BCA 07 | 854 1956N | EW HARTFO | RD 2 (LAT | 42 34 01 | N LONG 092 | 2 37 36W) | | | AUG 1989<br>08 | 7.5 | 1.3 | | 15 | 21 | 0.70 | 13 | 280 | <0.100 | 0.400 | | 423 | 5120925210 | 001 09017 | W29AAAA | 196 | 2APL INGTO | N 2 (LAT | 42 35 12N | LONG 092 | 52 10W) | | | AUG 1989<br>08 | 30 | 4.5 | 290 | 2.0 | 73 | 0.45 | 15 | 358 | <0.100 | 2.50 | | | | | | | OUN COUNT | | <b>-</b> . <b></b> | | | | | | 16150944407 | 701 08633 | W07DCBB | 197 | ZLAKE CIT | Y 3 (LAT | 42 16 15N | LONG 094 | 44 07W) | | | JUL 1989<br>28 | 42 | 5.1 | 456 | 5.0 | 170 | 0.30 | 20 | 710 | <0.100 | 1.00 | | 41 | 5435094492 | 2801 0823 | 4W17DDBA | | OLL COUNT | | 54 35N L | ONG 094 49 | 9 28W) | | | AUG 1989<br>02 | 12 | 1.2 | 262 | 17 | 47 | 0.30 | 19 | 328 | <0.100 | <0.040 | | A 207 | '330 <b>94465</b> 3( | 01 085366 | 23.5CCCB 0 | 900E 105E | I TOREDOAI: | F 2 /TAT | 42 07 23N | TONG OOA | 46 53W) | | | AUG 1989 | 000044050 | 01 00334 | 0 | 0000 1930 | LIDDERDAL | E & (LAI | 42 07 551 | LONG 034 | 40 30117 | | | 02 | 10 | 4.0 | 370 | 1.5 | 20 | 0.35 | 20 | 422 | <0.100 | 1.20 | | 4 | 118180950 | 45801 075 | 37W10DDBD | | SS COUNTY<br>916LEWIS | | 18 18N L | ONG 095 04 | 4 58W) | | | MAY 1989<br>31 | 12 | 1.4 | 202 | 40 | 58 | 0.20 | 21 | 482 | 20.0 | <0.100 | | JUL<br>14 | | | | | | | | | 20.0 | <0.100 | | SEP<br>28 | | | | | | | | | 20.0 | <0.100 | | 4 | 127060950 | 65501 077 | 37W21CBDB | 1 | 959MARNE : | 3 (LAT 41 | 27 06N L | ONG 095 06 | 5 55W) | | | MAY 1989 | | | | _ | | | | | | | | 31<br>JUL | 15 | 1.9 | 268 | 88 | 150 | 0.25 | 23 | 840 | 26.0 | <0.100 | | SEP | | | | | | | | | 23.0 | <0.100 | | 28 | | | | | | | | | 22.0 | <0.100 | | 4 | 1271409446 | 60 <b>7</b> 01 <b>0</b> 77 | 35W21BDDD | 1 | 960ANITA | 3 (LAT 41 | 27 14N L | ONG 094 46 | 5 07W) | | | AUG 1989<br>24 | 24 | 2.8 | 258 | <0.50 | 71 | 0.50 | 21 | | <0.100 | 0.500 | | 424 | 8470954300 | 001 09241 | .W05CBDA | | EE COUNTY<br>6CLEGHORN | 2 (LAT 4 | 2 48 47N | LONG 095 | 43 00W) | | | AUG 1989<br>09 | 110 | 9.3 | 317 | 7.5 | 450 | 1.2 | 19 | | <0.100 | 1.20 | | 42 | 4725092322 | 2801 <b>0</b> 941 | .4W18CAAD | | AW COUNTY<br>79NASHUA | | 47 25N L | ONG 092 32 | 2 28W) | | | MAY 1989 | • • | | | | | | | | 4 | 0.000 | | 24<br>JUL | 16 | 1.8 | | 28 | 33 | 0.15 | 15 | 378 | 1.20 | 0.200 | | 25 | | | 294 | | | | | | 0.800 | <0.100 | | | PHOS- | | | | | | | | | | |----------------|-------------------------------------------------------|--------------------------------------------|------------------------------------------------------|---------------------------------------------|-----------------------------------|---------------------------------------------------|---------------------------------------------|------------------------------------------------------------------|-------------------------|---------------------------------------------------------------| | DATE | PHOSOUS<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P) | IRON,<br>DIS-<br>SOLVED<br>(UG/L<br>AS FE) | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(UG/L<br>AS MN) | ATRA-<br>ZINE,<br>TOTAL<br>(UG/L)<br>[Pesti | CYAN-<br>AZINE<br>TOTAL<br>(UG/L) | METRI-<br>BUZIN<br>IN<br>WHOLE<br>WATER<br>(UG/L) | ALA-<br>CHLOR<br>TOTAL<br>RECOVER<br>(UG/L) | METOLA-<br>CHLOR<br>IN<br>WHOLE<br>WATER<br>(UG/L)<br>ed as tota | BUTY-<br>LATE<br>(UG/L) | TRI-<br>FLURA-<br>LIN<br>TOTAL<br>RECOVER<br>(UG/L)<br>rable1 | | | (00671) | (01046) | (01056) | | (81757) | | | (39356) | | | | 423 | 807092032 | 601 09010 <b>\</b> | NO 5BCDD | | ANAN COUNT | | 2 38 07N I | LONG 092 0 | 3 26W) | | | JUL 1989 | | | | | | , , | | | | | | 20 | <0.100 | 200 | <20 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 425 | 144094590 | 401 0933 <b>5</b> V | V21BADC | | VISTA COUN<br>9MARATHON | | 2 51 44N 1 | LONG 094 5 | 9 04W) | | | AUG 1989<br>01 | 0.100 | 1400 | 420 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 10010 | | | | | TLER COUNT | | | | | | | | 109237360 | 1 09015W33 | BBCA 078 | 354 1956N | EW HARTFOR | ED 2 (LAT | 42 34 01 | N LONG 092 | 37 36W) | | | AUG 1989<br>08 | <0.100 | 480 | 120 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 423 | 512092521 | 001 09017 | <b>₹29AAA</b> A | 196 | 2APLINGTON | 1 2 (LAT | 42 35 12N | LONG 092 | 52 10W) | | | AUG 1989<br>08 | <0.100 | 770 | <20 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | | -0.100 | ,,, | 120 | | HOUN COUNT | | 40.10 | 70.10 | -0.10 | 70.10 | | | 615094440 | 701 08633V | NO7DCBB | | | | 42 16 15N | LONG 094 | 44 07W) | | | JUL 1989<br>28 | <0.100 | 80 | 1200 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 41 | 1543509449 | 2801 0823 | 4W17DDBA | | ROLL COUNT<br>69DEDHAM 4 | | 54 35N L | ONG 094 49 | 28W) | | | AUG 1989<br>02 | 0.120 | <6 | <2 | 0.13 | 0.14 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 4207 | 330944653 | 01 08534W | SSCCCB 08 | 3006 19 <b>5</b> 6 | LIDDERDALI | 2 (LAT | 42 07 33N | LONG 094 | 46 53W) | | | AUG 1989 | -0 100 | 470 | 4.50 | -0.10 | | -0.40 | -0.10 | -0.10 | -0.10 | -0.10 | | 02 | <0.100 | 470 | 460 | <0.10 | 0.10<br>ASS COUNTY | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 4 | 118180950 | 45801 0753 | 37W10DDBD | | | | 18 18N L | ONG 095 04 | 58W) | | | MAY 1989<br>31 | <0.100 | <20 | 30 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | JUL<br>14 | <0.100 | | | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | SEP<br>28 | <0.100 | | | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 4 | 127060950 | 65501 0773 | 37W21CBDB | 19 | 959MARNE 3 | 3 (LAT 41 | 27 06N L | ONG 095 06 | 55W) | | | MAY 1989<br>31 | <0.100 | <20 | <20 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | JUL<br>14 | <0.100 | | | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | SEP<br>28 | <0.100 | | | <0.10 | 0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 4 | 127140944 | 80701 0773 | าสการ เ รนะ เ | 10 | DEDANTTA 3 | . /I AT 41 | 27 1AN I | ONG 094 46 | : 07W1 | | | AUG 1989 | 12/1405440 | 50701 0775 | 3 <b>4</b> 218000 | 1: | SOURMIIN S | ) (LAI 41 | 27 140 1 | ONG 054 40 | , 0,4, | | | 24 | <0.100 | 70 | 460 | <0.10 | | | <0.10 | <0.10 | <0.10 | <0.10 | | | 847095430 | 001 09241 | NO 5CBDA | | OKEE COUN'I<br>6CLEGHORN | | 2 48 47N 1 | LONG 095 4 | 3 00W) | | | AUG 1989<br>09 | 0.100 | <20 | 140 | | | | | | | | | 42 | 472509232 | 2801 09414 | W18CAAD | | ASAW COUNT<br>79NASHUA 4 | | 47 25N L | ONG 092 32 | 28W) | | | MAY 1989 | | | | | | | -0 | -0.15 | -0 -0 | -0.10 | | 24<br>JUL | <0.100 | <20 | <20 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 25 | <0.100 | | | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | DATE | TIME | GEO-<br>LOGIC<br>UNIT | FLOW<br>RATE<br>(G/M)<br>(00058) | | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | PH<br>(STAND-<br>ARD<br>UNITS)<br>(00400) | HARD-<br>NESS<br>TOTAL<br>(MG/L<br>AS<br>CACO3)<br>(00900) | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915) | MAGNE-<br>SIUM<br>DIS-<br>SOLVEI<br>(MG/L<br>AS MG<br>(00925) | |-----------------------|---------|-----------------------|----------------------------------|------------|-------------------------------------------------|--------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------| | 43 | 0211092 | 270701 09 | 514W24BBA | | ASAW COUNT<br>950IONIA 1 | | 02 11N L | ONG 092 2 | 7 07W) | | | JUL 1989<br>24 | 1145 | 350SLRN | 120 | 5 | 11.5 | | 7.27 | 260 | 67 | 22 | | | | | | | AY COUNTY | | | | | | | | 0809520 | 14001 0943 | 3W33BLD | 07470 195 | 5PETERSON | 2 (LAT 42 | 2 55 08N 1 | LONG 095 | 20 40W) | | | AUG 1989<br>01 | 1100 | 112NBRK | 133 | 30 | 15.0 | 1090 | | 480 | 130 | 38 | | 430105 | 0950221 | .01 09536W2 | 25ACDD | 1975G | ILLETT GRO | VE 1 (LA | E 43 01 0 | 5N LONG 0 | 95 02 21W | ) | | AUG 1989 | | | | 20720 | | | | | | • | | 01 | 1300 | 112PLSC | 35 | 60 | 15.5 | 890 | 7.10 | 460 | 130 | 33 | | 430 | 9220951 | 93501 0963 | 88W03CCDD | 19 | 76EVERLY 3 | (LAT 43 | 09 22N L | ONG 095 1 | 9 35W) | | | MAY 1989<br>25 | 0800 | 111ALVM | <b>2</b> 30 | 30 | 9.0 | 890 | 7.40 | 410 | 110 | 34 | | JUL<br>19 | 0840 | 111ALVM | 230 | 30 | 12.0 | 910 | 7.45 | 410 | | | | SEP<br>18 | 1645 | 111ALVM | 230 | 20 | 14.5 | 1020 | 7.24 | | | | | | | | | | TON COUNTY | | | | | | | | 4209124 | 2501 0910 | 5W3 5CCC | 02714 194 | 6EDGEWOOD | 1 (LAT 42 | 2 38 42N 1 | LONG 091 | 24 25W) | | | JUL 1989<br>20 | 1100 | 350SLRN | 125 | 20 | 10.0 | 450 | 7.40 | 270 | <b>7</b> 3 | 22 | | 42 | 4820091 | .324002 092 | 206W03CC | 1 | 985 <b>VOLGA 2</b> | (LAT 42 | 48 20N L | ONG NG1 3 | 2 40₩) | | | JUL 1989 | 402002 | .024002 001 | | • | 303101011 2 | (1211 42 | 40 20M 2 | | 2 40.11, | | | 19 | 1100 | 364GLEN | 195 | 20 | 13.0 | 500 | 7.40 | 310 | 72 | 32 | | 425 | 1380912 | 34901 0930 | 5W23ABBB | 18420 19 | 65ELKADER | 5 (LAT 42 | 2 51 38N | LONG 091 | 23 49W) | | | JUL 1989 | 0000 | 264Cmmn | 200 | 20 | | 500 | <b>7</b> 2 <b>7</b> | 200 | e. | 20 | | 20 | 0900 | 364STPR | 300 | 20 | 14.0 | 560 | 7.37 | 280 | 64 | 29 | | 4301 | 3009110 | 3001 09503 | W22DD | 05311 195 | 2MCGREGOR | 6 (LAT 43 | 3 01 30N | LONG 091 | 10 30W) | | | JUL 1989<br>19 | 1600 | 371SLRC | 275 | 20 | 10.0 | 610 | 6.93 | 310 | 75 | 29 | | | | | | | TON COUNTY | | | | | | | | 2909015 | 1801 08106 | E27CBC | 22806 197 | 1CAMANCHE | 3 (LAT 41 | 1 47 29N 1 | LONG 090 | 15 18W) | | | JUN 1989<br>02<br>JUL | 0930 | 112PLSC | 210 | 20 | 13.0 | 360 | 7.11 | 150 | 35 | 14 | | 18<br>SEP | 1100 | 112PLSC | 210 | 20 | 13.0 | 325 | 7.40 | | | | | 22 | 1100 | 112PLSC | 210 | 20 | 13.0 | 320 | 7.30 | | | | | 41575 | 3090490 | 411 08301 | 26CBDC | 1963 | LOST NATIO | N 2 (LAT | 41 57 53 | N LONG 09 | 0 49 04W) | | | JUN 1989 | | | | | | | | | | | | 02<br>JUL | 1400 | 350SLRN | 300 | 10 | 13.0 | 720 | 7.58 | 390 | 93 | 39 | | 17 | 1245 | 350SLRN | 300 | 15<br>CDAW | 15.0 | 750 | 7.22 | | | | | 4207 | 3609534 | 2401 08541 | LW36CCBC | | FORD COUNT<br>1RICKETTS | | 2 07 36N 1 | LONG 095 | 34 28W) | | | MAY 1989<br>24 | 1100 | 111SDRV | 85 | 20 | 11.5 | 920 | 7.30 | 420 | 110 | 36 | | JUL<br>18 | 1030 | 111SDRV | 85 | 15 | 11.5 | 890 | 7.20 | | | | | SEP<br>18 | 1000 | 111SDRV | 85 | 15 | 11.0 | 860 | 7.28 | | | | | DATE | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | ALKA-<br>LINITY<br>LAB<br>(MG/L<br>AS<br>CACO3)<br>(90410) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)<br>(00945) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)<br>(00950) | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2)<br>(00955) | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L)<br>(70300) | NITRO-<br>GEN,<br>NO2+NO3<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00631) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | |------------------|---------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------| | | 302110922 | 70701 095 | 14W24BBA0 | | SAW COUNT | | 02 11N L | ONG 092 27 | 7 07W) | | | JUL 1989 | | | | | | - ( | - | | , | | | 24 | 22 | 2.4 | | 1.0 | | 0.85 | 12 | 302 | <0.100 | 2.00 | | 42: | 5508095204 | 001 09438 | W33BLD | | COUNTY<br>SPETERSON | 2 (LAT 42 | 2 55 08N | LONG 095 2 | 20 40W) | | | AUG 1989<br>01 | 20 | 4.0 | 356 | 42 | 120 | 0.30 | 38 | 698 | | 2.00 | | 4301 | 0509502210 | 1 09536W2 | 5ACDD | 197 <b>5</b> G | ILLETT GR | OVE 1 (LAT | 43 01 0 | 5N LONG 09 | 95 02 21W | ) | | AUG 1989<br>01 | 11 | 1.6 | 366 | 36 | 56 | 0.35 | 25 | 542 | 3.50 | <0.100 | | <b>01</b> | ** | 1.0 | 300 | 30 | 30 | 0.55 | 23 | 342 | 3.30 | ~0.100 | | | 3092209519 | 3501 0963 | 8W03CCDD | 19 | 76EVERLY | 3 (LAT 43 | 09 22N L | ONG 095 19 | 9 35W) | | | MAY 1989<br>25 | 15 | 6.5 | 296 | 58 | 50 | 0.20 | 25 | 516 | 9.50 | 0.200 | | JUL<br>19<br>SEP | | | | | | | | | 9.20 | 0.200 | | 18 | | | | | | | | | 9.50 | 0.100 | | 42: | 3842091242 | 501 09105 | W35CCC | | TON COUNT<br>6EDGEWOOD | | 2 38 42N | LONG 091 2 | 24 25W) | | | JUL 1989<br>20 | 10 | 1.4 | | 2.0 | 32 | 0.25 | 15 | 214 | <0.100 | 0.100 | | | <b>42482</b> 00913 | 24002 092 | 06W03CC | 1 | .985 <b>VOLGA</b> | 2 (LAT 42 | 48 20N L | ONG 091 32 | 2 40W) | | | JUL 1989<br>19 | 7.3 | 1.6 | | 9.5 | 36 | 0.30 | 13 | 268 | 5.00 | <0.100 | | 19 | 7.3 | 1.6 | | 9.5 | 36 | 0.30 | 13 | 200 | 3.00 | ~0.100 | | | 2513809123 | 4901 0930 | 5W23ABBB | 18420 19 | 65ELKADER | 5 (LAT 42 | 2 51 38N | LONG 091 2 | 23 49W) | | | JUL 1989<br>20 | 11 | 4.6 | | 4.5 | 62 | 0.95 | 8.0 | 208 | 0.100 | <0.100 | | 630 | 0130091103 | 001 00502 | เพวจกก | 05211 105 | OMCCDECOR | C /TAT AS | 1 01 20W | LONG 091 1 | ነው ማህጠን | | | JUL 1989 | 7100031103 | 001 09303 | WEEDD | 03311 193 | ZPCGNIOON | U (LAI 4 | 01 00N | LONG USI . | 10 00117 | | | 19 | 30 | 2.6 | | 32 | 36 | 0.15 | 12 | 400 | 2.20 | <0.100 | | 414 | 4729090151 | 801 08106 | E27CBC | | TON COUNT<br>1CAMANCHE | | L 47 29N | LONG 090 1 | L5 18W) | | | JUN 1989<br>02 | 10 | 1.0 | | 22 | 22 | <0.10 | 22 | 164 | 9.00 | <0.100 | | JUL<br>18 | | | | | | | | | 9.20 | <0.100 | | SEP<br>22 | | | | | | | | | 8.50 | <0.100 | | 415 | 7530 <b>9049</b> 04 | 11 08301E | 26CBDC | 1963 | LOST NATIO | ON 2 (LAT | 41 57 53 | N LONG 090 | 3 49 04W) | | | JUN 1989<br>02 | 18 | 2.0 | | 34 | 30 | 0.25 | 14 | 394 | 1.60 | <0.100 | | JUL<br>17 | | | | | | | | | 2.60 | <0.100 | | 421 | 0736095342 | 401 08541 | W36CCBC | CRAWF | ORD COUNT | Y<br>2 (LAT 42 | 2 07 36N | LONG 095 3 | 34 28W) | | | MAY 1989 | | | | | | | | | | | | 24<br>JUL | 12 | 3.1 | 354 | 30 | 76 | 0.35 | 22 | 554 | 1.80 | <0.100 | | 18<br>SEP | | | | | | | | | 1.90 | <0.100 | | 18 | | | | | | | | | 2.30 | <0.100 | | | | | | | • | | | | | | |----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------| | DATE | PHOS-<br>PHOROUS<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | IRON,<br>DIS-<br>SOLVED<br>(UG/L<br>AS FE) | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(UG/L<br>AS MN) | | CYAN-<br>AZINE<br>TOTAL<br>(UG/L)<br>cide conce | (UG/L) | | METOLA-<br>CHLOR<br>IN<br>WHOLE<br>WATER<br>(UG/L)<br>ed as tota<br>(39356) | | | | | | | | | | | | | | | | 4 | 302110922 | 70701 095 | L4W24BBAC | | SAW COUNTY<br>950IONIA 1 | | 02 11N L | ONG 092 27 | 07W) | | | JUL 1989 | | | | | | · | | | • | | | 24 | <0.100 | 820 | <20 | <0.10 | 0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | | | | | | Y COUNTY | | | | | | | | 508095204 | 001 09438V | V33BLD | 07470 195 | 5PETERSON | 2 (LAT 42 | 55 08N | LONG 095 2 | 0 40W) | | | AUG 1989<br>01 | 0.100 | 500 | 610 | 0.13 | 0.25 | <0.10 | 0.10 | <0.10 | <0.10 | <0.10 | | | | | | | | • • • • • • • • • • • • • • • • • • • • | | - • - • | | | | 43010 | 509502210 | 1 09536 <b>W2</b> 5 | ACDD | 1975G | ILLETT GRO | VE 1 (LAT | 43 01 0 | 5N LONG 09 | 5 02 21W | ) | | AUG 1989 | | | | | | | | | | | | 01 | <0.100 | <20 | <20 | 0.40 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 43 | 092209519 | 3501 09638 | W03CCDD | 10. | 76EVERLY 3 | CLAT 43 | 09 22N T. | ONG 095 19 | 35W) | | | MAY 1989 | 002200310 | 0301 03000 | | 13. | OLVEREI O | (LAI 40 | 03 22N D | 5110 035 15 | 03117 | | | 25 | <0.100 | <20 | <20 | 3.1 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | JUL<br>19 | <0.100 | | | 2.4 | <0.10 | <0.10 | <0.10 | 0.26 | <0.10 | <0.10 | | SEP<br>18 | <0.100 | | | 2.3 | <0.10 | <0.10 | <0.10 | 0.13 | <0.10 | <0.10 | | | | | | CLAV | ION COUNTY | | | | | | | 423 | 842091242 | 501 09105W | 13 5CCC | | | | 38 42N | LONG 091 2 | 4 25W) | | | JUL 1989 | | | | | | | | | | | | 20 | <0.100 | 1900 | 30 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | | | | | | | | | | | | | 4 | 248200913 | 24002 0920 | 6W03CC | 19 | 985VOLGA 2 | CLAT 42 | 48 20N L | ONG 091 32 | 40W) | | | | 248200913 | 24002 0920 | 6W03CC | 19 | 985VOLGA 2 | (LAT 42 | 48 20N L | ONG 091 32 | 40W) | | | JUL 1989<br>19 | 248200913:<br><0.100 | 24002 0920<br><b>&lt;</b> 20 | 6W03CC<br><20 | 19<br><0.10 | 985VOLGA 2 | (LAT 42<br><0.10 | 48 20N L | ONG 091 32 | 40W)<br><0.10 | <0.10 | | JUL 1989<br>19 | <0.100 | <20 | <20 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | JUL 1989<br>19 | <0.100 | | <20 | <0.10 | <0.10 | <0.10 | <0.10 | | <0.10 | <0.10 | | JUL 1989<br>19<br>42<br>JUL 1989 | <0.100 | <20 | <20 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | JUL 1989<br>19 | <0.100<br>513809123 | <20<br>4901 09305 | <20<br>SW23ABBB | <0.10<br>18420 196 | <0.10 | <0.10<br>5 (LAT 42 | <0.10 | <0.10<br>LONG 091 2 | <0.10<br>3 49W) | | | JUL 1989<br>19<br>42<br>JUL 1989<br>20 | <0.100<br>513809123<br><0.100 | <20<br>4901 09305 | <20<br>5W23ABBB<br><20 | <0.10<br>18420 196<br><0.10 | <0.10<br>65ELKADER<br><0.10 | <0.10<br>5 (LAT 42<br><0.10 | <0.10<br>51 38N 1 | <0.10<br>LONG 091 2 | <0.10<br>3 49W)<br><0.10 | | | JUL 1989 19 42 JUL 1989 20 430 JUL 1989 | <0.100<br>513809123<br><0.100<br>130091103 | <20<br>4901 09305<br>20<br>001 09503W | <20<br>6W23ABBB<br><20<br>722DD | <0.10<br>18420 196<br><0.10<br>05311 1952 | <0.10<br>65ELKADER<br><0.10<br>2MCGREGOR | <0.10<br>5 (LAT 42<br><0.10<br>6 (LAT 43 | <0.10 51 38N 1 <0.10 01 30N 1 | <0.10<br>LONG 091 2<br><0.10<br>LONG 091 1 | <0.10<br>3 49W)<br><0.10<br>0 30W) | <0.10 | | JUL 1989<br>19<br>42<br>JUL 1989<br>20 | <0.100<br>513809123<br><0.100 | <20<br>4901 09305<br>20 | <20<br>5W23ABBB<br><20 | <0.10<br>18420 196<br><0.10<br>05311 1952<br><0.10 | <0.10<br>65ELKADER<br><0.10<br>2MCGREGOR<br><0.10 | <0.10 5 (LAT 42 <0.10 6 (LAT 43 <0.10 | <0.10<br>51 38N 1 | <0.10<br>LONG 091 2<br><0.10 | <0.10<br>3 49W)<br><0.10 | | | JUL 1989 19 42 JUL 1989 20 430 JUL 1989 19 | <0.100<br>513809123<br><0.100<br>130091103<br><0.100 | <20<br>4901 09305<br>20<br>001 09503W | <20<br>5W23ABBB<br><20<br>722DD<br><20 | <0.10 18420 196 <0.10 05311 1952 <0.10 CLI | <0.10 65ELKADER <0.10 2MCGREGOR <0.10 NTON COUNT | <0.10 5 (LAT 42 <0.10 6 (LAT 43 <0.10 Y | <0.10 51 38N 3 <0.10 01 30N 3 <0.10 | <0.10<br>LONG 091 2<br><0.10<br>LONG 091 1 | <0.10<br>3 49W)<br><0.10<br>0 30W)<br><0.10 | <0.10 | | JUL 1989 19 42 JUL 1989 20 430 JUL 1989 19 | <0.100<br>513809123<br><0.100<br>130091103<br><0.100 | <20<br>4901 09305<br>20<br>001 09503W<br><20 | <20<br>5W23ABBB<br><20<br>722DD<br><20 | <0.10 18420 196 <0.10 05311 1952 <0.10 CLI | <0.10 65ELKADER <0.10 2MCGREGOR <0.10 NTON COUNT | <0.10 5 (LAT 42 <0.10 6 (LAT 43 <0.10 Y | <0.10 51 38N 3 <0.10 01 30N 3 <0.10 | <0.10 LONG 091 2 <0.10 LONG 091 1 <0.10 | <0.10<br>3 49W)<br><0.10<br>0 30W)<br><0.10 | <0.10 | | JUL 1989 19 42 JUL 1989 20 430 JUL 1989 19 414 JUN 1989 02 | <0.100<br>513809123<br><0.100<br>130091103<br><0.100 | <20<br>4901 09305<br>20<br>001 09503W<br><20 | <20<br>5W23ABBB<br><20<br>722DD<br><20 | <0.10 18420 196 <0.10 05311 1952 <0.10 CLI | <0.10 65ELKADER <0.10 2MCGREGOR <0.10 NTON COUNT | <0.10 5 (LAT 42 <0.10 6 (LAT 43 <0.10 Y | <0.10 51 38N 3 <0.10 01 30N 3 <0.10 | <0.10 LONG 091 2 <0.10 LONG 091 1 <0.10 | <0.10<br>3 49W)<br><0.10<br>0 30W)<br><0.10 | <0.10 | | JUL 1989 19 42 JUL 1989 20 430 JUL 1989 19 414 JUN 1989 02 JUL 1889 | <0.100 513809123 <0.100 1300911030 <0.100 7290901510 | <20 4901 09305 20 001 09503W <20 801 08106E | <20<br>5W23ABBB<br><20<br>722DD<br><20 | <0.10 18420 196 <0.10 05311 1953 <0.10 CLII 22806 1973 | <0.10 65ELKADER <0.10 2MCGREGOR <0.10 NTON COUNT | <0.10 5 (LAT 42 <0.10 6 (LAT 43 <0.10 Y 3 (LAT 41 | <0.10 51 38N 1 <0.10 01 30N 1 <0.10 47 29N 1 | <0.10 LONG 091 2 <0.10 LONG 091 1 <0.10 LONG 090 1 | <0.10 3 49W) <0.10 0 30W) <0.10 5 18W) | <0.10 | | JUL 1989 19 42 JUL 1989 20 430 JUL 1989 19 414 JUN 1989 02 JUL | <0.100 513809123 <0.100 130091103 <0.100 7290901513 <0.100 | <20 4901 09305 20 001 09503W <20 801 08106E | <20 8W23ABBB <20 822DD <20 827CBC <20 | <0.10 18420 196 <0.10 05311 1953 <0.10 CLII 22806 1973 <0.10 | <0.10 65ELKADER <0.10 2MCGREGOR <0.10 NTON COUNT 1CAMANCHE <0.10 | <0.10 5 (LAT 42 <0.10 6 (LAT 43 <0.10 Y 3 (LAT 41 <0.10 | <0.10 51 38N 1 <0.10 01 30N 1 <0.10 47 29N 1 <0.10 | <0.10 LONG 091 2 <0.10 LONG 091 1 <0.10 LONG 090 1 <0.10 | <0.10 3 49W) <0.10 0 30W) <0.10 5 18W) <0.10 | <0.10<br><0.10 | | JUL 1989 19 42 JUL 1989 20 430 JUL 1989 19 414 JUN 1989 02 JUL 18 SEP 22 | <0.100 5138091234 <0.100 1300911034 <0.100 7290901514 <0.100 <0.100 <0.100 | <20 4901 09305 20 001 09503W <20 801 08106E <20 | <20 6W23ABBB <20 622DD <20 627CBC <20 | <0.10 18420 196 <0.10 05311 1952 <0.10 CLIP 22806 1973 <0.10 <0.10 <0.10 | <0.10 65ELKADER <0.10 2MCGREGOR <0.10 NTON COUNT 1CAMANCHE <0.10 <0.10 <0.10 | <0.10 5 (LAT 42 <0.10 6 (LAT 43 <0.10 Y 3 (LAT 41 <0.10 <0.10 <0.10 | <0.10 51 38N 3 <0.10 01 30N 3 <0.10 47 29N 3 <0.10 <0.10 <0.10 | <0.10 LONG 091 2 <0.10 LONG 091 1 <0.10 LONG 090 1 <0.10 <0.10 <0.10 | <0.10 3 49W) <0.10 0 30W) <0.10 5 18W) <0.10 <0.10 <0.10 | <0.10<br><0.10<br><0.10<br><0.10 | | JUL 1989 19 42 JUL 1989 20 430 JUL 1989 19 414 JUN 1989 02 JUL 18 SEP 22 | <0.100 5138091234 <0.100 1300911034 <0.100 7290901514 <0.100 <0.100 <0.100 | <20 4901 09305 20 001 09503W <20 801 08106E <20 | <20 6W23ABBB <20 622DD <20 627CBC <20 | <0.10 18420 196 <0.10 05311 1952 <0.10 CLIP 22806 1973 <0.10 <0.10 <0.10 | <0.10 65ELKADER <0.10 2MCGREGOR <0.10 NTON COUNT 1CAMANCHE <0.10 <0.10 <0.10 | <0.10 5 (LAT 42 <0.10 6 (LAT 43 <0.10 Y 3 (LAT 41 <0.10 <0.10 <0.10 | <0.10 51 38N 3 <0.10 01 30N 3 <0.10 47 29N 3 <0.10 <0.10 <0.10 | <0.10 LONG 091 2 <0.10 LONG 091 1 <0.10 LONG 090 1 <0.10 <0.10 | <0.10 3 49W) <0.10 0 30W) <0.10 5 18W) <0.10 <0.10 <0.10 | <0.10<br><0.10<br><0.10<br><0.10 | | JUL 1989 19 42 JUL 1989 20 430 JUL 1989 19 414 JUN 1989 02 JUL 18 SEP 22 4157 JUN 1989 | <0.100 513809123 <0.100 1300911036 <0.100 7290901516 <0.100 <0.100 <0.100 530904904 | <20 4901 09305 20 001 09503W <20 801 08106E <20 11 08301E2 | <20 8W23ABBB <20 822DD <20 827CBC <20 86CBDC | <0.10 18420 196 <0.10 05311 1953 <0.10 22806 1973 <0.10 <0.10 <0.10 19631 | <0.10 65ELKADER <0.10 2MCGREGOR <0.10 NTON COUNT 1CAMANCHE <0.10 <0.10 <0.10 LOST NATIO | <0.10 5 (LAT 42 <0.10 6 (LAT 43 <0.10 Y 3 (LAT 41 <0.10 <0.10 <0.10 N 2 (LAT | <0.10 51 38N 1 <0.10 01 30N 1 <0.10 47 29N 1 <0.10 <0.10 <0.10 41 57 53 | <0.10 LONG 091 2 <0.10 LONG 091 1 <0.10 LONG 090 1 <0.10 <0.10 <0.10 N LONG 090 | <0.10 3 49W) <0.10 0 30W) <0.10 5 18W) <0.10 <0.10 <0.10 49 04W) | <0.10<br><0.10<br><0.10<br><0.10<br><0.10 | | JUL 1989 19 42 JUL 1989 20 430 JUL 1989 19 414 JUN 1989 02 JUL 18 SEP 22 4157 JUN 1989 02 JUL 1989 02 | <0.100 513809123 <0.100 1300911030 <0.100 7290901510 <0.100 <0.100 <0.100 530904904 <0.100 | <20 4901 09305 20 001 09503W <20 801 08106E <20 | <20 8W23ABBB <20 822DD <20 827CBC <20 86CBDC <20 | <0.10 18420 196 <0.10 05311 1952 <0.10 22806 1977 <0.10 <0.10 <0.10 19631 <0.10 | <0.10 65ELKADER <0.10 2MCGREGOR <0.10 NTON COUNT ICAMANCHE <0.10 <0.10 <0.10 <0.10 <0.10 | <0.10 5 (LAT 42 <0.10 6 (LAT 43 <0.10 Y (LAT 41 <0.10 <0.10 <0.10 <1.10 X (LAT 41 <0.10 | <0.10 51 38N 1 60.10 01 30N 1 60.10 47 29N 1 60.10 60.10 41 57 531 60.10 | <0.10 LONG 091 2 <0.10 LONG 091 1 <0.10 <0.10 <0.10 <0.10 <0.10 N LONG 090 <0.10 | <0.10 3 49W) <0.10 0 30W) <0.10 5 18W) <0.10 <0.10 <0.10 49 04W) <0.10 | <0.10<br><0.10<br><0.10<br><0.10<br><0.10 | | JUL 1989 19 42 JUL 1989 20 430 JUL 1989 19 414 JUN 1989 02 JUL 18 SEP 22 4157 JUN 1989 02 | <0.100 513809123 <0.100 1300911036 <0.100 7290901516 <0.100 <0.100 <0.100 530904904 | <20 4901 09305 20 001 09503W <20 801 08106E <20 11 08301E2 | <20 8W23ABBB <20 822DD <20 827CBC <20 86CBDC | <0.10 18420 196 <0.10 05311 1952 <0.10 22806 1973 <0.10 <0.10 <0.10 19631 <0.10 <0.10 | <0.10 65ELKADER <0.10 2MCGREGOR <0.10 NTON COUNT 1CAMANCHE <0.10 <0.10 <0.10 <0.10 <0.10 | <0.10 5 (LAT 42 <0.10 6 (LAT 43 <0.10 Y (LAT 41 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | <0.10 51 38N 1 <0.10 01 30N 1 <0.10 47 29N 1 <0.10 <0.10 <0.10 41 57 53 | <0.10 LONG 091 2 <0.10 LONG 091 1 <0.10 LONG 090 1 <0.10 <0.10 <0.10 N LONG 090 | <0.10 3 49W) <0.10 0 30W) <0.10 5 18W) <0.10 <0.10 <0.10 49 04W) | <0.10<br><0.10<br><0.10<br><0.10<br><0.10 | | JUL 1989 19 42 JUL 1989 20 430 JUL 1989 19 414 JUN 1989 02 JUL 18 SEP 22 4157 JUN 1989 02 JUL 17 | <0.100 513809123 <0.100 130091103 <0.100 729090151 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 | <20 4901 09305 20 001 09503W <20 801 08106E <20 11 08301E2 | <20 8W23ABBB <20 822DD <20 827CBC <20 86CBDC <20 | <0.10 18420 196 <0.10 05311 1952 <0.10 22806 1977 <0.10 <0.10 19631 <0.10 CRAWI | <0.10 65ELKADER <0.10 2MCGREGOR <0.10 NTON COUNT CAMANCHE <0.10 <0.10 <0.10 <0.10 FORD COUNT | <0.10 5 (LAT 42 <0.10 6 (LAT 43 <0.10 Y 3 (LAT 41 <0.10 <0.10 <0.10 N 2 (LAT <0.10 <0.10 Y | <0.10 51 38N 1 60.10 01 30N 1 60.10 47 29N 1 60.10 60.10 41 57 531 60.10 60.10 | <0.10 LONG 091 2 <0.10 LONG 091 1 <0.10 <0.10 <0.10 <0.10 <0.10 N LONG 090 <0.10 | <0.10 3 49W) <0.10 0 30W) <0.10 5 18W) <0.10 <0.10 <0.10 49 04W) <0.10 <0.10 | <0.10<br><0.10<br><0.10<br><0.10<br><0.10 | | JUL 1989 19 42 JUL 1989 20 430 JUL 1989 19 414 JUN 1989 02 JUL 18 SEP 22 4157 JUN 1989 02 JUL 17 | <0.100 513809123 <0.100 130091103 <0.100 729090151 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 | <20 4901 09305 20 001 09503w <20 801 08106E <20 11 08301E2 <20 | <20 8W23ABBB <20 822DD <20 827CBC <20 86CBDC <20 | <0.10 18420 196 <0.10 05311 1952 <0.10 22806 1977 <0.10 <0.10 19631 <0.10 CRAWI | <0.10 65ELKADER <0.10 2MCGREGOR <0.10 NTON COUNT CAMANCHE <0.10 <0.10 <0.10 <0.10 FORD COUNT | <0.10 5 (LAT 42 <0.10 6 (LAT 43 <0.10 Y 3 (LAT 41 <0.10 <0.10 <0.10 N 2 (LAT <0.10 <0.10 Y | <0.10 51 38N 1 60.10 01 30N 1 60.10 47 29N 1 60.10 60.10 41 57 531 60.10 60.10 | <0.10 LONG 091 2 <0.10 LONG 091 1 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | <0.10 3 49W) <0.10 0 30W) <0.10 5 18W) <0.10 <0.10 <0.10 49 04W) <0.10 <0.10 | <0.10<br><0.10<br><0.10<br><0.10<br><0.10 | | JUL 1989 19 42 JUL 1989 20 430 JUL 1989 19 414 JUN 1989 02 JUL 18 SEP 22 4157 JUN 1989 02 4157 JUN 1989 02 4157 JUN 1989 02 420 MAY 1989 24 | <0.100 513809123 <0.100 130091103 <0.100 729090151 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 | <20 4901 09305 20 001 09503w <20 801 08106E <20 11 08301E2 <20 | <20 8W23ABBB <20 822DD <20 827CBC <20 86CBDC <20 | <0.10 18420 196 <0.10 05311 1952 <0.10 22806 1977 <0.10 <0.10 19631 <0.10 CRAWI | <0.10 65ELKADER <0.10 2MCGREGOR <0.10 NTON COUNT CAMANCHE <0.10 <0.10 <0.10 <0.10 FORD COUNT | <0.10 5 (LAT 42 <0.10 6 (LAT 43 <0.10 Y 3 (LAT 41 <0.10 <0.10 <0.10 N 2 (LAT <0.10 <0.10 Y | <0.10 51 38N 1 60.10 01 30N 1 60.10 47 29N 1 60.10 60.10 41 57 531 60.10 60.10 | <0.10 LONG 091 2 <0.10 LONG 091 1 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | <0.10 3 49W) <0.10 0 30W) <0.10 5 18W) <0.10 <0.10 <0.10 49 04W) <0.10 <0.10 | <0.10<br><0.10<br><0.10<br><0.10<br><0.10 | | JUL 1989 19 42 JUL 1989 20 430 JUL 1989 19 414 JUN 1989 02 JUL 18 4157 JUN 1989 02 4157 JUN 1989 02 4157 JUN 1989 02 420 MAY 1989 24 JUL 18 | <0.100 513809123 <0.100 1300911030 <0.100 7290901510 <0.100 <0.100 <0.100 <0.100 7360953420 | <20 4901 09305 20 001 09503w <20 801 08106E <20 11 08301E2 <20 401 08541w | <20 8W23ABBB <20 822DD <20 827CBC <20 86CBDC <20 336CCBC | <0.10 18420 196 <0.10 05311 1952 <0.10 22806 1977 <0.10 <0.10 19631 <0.10 CRAWI 1933 | <0.10 55ELKADER <0.10 2MCGREGOR <0.10 NTON COUNT 1CAMANCHE <0.10 <0.10 <0.10 <0.10 FORD COUNT 1RICKETTS | <0.10 5 (LAT 42 <0.10 6 (LAT 43 <0.10 Y 3 (LAT 41 <0.10 <0.10 <0.10 Y 2 (LAT <0.10 Y 2 (LAT <0.10 Y 2 (LAT 42 | <0.10 51 38N 1 60.10 01 30N 1 60.10 47 29N 1 60.10 60.10 41 57 531 60.10 60.10 60.10 60.10 | <0.10 LONG 091 2 <0.10 LONG 091 1 <0.10 LONG 090 1 <0.10 <0.10 <0.10 0.10 LONG 090 LONG 090 <0.10 LONG 095 3 | <0.10 3 49W) <0.10 0 30W) <0.10 5 18W) <0.10 <0.10 49 04W) <0.10 <0.10 4 28W) | <0.10<br><0.10<br><0.10<br><0.10<br><0.10 | | JUL 1989 19 42 JUL 1989 20 430 JUL 1989 19 414 JUN 1989 02 JUL 18 SEP 22 4157 JUN 1989 02 JUL 17 420 MAY 1989 24 JUL | <0.100 513809123 <0.100 1300911036 <0.100 7290901516 <0.100 <0.100 <0.100 530904904 <0.100 7360953426 0.100 | <20 4901 09305 20 001 09503W <20 801 08106E <20 11 08301E2 <20 401 08541W 510 | <20 8W23ABBB <20 722DD <20 727CBC <20 736CCBC <360 | <0.10 18420 196 <0.10 05311 1952 <0.10 22806 1973 <0.10 <0.10 19631 <0.10 CRAWI 1933 <0.10 | <0.10 65ELKADER <0.10 2MCGREGOR <0.10 NTON COUNT 1CAMANCHE <0.10 <0.10 <0.10 <0.10 <footnotes count="" of="" td="" th<="" the=""><td>&lt;0.10 5 (LAT 42 &lt;0.10 6 (LAT 43 &lt;0.10 Y 3 (LAT 41 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 Y 2 (LAT &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10</td><td>&lt;0.10 51 38N 1 &lt;0.10 01 30N 1 &lt;0.10 47 29N 1 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10</td><td>&lt;0.10 LONG 091 2 &lt;0.10 LONG 091 1 &lt;0.10 LONG 090 1 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 co.10 co.10</td><td>&lt;0.10 3 49W) &lt;0.10 0 30W) &lt;0.10 5 18W) &lt;0.10 &lt;0.10 &lt;0.10 49 04W) &lt;0.10 &lt;0.10 4 28W) &lt;0.10</td><td>&lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10 &lt;0.10</td></footnotes> | <0.10 5 (LAT 42 <0.10 6 (LAT 43 <0.10 Y 3 (LAT 41 <0.10 <0.10 <0.10 <0.10 Y 2 (LAT <0.10 <0.10 <0.10 <0.10 | <0.10 51 38N 1 <0.10 01 30N 1 <0.10 47 29N 1 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | <0.10 LONG 091 2 <0.10 LONG 091 1 <0.10 LONG 090 1 <0.10 <0.10 <0.10 <0.10 co.10 | <0.10 3 49W) <0.10 0 30W) <0.10 5 18W) <0.10 <0.10 <0.10 49 04W) <0.10 <0.10 4 28W) <0.10 | <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | | | | | • | | m. domin | | | | | 000 | |-----------------------|--------------|-----------------------|----------------------------------|----------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------| | DATE | TIME | GEO-<br>LOGIC<br>UNIT | FLOW<br>RATE<br>(G/M)<br>(00058) | PUMP<br>OR FLOW<br>PERIOD<br>PRIOR<br>TO SAM-<br>PLING<br>(MIN)<br>(72004) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | PH<br>(STAND-<br>ARD<br>UNITS)<br>(00400) | HARD-<br>NESS<br>TOTAL<br>(MG/L<br>AS<br>CACO3)<br>(00900) | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915) | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925) | | 4210 | 0409527 | 2701 08540 | W13CCCC | | FORD COUNT | | 42 10 04N | TONG 095 | 27 27W) | | | AUG 1989 | .0403327 | 2701 00540 | J#13000C | 132 | JOCHLEDWI V | 3 5 (LAI | 42 10 04N | DOMO 033 | 2, 2,4, | | | 17 | 1130 | 111ALVM | 110 | 30 | 11.0 | 870 | 7.20 | 440 | 120 | 35 | | 414130 | 0940215 | 01 08027 <b>W</b> 3 | 31CDAA | | LAS COUNT<br>ALLAS CEN | | T 41 41 3 | ON LONG O | 94 02 15W | ) | | MAY 1989 | 1600 | | *** | | | 700 | 7 00 | | | | | 22<br>AUG<br>04 | 1600<br>1215 | 111ALVM | 140 | 15 | 12.0 | 722 | 7.20 | | | | | 04 | 1213 | 111ALVM | 150 | 30 | 13.0 | 745 | 7.20 | | | | | 415 | 0550941 | 31202 0812 | 29W10BBBA | 19 | 69DAWSON | 2 (LAT 41 | . 50 55N L | ONG 094 1 | 3 12W) | | | MAY 1989<br>23 | 0845 | 111ALVM | 40 | 15 | 11.0 | 670 | 7.40 | | | | | AUG<br>04 | 1100 | 111ALVM | 85 | 20 | 12.5 | 650 | 7.30 | | | | | 42283 | 4091281 | .601 08905W | √31DAAB | | WARE COUNT<br>MANCHESTE | | 42 28 34N | LONG 091 | 28 16W) | | | JUN 1989<br>01 | 1045 | 350SLRN | 600 | 20 | 11.0 | 568 | 7.50 | 290 | 72 | 26 | | JUL<br>20 | 1300 | 350SLRN | 600 | 20 | 11.0 | 490 | 7.37 | | | | | SEP<br>14 | 1000 | 350SLRN | 760 | 15 | 10.0 | 480 | 7.42 | | | | | 41001 | 5091093 | 401 07203 | N25CBCC 2 | | OINES COU<br>MEDIAPOLI | | 41 00 15N | LONG 091 | 09 34W) | | | JUL 1989<br>25 | 0730 | 330MDVU | 40 | 10 | 12.5 | 675 | 7.47 | 330 | 82 | 30 | | | 0,00 | 000.2.10 | 40 | | QUE COUNT | _ | | 555 | - | | | | 7050905 | 61201 0880 | 01W11CABB | | | | 2 27 05N | LONG 090 | 56 12W) | | | JUL 1989<br>18 | 1530 | 358ALXD | 150 | 20 | 12.0 | 820 | 7.00 | 380 | . 95 | 35 | | 42291<br>JUN 1989 | .0091072 | 701 08902 | N30DCCC | 1959 | DYERSVILL | E 1 (LAT | 42 29 10N | LONG 091 | 07 27W) | | | 01<br>JUL | 0915 | 350SLRN | 700 | 5 | 13.0 | 1100 | 6.69 | 470 | 110 | 47 | | 18 | 1600 | 350SLRN | 425 | 20 | 14.0 | 1100 | 7.25 | | | | | | 5091064 | 901 08902 | NO5CBBB | 1898 | NEW VIENN | A 1 (LAT | 42 33 05N | LONG 091 | 06 49W) | | | JUN 1989<br>01<br>JUL | 0745 | 350SLRN | 50 | 10 | 11.0 | 630 | 7.35 | 360 | 86 | 36 | | 19<br>SEP | 0800 | 350SLRN | | 20 | 10.0 | 720 | 7.16 | | | | | 14 | 1230 | 350SLRN | 50 | 20 | 11.0 | 710 | 7.10 | | | | | 4300 | 1009139 | 0102 0950 | 7W34ACAD | | ETTE COUN<br>4CLERMONT | | 3 00 10N | LONG 091 | 39 10W) | | | JUL 1989<br>19 | 1300 | 364GLEN | 100 | 20 | 10.0 | 750 | 6.42 | 350 | 89 | 32 | | 42575 | 4092515 | 201 09417 | W16BBAA | | OYD COUNT<br>MARBLE RO | | 42 57 54 | N LONG 09 | 2 51 52W) | | | JUL 1989 | | | | | | | | _ | | | | 25 | 1130 | 344CDVL | 194 | 15 | 10.0 | | 7.13 | 230 | 68 ′ | 15 | | 4253 | 4109313 | 2501 0932 | OWO SDDD | | NKLIN COU<br>6SHEFFIEL | | 42 53 41N | LONG 093 | 13 25W) | | | MAY 1989<br>23 | 1345 | 110QRNR | 45 | 20 | 10.0 | 614 | 7.28 | 290 | 74 | 26 | | AUG<br>01 | | 110QRNR<br>110QRNR | 40 | 20 | 12.0 | 620 | 7.20 | 250 | | | | <b>U</b> 1 | 1200 | TTOAIM | 40 | 20 | 12.0 | 020 | 7.20 | | | | | | | | | | DE GOIDII | | | | | | |------------------|---------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------| | DATE | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | ALKA-<br>LINITY<br>LAB<br>(MG/L<br>AS<br>CACO3)<br>(90410) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)<br>(00945) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)<br>(00950) | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2)<br>(00955) | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L)<br>(70300) | NITRO-<br>GEN,<br>NO2+NO3<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00631) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | | 421 | L0 <b>04095272</b> | 701 08540 | N13CCCC | | FORD COUNT | | 42 10 04N | LONG 095 | 27 27W) | | | AUG 1989 | | | | | | • | | | | | | 17 | , 14 | 4.6 | 336 | 31<br>DAT | 68<br>LAS COUNT | 0.40 | 22 | | 8.70 | <0.100 | | 41413 | 3009402150 | 1 08027W3 | 1CDAA | | | | T 41 41 3 | ON LONG O | 94 02 15W | ) | | MAY 1989<br>22 | | | | | | | | | 3.50 | <0.100 | | AUG<br>04 | | | | | | | | | 3.10 | <0.100 | | 41 | L50 <b>5509413</b> : | 1202 08129 | 9W1 ORRRA | 19 | 69DAWSON : | 2 (T.AT 41 | 50 55N L | ONG 094 1 | 3 12W) | | | MAY 1989 | | | | 20 | | (2222 72 | | | | | | 23<br>AUG | | | | | | | | | 9.70 | <0.100 | | 04 | | | | DET A | <br>WARE COUN | <br>rv | | | 9.70 | <0.100 | | 4228 | 3340912816 | 01 08905W | 31DAAB | | | | 42 28 34N | LONG 091 | 28 16W) | | | JUN 1989<br>01 | 6.9 | 0.80 | | 15 | 38 | 0.10 | 13 | 284 | 11.0 | <0.100 | | JUL<br>20 | | | | | | | | | 13.0 | <0.100 | | SEP<br>14 | | | | | | | | | 12.0 | <0.100 | | 4100 | 150910934 | 01 07203W: | 2.5CBCC 2 | | OINES COU | | 41 00 15N | LONG 091 | 09 34W) | | | JUL 1989 | • | | | | | | | | | | | 25 | 34 | 1.1 | | 2.0 | 27 | 0.55 | 13 | 372 | <0.100 | 1.50 | | 42 | 270509056 | 1201 0880: | IW11CABB | | QUE COUNTY<br>78EPWORTH | | 2 27 05N | LONG 090 | 56 12W) | | | JUL 1989<br>18 | 23 | 2.8 | | 38 | 69 | 0.10 | 17 | 518 | 7.00 | <0.100 | | 4229 | 100910727 | 01 08902W | 30DCCC | 1959 | DYERSVILL | E 1 (LAT | 42 29 10N | LONG 091 | 07 27W) | | | JUN 1989<br>01 | 31 | 7.3 | | 92 | 89 | 0.10 | 13 | 606 | 9.20 | <0.100 | | JUL<br>18 | | | | | | | | | 9.80 | <0.100 | | 4233 | 8050910649 | 01 08902W | 5CBBB | 1898 | NEW VIENNA | A 1 (LAT | 42 33 05N | LONG 091 | 06 49W) | | | JUN 1989<br>01 | 9.6 | 0.70 | | 24 | 24 | 0.20 | 24 | 344 | 5.60 | <0.100 | | JUL<br>19<br>Sep | | | | | | | | | 5.00 | <0.100 | | 14 | | | | | | | | | 5.40 | <0.100 | | 430 | 0010091390 | 102 09507 | N34ACAD | | ETTE COUNT<br>4CLERMONT | | 3 00 10N | LONG 091 : | 39 10W) | | | JUL 1989<br>19 | 13 | 8.9 | | 30 | 29 | 0.15 | 13 | 424 | 6.20 | <0.100 | | 4257 | 7540925152 | 01 0941 <b>7</b> W: | 16BBAA | | OYD COUNTY | | 42 57 54 | N LONG 09 | 2 51 52W) | | | JUL 1989 | | | | | | | | | | -0.100 | | 25 | 5.0 | 1.4 | | 5.0 | <br>NY TN COIII | 0.25 | 13 | 254 | <0.100 | <0.100 | | | 5341093132 | 501 09320 | ₩0.5DDD | | NKLIN COU<br>6SHEFFIELI | | 42 53 41N | LONG 093 | 13 25W) | | | MAY 1989<br>23 | 7.1 | 1.0 | | 11 | 26 | 0.15 | 21 | 326 | 10.0 | <0.100 | | AUG<br>01 | | | | | | | | - | 9.50 | <0.100 | | | PHOS- | | - | | | | | | | | |----------------|-------------------------------------------------------|--------------------------------------------|------------------------------------------------------|-----------------------------------|-----------------------------------|---------------------------------------------------|---------------------------------------------|----------------------------------------------------|-------------------------|-----------------------------------------------------| | DATE | PHOSOUS<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P) | IRON,<br>DIS-<br>SOLVED<br>(UG/L<br>AS FE) | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(UG/L<br>AS MN) | ATRA-<br>ZINE,<br>TOTAL<br>(UG/L) | CYAN-<br>AZINE<br>TOTAL<br>(UG/L) | METRI-<br>BUZIN<br>IN<br>WHOLE<br>WATER<br>(UG/L) | ALA-<br>CHLOR<br>TOTAL<br>RECOVER<br>(UG/L) | METOLA-<br>CHLOR<br>IN<br>WHOLE<br>WATER<br>(UG/L) | BUTY-<br>LATE<br>(UG/L) | TRI-<br>FLURA-<br>LIN<br>TOTAL<br>RECOVER<br>(UG/L) | | | (00671) | (01046) | (01056) | [Pesti<br>(39630) | cide conce<br>(81757) | | s express<br>(77825) | ed as tot<br>(39356) | al recove<br>(99901) | (39030) | | | | | | • | • • | • • • • • • | • | | • | • | | 421 | 004095272 | 701 08540 | W13CCCC | | FORD COUNT | | 42 10 04N | LONG A95 | 27 27W) | | | AUG 1989 | | ., 01 00540 | W100000 | 102 | | J 0 (1211 | 72 10 041 | 20110 003 | 2, 2, 1, | | | 17 | <0.100 | <20 | 130 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | | | | | | LAS COUNTY | | | | | | | | 009402150 | 1 08027W3 | 1CDAA | 19760 | ALLAS CENT | TER 4 (LA | T 41 41 3 | ON LONG O | 94 02 15% | 1) | | MAY 1989<br>22 | 0.100 | | | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | AUG<br>04 | <0.100 | | | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | | | | | | | | | | | | | 41 | .505509413 | 1202 0812 | 9W10BBBA | 19 | 69DAWSON 2 | 2 (LAT 41 | 50 55N L | ONG 094 1 | 3 12W) | | | MAY 1989<br>23 | 0.200 | | | 0.69 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | AUG<br>04 | <0.100 | | | | | | | | <0.10 | | | 04 | <0.100 | | | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 4228 | 340912816 | 01 08905W | 31DAAB | | Ware count<br>Manchester | | 42 28 34N | LONG 091 | 28 16W) | | | JUN 1989 | | | | | | | | | | | | 01<br>JUL | <0.100 | <20 | <20 | 0.47 | <0.10 | <0.10 | 0.20 | <0.10 | <0.10 | <0.10 | | 20<br>SEP | <0.100 | | | 0.54 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 14 | <0.100 | | | 0.72 | <0.10 | <0.10 | 0.22 | 0.24 | <0.10 | <0.10 | | <b>4100</b> | 150910934 | 01 07203W | 25CBCC 2 | | OINES COUR | | 41 00 15N | TONG 091 | CMAE DO | | | JUL 1989 | 150510507 | 01 0/2000 | ZJCDCC Z | 4037 1970 | . ILDIA OLI | 3 4 (LAL | 41 00 ISN | LONG USI | 09 04117 | | | 25 | <0.100 | 190 | 300 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | | | | | | UQUE COUNT | | | | | | | | 270509056 | 1201 0880 | 1W11CABB | 19 | 78EPWORTH | 3 (LAT 4 | 2 27 05N | LONG 090 | 56 12W) | | | JUL 1989<br>18 | <0.100 | <20 | <20 | 0.21 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | | | | | | | | | | | | | 4229 | 100910727 | 01 08902W | 30DCCC | 1959 | DYERSVILLI | E 1 (LAT | 42 29 10N | LONG 091 | 07 27W) | | | JUN 1989<br>01 | <0.100 | 30 | 20 | 0.50 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | JUL<br>18 | <0.100 | | | 0.52 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 10 | ~0.100 | | | 0.52 | ~0.10 | ~0.10 | 70.10 | 40.10 | 70.10 | 70.10 | | 4233 | 050910649 | 01 08902W | 05CBBB | 1898 | NEW VIENNA | 1 (LAT | 42 33 05N | LONG 091 | 06 49W) | | | JUN 1989 | | | | | | | | | | | | 01<br>JUL | 0.100 | <20 | <20 | 0.31 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 19<br>SEP | <0.100 | | | 0.25 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 14 | <0.100 | | | 0.51 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 430 | 010091390 | 102 09507 | W34ACAD | | ETTE COUNT | | 3 00 10N 1 | ONG 091 | 39 10W) | | | JUL 1989 | | 102 00507 | 110 41101110 | 102 | | 2 (2211 4 | 0 00 1011 | | | | | 19 | <0.100 | <20 | <20 | 1.2 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 1055 | E / 0005 1 50 | 01 00/1 | 1 CDD 4 4 | | OYD COUNTY | | | N TONG CO | 0 E1 EM! | | | | J40823132 | 01 09417W | TODDAA | 1926 | MARBLE ROO | TALI) I A | 44 3/ 34 | A LUNG US | 2 JI 32W) | | | JUL 1989<br>25 | <0.100 | 140 | <20 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | | | | | | NKLIN COU | | | | | | | 425 | 341093132 | 501 09320 | W05DDD | | 6SHEFFIELI | | 42 53 41N | LONG 093 | 13 25W) | | | MAY 1989<br>23 | <0.100 | <20 | <20 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | AUG | | | | | | | | | | | | 01 | 0.100 | | | | | | | | <del>-</del> | | | DATE | TIME | GEO-<br>LOGIC<br>UNIT | FLOW<br>RATE<br>(G/M)<br>(00058) | PUMP<br>OR FLOW<br>PERIOD<br>PRIOR<br>TO SAM-<br>PLING<br>(MIN)<br>(72004) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | PH<br>(STAND-<br>ARD<br>UNITS)<br>(00400) | HARD-<br>NESS<br>TOTAL<br>(MG/L<br>AS<br>CACO3)<br>(00900) | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915) | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925) | |------------------|-----------|-----------------------|----------------------------------|----------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------| | 4052 | 2509533 | 35001 0684: | 1W14CDBB | | ONT COUNTY | | ) 52 25N 1 | LONG 095 : | 33 50W) | | | AUG 1989<br>25 | 0830 | 111ALVM | 100 | 30 | 13.5 | 1150 | 7.20 | 380 | 93 | 35 | | | | | | GRE | ENE COUNTY | | 0 0 0 0 N | ova oot 1 | 20 4001 | | | 4201<br>JUL 1989 | 0409432 | 24301 08332 | SM11RDRD | 197 | 7SCRANTON | 4 (LAT 4) | 2 U1 U4N 1 | LONG U94 . | 32 43W) | | | 25 | 1200 | 112PLSC | 225 | 20 | 13.0 | 700 | 7.40 | 280 | 75 | 23 | | 421 | 3360925 | 24401 086: | L7W30CDDB | | DY COUNTY<br>66CONRAD 4 | (LAT 42 | 13 35N L | ONG 092 5 | 2 35W) | | | MAY 1989<br>23 | 1100 | 339HMPN | 210 | 60 | 11.0 | 605 | 7.39 | 320 | 84 | 27 | | AUG<br>07 | 1415 | 339HMPN | 180 | 10 | 12.0 | 640 | 7.23 | | | | | 4140350 | 9430250 | 2 07931W06 | SCDBC | | ERIE COUNT<br>THRIE CENT | | F 41 40 3 | 5n Long 09 | 94 30 25W | ) | | MAY 1989<br>23 | 1000 | 110QRCU | 300 | 15 | 12.0 | 412 | 7.00 | | | | | AUG<br>03 | 1600 | 110QRCU | 300 | 20 | 14.0 | 420 | 6.70 | | | | | 415 | 1180943 | 31301 081 | 32W03DBDD | 12608 19 | 60BAYARD 2 | (LAT 41 | 51 08N L | ONG 094 3 | 3 24W) | | | AUG 1989<br>04 | 0900 | 325DSMS | 100 | 20 | 13.0 | 600 | 7.40 | 260 | 58 | 28 | | 425 | 0360035 | .72401 0Q4° | CEMOGARAA | | OCK COUNTY<br>50CORWITH | | 2 50 36N 1 | ONG 003 4 | 57 24W\ | | | JUL 1989 | 300030 | 772401 0342 | ZONOOADAA | 04004 19 | JOCORWIII | I (IMI 4 | 2 39 301 2 | | J, 244) | | | 24 | 1305 | 339HMPN | 200 | 20 | 13.0 | 1050 | 7.50 | 360 | 92 | 32 | | 430 | 6270933 | 61301 0962 | 23W30ABD | 00134 19 | 32GARNER 1 | (LAT 43 | 06 27N L | ONG 093 36 | 5 13W) | | | AUG 1989<br>02 | 1310 | 344CDVL | 175 | 20 | 10.0 | 680 | 7.40 | 370 | 84 | 38 | | 4224530 | 9303500 | 1 08819W2 | LDDC 051 | | DIN COUNTY<br>EAMBOAT RO | | Γ 42 24 5 | BN LONG 09 | 93 03 50W | ) | | AUG 1989<br>01 | 1510 | 339HMPN | | 20 | 11.0 | 690 | 7.30 | 400 | 100 | 37 | | 4133230 | 9553310 | 1 07844W1: | SCARC | | ISON COUNT | | AT 41 33 3 | 23N LONG ( | 195 53 31 | W) | | AUG 1989 | | | | | | | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | 07 | 1130 | 111ALVM | 650 | 30 | 14.5 | 1080 | 7.10 | 510 | 130 | 46 | | 413 | 7150960 | 03102 0794 | 4W30DCAB | 19 | 61MODALE 2 | (LAT 41 | 37 15N L | ONG 096 00 | 31W) | | | AUG 1989<br>07 | 1530 | 111ALVM | 75 | 30 | 12.5 | 860 | 7.35 | 410 | 110 | 32 | | 41: | 3819095 | 471101 079 | 942W19CBAB | 1 | 979LOGAN 7 | (LAT 41 | 38 19N LO | ONG 095 47 | 7 11W) | | | AUG 1989<br>07 | 1345 | 111BRRV | 110 | 30 | 12.5 | 1070 | 7.00 | 470 | 130 | 36 | | 6.2 | 1443002 | 261401 097 | 714440170742 | | ARD COUNTY<br>914ELMA 1 | | ו או או | ic uas se | 1467 | | | MAY 1989 | _ TTJU 32 | 201701 08/ | TAMOTOND | 1 | SITELIN I | \LDI 40 . | LA ADIA POI | 10 U36 60 | _777/ | | | 24<br>JUL | | 112PLSC | | 20 | 11.0 | | 7.56 | | 89 | 24 | | 24 | 1315 | 112PLSC | | 60 | 11.0 | | 6.68 | | | | | | | | • | 1100112 11111 | m. doimii | | | | | | |-----------------------|---------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------| | DATE | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | ALKA-<br>LINITY<br>LAB<br>(MG/L<br>AS<br>CACO3)<br>(90410) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)<br>(00945) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)<br>(00950) | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2)<br>(00955) | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L)<br>(70300) | NITRO-<br>GEN,<br>NO2+NO3<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00631) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | | 40: | 5225095335 | 001 06841 | W14CDBB | | ONT COUNT<br>6RANDOLPH | | 52 25N | LONG 095 3 | 3 50W) | | | AUG 1989<br>25 | 13 | 5.0 | 278 | 22 | 99 | 0.40 | 19 | | 3.00 | 0.100 | | 420 | 0104094324 | 301 08332 | W11BDBD | | ENE COUNT<br>7SCRANTON | | 01 04N | LONG 094 3 | 2 43W) | | | JUL 1989<br>25 | 20 | 3.2 | 366 | 1.0 | 13 | 0.40 | 17 | 356 | <0.100 | 2.00 | | 4: | 2133609252 | 4401 0861 | 7W30CDDB | | NDY COUNT<br>66CONRAD | | 13 35N L | ONG 092 52 | 35W) | | | MAY 1989<br>23<br>AUG | 8.3 | 1.3 | | 12 | 31 | 0.25 | 16 | 386 | 5.80 | <0.100 | | 07 | | | 279 | | | | | | 5.40 | <0.100 | | | 5094302502 | 2 07931 <b>W</b> 06 | SCDBC | | ERIE COUN<br>THRIE CEN | | r <b>41 4</b> 0 3 | 5N LONG 09 | 14 30 25W | ) | | MAY 1989<br>23 | | | | | | | | | 9.50 | <0.100 | | AUG<br>03 | | | | | | | | | 7.90 | <0.100 | | | | | | | | | | | | | | 4: | 1511809433 | 1301 0813 | 2W03DBDD | 12608 19 | 60BAYARD | 2 (LAT 41 | 51 08N L | ONG 094 33 | 24W) | | | AUG 1989<br>04 | 17 | 6.6 | 359 | 8.0 | 8.1 | 0.60 | 9.6 | 378 | <0.100 | 3.10 | | <b>A</b> . | 2503600357 | 2401 0043 | SEWOE ARAA | | OCK COUNT | | 2 50 36N | LONG 093 5 | 7 24W1 | | | JUL 1989 | | 2401 0342 | 20000IDINI | 04004 13 | JUCOMITI | 1 (1111 42 | 2 33 5011 | DONO USO I | ,, 2411, | | | 24 | 98 | 4.4 | 414 | 2.0 | 120 | 0.40 | 23 | 588 | <0.100 | 0.500 | | 4: | 3062709336 | 31301 0962 | 23W30ABD | 00134 19 | 32GARNER | 1 (LAT 43 | 06 27N L | ONG 093 36 | 13W) | | | AUG 1989<br>02 | 8.1 | 3.3 | 370 | 2.5 | 4.4 | 0.80 | 16 | 396 | <0.100 | 0.200 | | 42245 | 3093035001 | . 08819W21 | IDDC 051 | | DIN COUNT<br>EAMBOAT R | | r 42 24 5 | 3N LONG 09 | 3 03 50W | ") | | AUG 1989<br>01 | 12 | 2.2 | 324 | 13 | 30 | 0.20 | 21 | 376 | 2.50 | <0.100 | | 41332 | 3095533101 | . 07844W15 | 5CABC | | SON COUNT<br>SSOURI VA | | AT 41 33 | 23N LONG ( | 95 53 31 | W) | | AUG 1989<br>07 | | 5.6 | 420 | 38 | 120 | 0.30 | 25 | | 1.00 | <0.100 | | 07 | 30 | 5.0 | 420 | 30 | 120 | 0.50 | 23 | | 1.00 | 40.100 | | 4; | 1371509600 | 3102 0794 | 4W30DCAB | 19 | 61MODALE | 2 (LAT 41 | 37 15N L | ONG 096 00 | 31W) | | | AUG 1989<br>07 | | 5.9 | 431 | 16 | 50 | 0.30 | 33 | | <0.100 | 1.00 | | | 4138190954 | 71101 079 | 942W19CBAE | 3 1 | 979LOGAN | 7 (LAT 41 | 38 19N L | ONG 095 47 | 11W) | | | AUG 1989<br>07 | | 6.0 | 386 | 54 | 110 | 0.25 | 29 | | 2.30 | 0.300 | | 57 | 7/ | 0.0 | 550 | | | | 23 | | 2.00 | J.500 | | • | 4314430922 | 61401 097 | 14W01DDAE | | RD COUNTY<br>914ELMA 1 | | L4 43N LC | NG 092 26 | 14W) | | | MAY 1989 | | | | _ | | | | | | | | 24<br>JUL | 12 | 1.4 | | 33 | 51 | 0.15 | | 374 | 7.30 | <0.100 | | 24 | | | 234 | | | | | | 7.20 | <0.100 | | | PHOS-<br>PHOROUS | | MANGA- | | <del></del> | METRI- | | METOLA- | | TRI- | |--------------------|-----------------------------------|----------------------------------|----------------------------------|-------------------------|--------------------------|-------------------------------|-----------------------------------|-------------------------------|----------------|-----------------------------------| | DATE | ORTHO,<br>DIS-<br>SOLVED<br>(MG/L | IRON,<br>DIS-<br>SOLVED<br>(UG/L | NESE,<br>DIS-<br>SOLVED<br>(UG/L | ATRA-<br>ZINE,<br>TOTAL | CYAN-<br>AZINE<br>TOTAL | BUZIN<br>IN<br>WHOLE<br>WATER | ALA-<br>CHLOR<br>TOTAL<br>RECOVER | CHLOR<br>IN<br>WHOLE<br>WATER | BUTY-<br>LATE | FLURA-<br>LIN<br>TOTAL<br>RECOVER | | | AS P)<br>(00671) | AS FE)<br>(01046) | AS MN)<br>(01056) | | cide conc | (UG/L)<br>entrations | | | | | | | (000/1) | (01040) | (01030) | (39030) | (81757) | (81408) | (77023) | (39330) | (99901) | (39030) | | _ | 225095335 | 001 06841 | V14CDBB | | ONT COUNT<br>6RANDOLPH | Y<br>3 (LAT 40 | 52 25N 1 | LONG 095 3 | 3 50W) | | | AUG 1989<br>25 | <0.100 | 20 | 120 | 0.46 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 420 | 104094324 | 301 0 <b>8</b> 332W | /11BDBD | | ENE COUNT<br>7SCRANTON | Y<br>4 (LAT 42 | 2 01 04N 1 | LONG 094 3 | 12 43W) | | | JUL 1989<br>25 | <0.100 | 3100 | 140 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 42 | 133609252 | 4401 <b>08</b> 617 | W30CDDB | | NDY COUNT | Y<br>4 (LAT 42 | 13 35N L | ONG 092 52 | : 35W) | | | MAY 1989 | | | | | | . (2 | 20 002 2 | | , , , | | | 23<br>AUG<br>07 | <0.100 | <20 | <20 | 0.28 | 0.13 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 07 | <0.100 | | | 0.40<br>GUTHF | <0.10<br>RIE COUNT | <0.10<br>v | <0.10 | <0.10 | <0.10 | <0.10 | | 414035 | 094302502 | 07931W060 | DBC | | | TER 2 (LAT | 41 40 3 | 5N LONG 09 | 4 30 25W | ) | | MAY 1989<br>23 | 0.100 | | | 0.25 | 0.22 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | AUG<br>03 | <0.100 | | | 3.7 | 4.5 | 2.10 | <0.10 | 2.80 | <0.10 | <0.10 | | 41 | 511809433 | 1301 08132 | W03DBDD | 12608 19 | 60BAYARD 2 | 2 (LAT 41 | 51 08N LO | ONG 094 33 | 24W) | | | AUG 1989<br>04 | <0.100 | 250 | 60 | -0.10 | -0.10 | -0.10 | -0.10 | -0.10 | -0.10 | -0.10 | | 04 | <b>~0.100</b> | 230 | 60 | <0.10 | <0.10<br>OCK COUNT: | <0.10<br>Y | <0.10 | <0.10 | <0.10 | <0.10 | | | 593609357 | 2401 09426 | WO6ABAA | | | 1 (LAT 42 | : 59 36N I | ONG 093 5 | 7 24W) | | | JUL 1989<br>24 | <0.100 | 790 | 120 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 43 | 062709336 | 1301 09623 | W30ABD | 00134 19 | 32GARNER | 1 (LAT 43 | 06 27N L | ONG 093 36 | 13W) | | | AUG 1989<br>02 | <0.100 | 100 | <20 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 422452 | 003035001 | 08819W21D | DC 051 | | DIN COUNT | | | N LONG AG | 2 02 504 | | | 422453<br>AUG 1989 | 093033001 | U8019WZID | מוסט טעו | 8 195151 | EAMBUAT RO | OCK 1 (LAT | 42 24 38 | on LONG Da | 3 U3 DUW | , | | 01 | <0.100 | 460 | 210 | | | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 413323 | 095533101 | 07844W150 | ABC | HARRI<br>1964MI | SON COUNTY<br>SSOURI VAL | Y<br>LLEY 1 (LA | T 41 33 2 | SN LONG O | 95 53 311 | ٧) | | AUG 1989<br>07 | 0.100 | 680 | 390 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 41 | 371509600 | 3102 07944 | W30DCAB | 19 | 61MODALE 2 | 2 (LAT 41 | 37 15N LO | NG 096 00 | 31W) | | | AUG 1989<br>07 | <0.100 | 6100 | 560 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 4 | 138190954 | 71101 0794 | 2W19CBAB | 1: | 979LOGAN | 7 (LAT 41 | 38 19N LO | ONG 095 47 | 11W) | | | AUG 1989<br>07 | <0.100 | 4600 | 2000 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 4 | 314430922 | 61401 0971 | .4W01DDAB | | ARD COUNTY<br>914ELMA 1 | (<br>(LAT 43 1 | .4 43N LOI | IG 092 26 | 14W) | | | MAY 1989 | -0.100 | -56 | -84 | | -0.00 | -0.10 | 0.40 | | -0.10 | -0.10 | | 24<br>JUL<br>24 | <0.100<br><0.100 | <20<br> | <20<br> | 0.67<br>0.89 | <0.10<br>0.12 | <0.10<br><0.10 | 0.40<br>0.48 | 0.19<br>0.34 | <0.10<br><0.10 | <0.10<br><0.10 | | 44 | ~0.100 | - <del>-</del> | | 0.59 | 0.12 | ~0.10 | U. 40 | 0.34 | 70.10 | ~U. IU | | DATE | TIME | GEO-<br>LOGIC<br>UNIT | FLOW<br>RATE<br>(G/M)<br>(00058) | PUMP<br>OR FLOW<br>PERIOD<br>PRIOR<br>TO SAM-<br>PLING<br>(MIN)<br>(72004) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | PH<br>(STAND-<br>ARD<br>UNITS)<br>(00400) | HARD-<br>NESS<br>TOTAL<br>(MG/L<br>AS<br>CACO3)<br>(00900) | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915) | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925) | |-----------------------|--------------|-----------------------|----------------------------------|----------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------| | 432 | 9230922 | 12501 1001 | L3W10DDAB | | ARD COUNTY<br>98CHESTER | | 3 29 23N I | LONG 092 | 21 25W) | | | JUL 1989<br>24 | 1430 | 344CDVL | 150 | 5 | 11.0 | | 6.54 | 270 | 74 | 20 | | A2A3 | 0800413 | 2601 09129 | OND 1 CCAC | HUMB | OLDT COUNT | | | | 13 2661 | | | JUL 1989 | | | | | | • | | | | | | 24 | 1040 | 330MSSP | 1000 | 20 | 12.0 | 650 | 7.30 | 360 | 95 | 29 | | | 0942600 | 01 09130W | O6BA | 1957G | ILMORE CIT | TY 3 (LAT | 42 43 50 | N LONG 09 | 4 26 00W) | | | JUL 1989<br>20 | 1240 | 339HMPN | 225 | 30 | 13.0 | 740 | 7.40 | 340 | 90 | 29 | | 424 | 5480941 | 71901 0922 | 29W20DDB | 03374 19 | 48RUTLAND | 1 (LAT 4 | 2 45 48N | LONG 094 | 17 19W) | | | JUL 1989<br>20 | 1120 | 339GLMC | 97 | | 13.0 | 700 | 7.30 | 330 | 89 | 27 | | 424 | 9390935 | 84201 0932 | 27W36ACD | 04815 19 | 51RENWICK | 2 (LAT 4 | 2 49 39N | LONG 093 | 58 42W) | | | JUL 1989<br>24 | 1425 | 339HMPN | 167 | 20 | 13.0 | 860 | 7.10 | 380 | 98 | 34 | | 4252 | 0509411 | 0801 09328 | BW17CBDB | 196 | 8LIVERMORI | E 2 (LAT | 42 52 05N | LONG 094 | 11 08W) | | | JUL 1989<br>20 | 1000 | 330MSSP | 130 | 30 | 13.0 | 740 | 7,20 | 350 | 94 | 29 | | | | | | ID | A COUNTY | | | | | | | 422<br>MAY 1989 | 0180952 | 05101 0873 | SAMSSARDD | 19 | 23ARTHUR 1 | L (LAT 42 | 20 18N L | ONG 095 2 | n DTM) | | | 24<br>JUL | | 112PLSC | 110 | 30 | 8.5 | 680 | 7.50 | 330 | 91 | 26 | | 18<br>SEP<br>18 | 1245<br>1245 | 112PLSC<br>112PLSC | 110<br>110 | 30<br>30 | 10.0<br>12.0 | 720<br>710 | 7.25<br>7.11 | | | | | 10 | 1243 | TIZFLSC | 110 | 30 | 12.0 | 710 | 7.11 | | | | | | 0609528 | 0201 08740 | OW14ACBB | 196 | 5IDA GROVI | E 3 (LAT | 42 21 06N | LONG 095 | 28 02W) | | | MAY 1989<br>24<br>JUL | 1330 | 112PLSC | 450 | 30 | 12.5 | 970 | 7.20 | 440 | 130 | 27 | | 18<br>SEP | 1345 | 112PLSC | 450 | 30 | 13.0 | 980 | 7.30 | | | | | 18 | 1145 | 112PLSC | 450 | 30 | 12.0 | 980 | 7.18 | | | | | 414647 | 0915807 | 01 08110W | 5DAAC | | WA COUNTY<br>OUTH AMANA | 120 (LA | T 41 46 4 | 7N LONG 0 | 91 58 07W | 1) | | JUL 1989<br>25 | 1530 | 112PLSC | | 15 | 12.5 | 705 | 6.89 | 350 | 94 | 27 | | 414 | 7370920 | 44101 081: | 11W25CACD | 19 | 80MARENGO | 9 (LAT 4 | 1 47 37N | LONG 092 | 04 41W) | | | JUL 1989<br>25 | 1310 | 111ALVM | 220 | 10 | 12.5 | 530 | 7.51 | 240 | 73 | 15 | | 41481 | 1091564 | 001 08109 | √30BBAB | 1969 | HIGH AMANA | 10 (LAT | 41 48 11 | N LONG 09 | 1 56 40W) | | | JUL 1989<br>25 | 1440 | 111ALVM | | 30 | 12.0 | 705 | 7.31 | 350 | 87 | 33 | | 41482 | 1091575 | 101 08110V | 124CCAC | 1954 | West Amana | 11 (LAT | 41 48 21 | N LONG 09 | 1 57 51W) | ı | | JUL 1989<br>25 | 1510 | 112PLSC | | 10 | 12.5 | 690 | 6.85 | 400 | 97 | 38 | | | | | G | KOUND-MAT | EK-QUALII | I DATA | | | | | |----------------|---------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------|------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------| | DATE | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | ALKA-<br>LINITY<br>LAB<br>(MG/L<br>AS<br>CACO3)<br>(90410) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)<br>(00945) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)<br>(00950) | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2)<br>(00955) | | NITRO-<br>GEN,<br>NO2+NO3<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00631) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | | 43 | 3292309221 | 2501 1001 | .3W10DDAB | | ARD COUNTY<br>98CHESTER | | 3 29 23N | LONG 092 2 | 1 25W) | | | JUL 1989<br>24 | 12 | 2.2 | | 0.50 | | 0.85 | 14 | 308 | <0.100 | 1.00 | | 424 | 308094132 | 601 09129 | W01CCAC | | BOLDT COU | | 2 43 08N | LONG 094 1 | 3 26W) | | | JUL 1989<br>24 | 6.3 | 3.0 | 274 | 16 | 40 | 0.35 | 22 | 474 | 4.50 | <0.100 | | | | | | | | | | | | | | 42435 | 009426000 | 1 09130W0 | БВА | 1957G | ILMORE CI | ry 3 (LAT | 42 43 50 | N LONG 094 | 26 00W) | | | JUL 1989<br>20 | 9.6 | 2.0 | 272 | 21 | 56 | 0.30 | 27 | 460 | 5.80 | <0.100 | | 42 | 454809417 | 1901 0922 | 9W20DDB | 03374 19 | 48RUTLAND | 1 (LAT 42 | 2 45 48N | LONG 094 1 | 7 19W) | | | JUL 1989<br>20 | 11 | 2.6 | 321 | 4.5 | 44 | 0.30 | 23 | 420 | 0.500 | <0.100 | | 42 | 493909358 | 4201 0932 | 7W36ACD | 04815 19 | 51RENWICK | 2 (LAT 42 | 2 49 39N | LONG 093 5 | 8 42W) | | | JUL 1989<br>24 | 39 | 3.0 | 276 | 1.0 | 92 | 0.30 | 19 | 418 | <0.100 | 1.00 | | 425 | 205094110 | 801 09328 | W17CBDB | 196 | 8LIVERMORI | E 2 (LAT 4 | 2 52 05N | LONG 094 | 11 08W) | | | JUL 1989<br>20 | 28 | 3.4 | 377 | 2.0 | 48 | 0.35 | 19 | 464 | 0.200 | 0.600 | | 42 | 201809520 | 5101 0873 | 9W23ABDD | | DA COUNTY<br>23ARTHUR : | | 20 18N L | ONG 095 20 | 51W) | | | MAY 1989<br>24 | 11 | 0.60 | 284 | 12 | 43 | 0.40 | 16 | 352 | 7.70 | <0.100 | | JUL<br>18 | | | | | | | | | 6.60 | <0.100 | | SEP<br>18 | | | | | | | | | 6.70 | <0.100 | | 422 | 106095280 | 201 08740 | W14ACBB | 196 | 5IDA GROVI | E 3 (LAT 4 | 2 21 06N | LONG 095 | 28 02W) | | | MAY 1989<br>24 | 27 | 2.5 | 310 | 70 | 07 | 0.25 | 23 | 584 | 3.40 | <0.100 | | JUL | 21 | 2.3 | 310 | 70 | 67 | 0.23 | 23 | 304 | | | | 18<br>SEP | | | | | | | | | 3.20 | <0.100 | | 18 | | | | | | | | | 3.10 | <0.100 | | 41464 | 709158070 | 1 08110 <b>W</b> 3 | 5DAAC | | WA COUNTY<br>OUTH AMANA | | 1 41 46 4 | 7N LONG 09 | 1 58 07W | ) | | JUL 1989<br>25 | 39 | 3.9 | | 43 | 60 | 0.15 | 16 | 404 | 6.10 | <0.100 | | 41 | .473709204 | 4101 0811 | 1W25CACD | 19 | 80MARENGO | 9 (LAT 41 | 47 37N | LONG 092 0 | 4 41W) | | | JUL 1989<br>25 | 27 | 1.6 | | 23 | 61 | 0.20 | 19 | 294 | 6.30 | <0.100 | | 4148 | 110915640 | 01 08109W | ЗОВВАВ | 1969 | HIGH AMANA | A 10 (LAT | 41 48 11 | N LONG 091 | 56 40W) | | | JUL 1989<br>25 | 14 | 1.1 | | 11 | 22 | 0.25 | 20 | 378 | 5.20 | <0.100 | | 4148 | 210915751 | 01 08110W | 24CCAC | 1954 | West Amana | A 11 (LAT | 41 48 21 | N LONG 091 | 57 51W) | | | JUL 1989<br>25 | 36 | 1.0 | | 42 | 59 | 0.25 | 20 | 428 | 4.50 | <0.100 | | | | | | | | | | | | | | DATE | PHOS-<br>PHOROUS<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | IRON,<br>DIS-<br>SOLVED<br>(UG/L<br>AS FE)<br>(01046) | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(UG/L<br>AS MN)<br>(01056) | ATRA-<br>ZINE,<br>TOTAL<br>(UG/L)<br>(39630) | CYAN-<br>AZINE<br>TOTAL<br>(UG/L)<br>(81757) | METRI-<br>BUZIN<br>IN<br>WHOLE<br>WATER<br>(UG/L)<br>(81408) | ALA-<br>CHLOR<br>TOTAL<br>RECOVER<br>(UG/L)<br>(77825) | METOLA-<br>CHLOR<br>IN<br>WHOLE<br>WATER<br>(UG/L)<br>(39356) | (99901) | TRI-<br>FLURA-<br>LIN<br>TOTAL<br>RECOVER<br>(UG/L)<br>(39030) | |-----------------------|---------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------|----------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------|---------------------|----------------------------------------------------------------| | ,, | 20000000 | 0504 1004 | 0/14 ADD 4 D | | ARD COUNT | | | 1000 000 | 0. 0.511) | | | JUL 1989 | 292309221 | 2501 1001 | 3M10DDAR | 18 | 98CHESTER | 1 (LAT 4; | 3 29 23N | LONG 092 | 21 25W) | | | 24 | <0.100 | 1400 | <20 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | | 308094132 | 601 09129 | W01CCAC | | OLDT COUN<br>3HUMBOLDT | | 2 43 08N | LONG 094 | 13 26W) | | | JUL 1989<br>24 | <0.100 | <20 | <20 | 0.11 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 42435 | 009426000 | 1 09130W0 | 6BA | 1957G | ILMORE CI | TY 3 (LAT | 42 43 50 | N LONG 09 | 94 26 00W) | | | JUL 1989<br>20 | <0.100 | <20 | <20 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 42 | 454809417 | 1901 0922 | 9W20DDB | 03374 19 | 48RUTLAND | 1 (LAT 4 | 2 45 48N | LONG 094 | 17 19W) | | | JUL 1989<br>20 | <0.100 | <20 | <20 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 42 | 493909358 | 4201 0932 | 7W36ACD | 04815 19 | 51RENWICK | 2 (LAT 4 | 2 49 39N | LONG 093 | 58 42W) | | | JUL 1989<br>24 | <0.100 | 1400 | 360 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 425 | 205094110 | 801 09328 | W17CBDB | 196 | 8LIVERMOR | E 2 (LAT | 42 52 05N | LONG 094 | 11 08W) | | | JUL 1989<br>20 | <0.100 | 300 | 50 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 20 | -0.100 | 500 | 50 | | DA COUNTY | | -0.10 | 40.10 | 40.10 | -0.10 | | | 201809520 | 5101 0873 | 9W23ABDD | 19 | 23ARTHUR | 1 (LAT 42 | 20 18N I | ONG 095 2 | 20 51W) | | | MAY 1989<br>24<br>JUL | 0.100 | <20 | <20 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 18<br>SEP | <0.100 | | | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | ·<0.10 | <0.10 | | 18 | <0.100 | | | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 422 | 106095280 | 201 08740 | W14ACBB | 196 | 5IDA GROV | E 3 (LAT | 42 21 061 | LONG 09 | 5 28 02W) | | | MAY 1989<br>24 | 0.200 | <20 | 160 | 0.11 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | JUL<br>18 | 0.100 | | | 0.18 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | SEP<br>18 | 0.100 | | | 0.16 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 41464 | 709158070 | 1 08110W3 | 5DAAC | IC<br>1979S | WA COUNTY<br>OUTH AMAN | A 120 (LA | T 41 46 4 | 7n Long ( | 091 58 07V | <b>i</b> ) | | JUL 1989<br>25 | <0.100 | 50 | 50 | 0.11 | <0.10 | <0.10 | <0.10 | | | <0.10 | | 41 | 473709204 | 4101 0811 | 1W25CACD | 19 | 80MARENGO | 9 (LAT 4 | 1 47 37N | LONG 092 | 04 41W) | | | JUL 1989<br>25 | 0.100 | 120 | 180 | <0.10 | <0.10 | <0.10 | <0.10 | | - | <0.10 | | | 110015510 | | 200040 | | UTCU AMAN | A 10 /T AT | 41 A0 ** | וא ז ראים מי | 01 56 A0W | | | JUL 1989<br>25 | 0.200 | 70 vs109w | 30BBAB<br><20 | | <0.10 | | | | 91 56 40W)<br><0.10 | | | | | | | | | | | | | | | | 3210915751 | .01 08110W | 24CCAC | 1954 | West Aman | A 11 (LAT | 41 48 21 | IN LONG 0 | 91 57 51W) | 1 | | JUL 1989<br>25 | 0.100 | 60 | <20 | <0.10 | <0.10 | <0.10 | 0.57 | <0.10 | <0.10 | <0.10 | | | | | ` | MOUND WILL | m dommii. | | | | | | |-----------------------|---------|-----------------------|----------------------------------|----------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------| | DATE | TIME | GEO-<br>LOGIC<br>UNIT | FLOW<br>RATE<br>(G/M)<br>(00058) | PUMP<br>OR FLOW<br>PERIOD<br>PRIOR<br>TO SAM-<br>PLING<br>(MIN)<br>(72004) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | PH<br>(STAND-<br>ARD<br>UNITS)<br>(00400) | HARD-<br>NESS<br>TOTAL<br>(MG/L<br>AS<br>CACO3)<br>(00900) | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915) | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925) | | 420 | 4140901 | 13202 0840 | 7E19BD | | KSON COUNT<br>20SABULA 2 | | 04 14N LO | ONG 090 1 | 1 32W) | | | JUN 1989 | | | | | | | | | | | | 02<br>JUL | . 1100 | 350SLRN | 160 | 20 | 13.0 | 585 | 7.21 | 310 | 77 | 29 | | 18<br>SEP | 1300 | 350SLRN | 160 | 20 | 14.0 | 630 | 7.06 | | | | | 14 | 1530 | 350SLRN | 160 | 15 | 13.0 | 630 | 7.28 | | | | | 4204: | 3209040 | 1201 08402 | E24AAB | 06212 195 | 3MAQUOKETA | 3 (LAT | 42 04 32N | LONG 090 | 40 12W) | | | MAY 1989<br>31 | 1515 | 112PLSC | 550 | 60 | 12.0 | 810 | 7.33 | 400 | 96 | 38 | | JUL<br>17 | 1400 | 112PLSC | 550 | 60 | 14.0 | 705 | 7.25 | | | | | SEP<br>22 | 1300 | 112PLSC | 550 | 20 | 12.0 | 780 | 7.20 | | | | | 4209 | 120903 | 52101 0850 | 3E22DAA | 06141 19 | 53ANDREW 1 | (LAT 42 | 09 12N LO | ONG 090 3 | 5 21W) | | | JUL 1989<br>17 | 1530 | 358EDGD | 30 | 60 | 11.0 | 640 | 6.97 | 360 | 76 | 42 | | | | | | | PER COUNTY | | 3,3. | | | | | | 2510925 | 641701 0801 | .8W26AADC | | 39KELLOGG | | 1 42 51N I | LONG 092 | 54 17W) | | | JUN 1989<br>01<br>JUL | 1220 | 111ALVM | 25 | 10 | 12.0 | 820 | 6.66 | 390 | 110 | 27 | | 25 | 1315 | 111ALVM | 30 | 15 | 13.0 | 812 | 6.80 | | | | | 4149 | 9130924 | 64001 0811 | .7W13CC | 16580 19 | 64NEWBURG | 1 (LAT 41 | 1 49 13N I | ONG 092 | 46 40W) | | | JUL 1989<br>25 | 1130 | 333STLS | 50 | 20 | 12.0 | 1310 | 7.40 | 570 | 120 | 66 | | 1001 | | | | | ES COUNTY | | | OVG 001 | | | | 42010<br>AUG 1989 | 209121 | 4101 08304 | WU/B | 21/92 196 | 9MARTELLE | 2 (LAT 42 | 2 01 02N I | ONG USI | 21 41W) | | | 01 | 1600 | 355NIGR | 150 | 20 | 11.0 | 350 | 7.50 | 190 | 50 | 16 | | | 909211 | .5401 07512 | W12CBCA | | KUK COUNTY<br>8SIGOURNEY | | 41 18 49N | LONG 092 | 11 54W) | | | JUN 1989<br>02 | 0930 | 111ALVM | | 20 | 11.0 | 690 | 7.07 | 310 | 90 | 21 | | JUL<br>26 | 1445 | 111ALVM | 75 | 180 | 12.5 | 625 | 7.20 | | | | | 412 | 2138091 | .571501 076 | i 10W25ACCA | 01794 1 | 943KEOTA 2 | (LAT 41 | 21 38N LC | ONG 091 5 | 7 15W) | | | JUL 1989 | | | | | · · · · · · · · · · · · · · · · · · · | ( | | | | | | 26 | 1600 | 339WSVL | 80 | 15 | 14.0 | 880 | 7.10 | 440 | 110 | 41 | | 4127150 | 920515 | 01 07711W2 | 3DDCC | 19698 | OUTH ENGLI | SH 3 (LAT | r 41 27 15 | N LONG O | 92 05 15W | ) | | JUL 1989<br>27 | 1030 | 330MSSP | 10 | 180 | 14.0 | 2000 | 7.00 | 1100 | 260 | 120 | | 430340 | 094252 | .703 09530W | 08BBCD | | SUTH COUNT | | 43 03 40N | LONG 094 | 25 27W) | | | JUL 1989 | | | | 20.0 | | , | | | <u></u> | | | 18 | 1420 | 112PLSC | 140 | | 12.0 | 1200 | 7.00 | 460 | 120 | 38 | | 4312 | 2550942 | 53101 0973 | OW18DACD | 00533 19 | 37FENTON 2 | (LAT 43 | 12 55N LC | ONG 094 2 | 5 31W) | | | JUL 1989<br>18 | 1325 | 217DKOT | 261 | 30 | 11.0 | 1610 | 7.10 | 660 | 170 | 57 | | | | | | | | | | | | | # GROUND-WATER-QUALITY DATA | DATE | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | ALKA-<br>LINITY<br>LAB<br>(MG/L<br>AS<br>CACO3)<br>(90410) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)<br>(00945) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)<br>(00950) | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2)<br>(00955) | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L)<br>(70300) | NITRO-<br>GEN,<br>NO2+NO3<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00631) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | |-----------------------|---------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------| | 42 | 2041409011 | 3202 0840 | 7E19BD | | KSON COUN | | 04 14N L | ONG 090 1 | 1 32W) | | | JUN 1989 | 0.0 | | | 0.5 | 00 | 0.05 | 0.5 | 200 | 4 40 | -0 100 | | 02<br>JUL<br>18 | 9.8 | 1.8 | | 9.5 | 29 | 0.25 | 25 | 320 | 4.40<br>4.20 | <0.100<br><0.100 | | SEP<br>14 | | | | | | | | | 4.30 | <0.100 | | | | | | | | | | | | | | | 1432090401 | 201 08402 | E24AAB | 06212 195 | 3MAQUOKET. | A 3 (LAT | 42 04 32N | LONG 090 | 40 12W) | | | MAY 1989<br>31<br>JUL | 18 | 1.5 | | 36 | 49 | 0.30 | 22 | 416 | 5.50 | <0.100 | | 17<br>SEP | | | | | | | | | 5.30 | <0.100 | | 22 | | | | | | | | | 4.90 | <0.100 | | 42 | 2091209035 | 2101 0850 | 3E22DAA | 06141 19 | 53ANDREW | 1 (LAT 42 | 09 12N I | ONG 090 3 | 5 21W) | | | JUL 1989<br>17 | 14 | 0.60 | 330 | 15 | 23 | 0.20 | 18 | 444 | 8.00 | <0.100 | | 41 | 425109254 | 1701 0801 | 8W26AADC | | SPER COUN | | 1 42 51N | LONG 092 | 54 17W) | | | JUN 1989 | | | | | | - (2 | - 12 321 | 200 002 | | | | O1<br>JUL | 29 | 2.3 | | 37 | 170 | 0.15 | 23 | 506 | 2.80 | <0.100 | | 25 | | | | | | | | | 6.40 | <0.100 | | 41 | 491309246 | 4001 0811 | 17W13CC | 16580 19 | 64NEWBURG | 1 (LAT 4 | 1 49 13N | LONG 092 | 46 40W) | | | JUL 1989<br>25 | 92 | 8.3 | 463 | 2.0 | 260 | 0.30 | 18 | 794 | 0.100 | 6.00 | | 420 | 3102091214 | 101 08304 | W07B | | ONES COUN | | 2 01 02N | LONG 091 | 21 41W) | | | AUG 1989 | | | | | | | | | | | | 01 | 4.4 | 0.40 | 188 | 0.50 | 4.6 | 0.30 | 15 | 112 | <0.100 | <0.100 | | 411<br>JUN 1989 | 1849092115 | 401 07512 | W12CBCA | | KUK COUNT<br>88SIGOURNE | | 41 18 49N | LONG 092 | 11 54W) | | | 02<br>JUL | 12 | 1.0 | | 18 | 78 | 0.20 | 18 | 352 | <0.100 | <0.100 | | 26 | | | | | | | | | <0.100 | 0.100 | | 4 | 121380915 | 71501 076 | 10W25ACC | A 01794 1 | 943KEOTA | 2 (LAT 41 | 21 38N L | ONG 091 5 | 7 15W) | | | JUL 1989<br>26 | 31 | 3.0 | 420 | 10 | 56 | 0.40 | 10 | 514 | <0.100 | 0.800 | | 41271 | 509205150 | 1 07711W2 | 3DDCC | 19698 | OUTH ENGL | ISH 3 (LA | r 41 27 1 | .5N LONG 0 | 92 05 15W | ) | | JUL 1989<br>27 | 76 | 7.6 | 423 | 2.0 | 710 | 0.40 | 8.3 | 1690 | <0.100 | 3.90 | | 4303 | 400942527 | 03 09530% | 08BBCD | | TH COUNTY<br>WHITTEMOR | E 3 (LAT | 43 03 40N | LONG 094 | 25 27W) | | | JUL 1989<br>18 | 67 | 5.6 | 391 | 2,5 | 220 | 0.50 | 22 | 762 | <0.100 | 0.900 | | | | | | | | | | | | 2.200 | | JUL 1989 | ,12J3V8423 | 2101 08/3 | OM TODACI) | UUD33 19 | S/FENIUN : | د (نظا 43 | 12 33N L | ONG 094 2 | 2 3TW) | | | 18 | 120 | 4.7 | 389 | 2.0 | 560 | 0.40 | 23 | 1190 | <0.100 | 0.800 | | | | | ` | DICOND WILL | m. domit. | | | | | | |----------------|---------------------------------------------------------------------------|--------------------------------------------|------------------------------------------------------|--------------|------------------------------------------------------------|--------------|-----------|------------|----------|--------------------------------------------------------------------------| | DATE | PHOS-<br>PHOROUS<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | IRON,<br>DIS-<br>SOLVED<br>(UG/L<br>AS FE) | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(UG/L<br>AS MN) | | CYAN-<br>AZINE<br>TOTAL<br>(UG/L)<br>cide conce<br>(81757) | | | | | TRI-<br>FLURA-<br>LIN<br>TOTAL<br>RECOVER<br>(UG/L)<br>rable]<br>(39030) | | 42 | 0414090113 | 202 0840 | 7E19BD | | KSON COUNT<br>20SABULA 2 | | 04 14N L | ONG 090 11 | 1 32W) | | | JUN 1989<br>02 | <0.100 | <20 | 650 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | JUL<br>18 | <0.100 | | | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | SEP<br>14 | <0.100 | | | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 420 | 4320904012 | 01 084021 | E24AAB | 06212 195 | 3MAQUOKETA | A 3 (LAT | 2 04 32N | LONG 090 | 40 12W) | | | MAY 1989<br>31 | <0.100 | <20 | <20 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | JUL<br>17 | 0.100 | | | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | SEP<br>22 | <0.100 | | | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 42 | 0912090352 | 101 08503 | BE22DAA | 06141 19 | 53ANDREW 1 | L (LAT 42 | 09 12N L | ONG 090 35 | 5 21W) | | | JUL 1989<br>17 | <0.100 | <20 | <20 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 41 | 4251092541 | 701 08018 | BW26AADC | | SPER COUNT<br>39KELLOGG | | 42 51N | LONG 092 5 | 54 17W) | | | JUN 1989<br>01 | <0.100 | 280 | 110 | 0.22 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | JUL<br>25 | <0.100 | | | 0.35 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 41 | 4913092464 | 001 0811 | 7W13CC | 16580 19 | 64NEWBURG | 1 (LAT 4 | L 49 13N | LONG 092 4 | 16 40W) | | | JUL 1989<br>25 | <0.100 | 3000 | 230 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 420 | 1020912141 | 01 08304 | √07B | | NES COUNTY<br>9MARTELLE | | 2 01 02N | LONG 091 2 | 21 41W) | | | AUG 1989 | <0.100 | 760 | 20 | <b>-0.10</b> | -0 10 | <b>-0.10</b> | -0.10 | <0.10 | <0.10 | <0.10 | | 01 | <0.100 | 760 | 20 | <0.10<br>KEO | <0.10<br>KUK COUNTY | <0.10<br>7 | <0.10 | ~0.10 | <0.10 | ~0.10 | | | 8490921154 | 01 07512V | V12CBCA | | 8SIGOURNEY | | 11 18 49N | LONG 092 | 11 54W) | | | JUN 1989<br>02 | <0.100 | 2100 | 700 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | JUL<br>26 | 0.200 | | | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 4 | 1213809157 | 1501 076 | LOW25ACCA | A 01794 1 | 943KEOTA 2 | 2 (LAT 41 | 21 38N L | ONG 091 57 | 15W) | | | JUL 1989<br>26 | <0.100 | 1100 | 30 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 41271 | 5092051501 | 07711W23 | BDDCC | 19698 | OUTH ENGL | SH 3 (LAT | 41 27 1 | 5N LONG 09 | 2 05 15W | ) | | JUL 1989<br>27 | <0.100 | 1900 | 540 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 4303 | 4009425270 | 3 09530WC | 8BBCD | | TH COUNTY WHITTEMORE | E 3 (LAT 4 | 3 03 40N | LONG 094 | 25 27W) | | | JUL 1989 | | - 0000011 | | 1570 | ····· | | | | | | | 18 | <0.100 | 1800 | 180 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 43 | 1255094253 | 101 <b>0</b> 9730 | W18DACD | 00533 19 | 37FENTON 2 | 2 (LAT 43 | 12 55N L | ONG 094 25 | 31W) | | | JUL 1989<br>18 | <0.100 | 1800 | 220 | <0.10 | <0.10 | <0.10 | <0.10 | <0.20 | <0.10 | <0.10 | | DATE | TIME | GEO-<br>LOGIC<br>UNIT | FLOW<br>RATE<br>(G/M)<br>(00058) | PUMP OR FLOW PERIOD PRIOR TO SAM- PLING (MIN) (72004) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | PH<br>(STAND-<br>ARD<br>UNITS)<br>(00400) | HARD-<br>NESS<br>TOTAL<br>(MG/L<br>AS<br>CACO3)<br>(00900) | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915) | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925) | |-----------------------|---------|-----------------------|----------------------------------|-------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------| | 432 | 2470940 | 52802 0992 | 28W24ADCA | | SUTH COUNT<br>69LAKOTA 2 | | 22 47N L | ONG 094 0 | 5 28W) | | | JUL 1989<br>18 | 1120 | 344CDVL | 130 | 30 | 12.0 | 850 | 7.10 | 370 | 95 | 32 | | 420025 | 0014146 | 01 0020711 | 70000 | | NN COUNTY | on 130 /7 A | T 42 00 2 | EN LONG OF | na 44 46M | | | 420023<br>MAY 1989 | 0814140 | 01 08307W | 4444 | 19640 | EDAR RAPII | D WO (LA | 1 42 00 2 | SN LONG U | 91 41 40W | , | | 31<br>AUG | 1030 | 111ALVM | | 60 | 10.0 | 514 | 7.60 | 230 | 60 | 20 | | 04 | 0900 | 111ALVM | 2500 | 20 | 12.0 | 600 | 7.28 | | | | | 421138 | 0914718 | 01 08508W | 9BAB 18 | 3947 1966C | ENTER POIN | IT 1 (LAT | 42 11 38 | N LONG 09 | 1 47 18W) | | | JUN 1989<br>23 | 1000 | 344SOLN | 125 | 20 | 13.0 | 630 | 6.98 | 300 | 99 | 13 | | AUG<br>04 | 1000 | 344SOLN | 110 | 20 | 12.0 | 700 | 6.76 | | | | | 42142 | 0091251 | .501 08605V | 122CCCC | 1910 | PRAIRIEBUR | RG 1 (LAT | 42 14 20 | N LONG 09: | 1 25 15W) | | | AUG 1989 | | | | | | | | | · | | | 18 | 0930 | 350SLRN | 120 | 20 | | 710<br>, | 7.50 | 280 | 58 | 34 | | 4116 | 4409111 | .0701 07503 | W22DCBD | | ISA COUNTY<br>6GRANDVIEV | | 41 16 44N | LONG 091 | 11 07W) | | | JUL 1989<br>25 | 0830 | 112AFNN | | 15 | 12.5 | 510 | 7.49 | 260 | 72 | 20 | | 432 | 6080962 | 01502 1004 | 763600 | LY | ON COUNTY | . /T.AT 43 | 26 08N L | ONG 096 2 | n 15W) | | | AUG 1989 | 0000302 | .01302 100- | , MOODC | | LEGILA | (MRI 40 | 20 0011 2 | ONG 030 2 | 0 1347 | | | 02 | 1630 | 111ALVM | 45 | 60 | 10.5 | 1160 | 7.45 | 620 | 170 | 48 | | 43262 | 2096101 | .901 10045V | N33CBAB | 1925 | ROCK RAPII | S 2 (LAT | 43 26 22 | N LONG 09 | 6 10 19W) | | | MAY 1989<br>25 | 1030 | 111ALVM | 200 | 30 | 11.0 | 865 | 7.10 | 430 | 110 | 37 | | JUL<br>19 | 1100 | 111ALVM | 100 | 30 | 11.0 | 890 | 7.30 | | | | | SEP<br>19 | 0900 | 111ALVM | 200 | 30 | 11.0 | 890 | 7.33 | | | | | 41 | 1047093 | 493301 074 | 26W27DADA | 21161 1 | 968TRURO 2 | LAT 41 | 10 47N L | ONG 093 49 | 9 33W) | | | AUG 1989<br>21 | 1330 | 112PLSC | 48 | 20 | 12.0 | 495 | 7.10 | 210 | 66 | 11 | | 22 | 1550 | TIZELSO | 40 | | ION COUNTY | | 7.10 | 210 | 00 | ** | | | 9257520 | 07618 | V29BCAC | 1971PE | LLA RANEY | WELL (LA | T 41 21 3 | 2N LONG O | 92 57 52W | ) | | JUL 1989<br>26 | 1100 | 111ALVM | 950 | 1440 | 22.0 | 580 | 7.50 | 260 | 66 | 23 | | 4200 | 2009246 | 55001 08317 | W13BA | MARS<br>07265 195 | HALL COUNT | Y<br>2 (LAT 4) | 2 00 20N : | LONG 092 | 46 50W) | | | JUN 1989 | 0015 | 220777# | | | | | | | | 20 | | 01<br>AUG<br>07 | | 339PPCH<br>339PPCH | 100<br>100 | 25<br>5 | 12.0<br>11.0 | 755<br>780 | 6.95<br>7.29 | 350<br> | 92 | 29<br> | | | | | | | | | | | | | | | 6130925 | 93601 0843 | L8W07BACA | 19 | 69ALBION 2 | 2 (LAT 42 | 06 13N L | ONG 092 59 | 9 36W) | | | JUN 1989<br>01<br>AUG | 1100 | 111ALVM | | 25 | 11.0 | 715 | 7.01 | 380 | 96 | 33 | | 07 | 1530 | 111ALVM | | 5 | 11.0 | 740 | 6.52 | | | | | | | | , | KOUND-WAT | EK-QUALIT | I DATA | | | | | |-----------------|---------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------| | DATE | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | ALKA-<br>LINITY<br>LAB<br>(MG/L<br>AS<br>CACO3)<br>(90410) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)<br>(00945) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)<br>(00950) | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2)<br>(00955) | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L)<br>(70300) | NITRO-<br>GEN,<br>NO2+NO3<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00631) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | | 43 | 224709405 | 2802 0992 | 8W24ADCA | | SUTH COUN'<br>69LAKOTA | | 22 47N L | ONG 094 0 | 5 28W) | | | JUL 1989<br>18 | 51 | 5.9 | 388 | 1.0 | 100 | 0.55 | 12 | 568 | <0.100 | 1.30 | | 42002 | 509141460 | 1 08307W1 | .7 <b>B</b> BBB | | NN COUNTY<br>EDAR RAPII | DS W3 (LA | r 42 00 2 | 5N LONG 0 | 91 41 46W | )) | | MAY 1989<br>31 | 18 | 3.0 | | 31 | 48 | 0.20 | 15 | 264 | <0.100 | 2.00 | | AUG<br>04 | | | | | | | | | <0.100 | 2.40 | | 42113 | 809147180 | 1 08508 <b>W</b> 0 | 9BAB 18 | 947 1966C | ENTER POII | NT 1 (LAT | 42 11 38 | N LONG 09 | 1 47 18W) | | | JUN 1989 | 0.5 | 1.0 | | | | | 4. | | | 0.100 | | 23<br>AUG<br>04 | 25 | 1.9 | | 42 | 62 | | 14 | 408 | 3.10<br>3.00 | 0.100<br><0.100 | | 04 | | | | | | | | | 3.00 | 40.100 | | | 200912515 | 01 08605W | 122CCCC | 1910 | PRAIRIEBUI | RG 1 (LAT | 42 14 20 | n Long 09 | 1 25 15W) | | | AUG 1989<br>18 | 39 | 3.9 | 297 | 1.5 | 78 | 0.45 | 9.2 | 416 | <0.100 | 3.80 | | 411 | .644091110 | 701 07503 | W22DCBD | LOU<br>18796 196 | ISA COUNTY<br>6GRANDVIEV | | 11 16 44N | LONG 091 | 11 07W) | | | JUL 1989<br>25 | 14 | 1.1 | | 1.0 | 6.8 | 0.30 | 23 | 250 | <0.100 | 1.00 | | 43 | 260809620 | 1502 1004 | 7W36DC | LY | ON COUNTY<br>LESTER : | 3 (LAT 43 | 26 08N L | ONG 096 2 | 0 15W) | | | AUG 1989<br>02 | 28 | 3.4 | 304 | 22 | 310 | 0.50 | 17 | | <0.100 | 0.300 | | 4326 | 220961019 | 01 10045W | 33CBAB | 1925 | ROCK RAPII | DS 2 (LAT | 43 26 22 | N LONG 09 | 6 10 19W) | | | MAY 1989 | | | | | | · | | | | | | 25<br>JUL | 16 | 4.2 | 314 | 22 | 92 | 0.30 | 20 | 522 | 8.60 | 0.300 | | 19<br>SEP<br>19 | | | | | | | | | 7,20<br>7,70 | 0.300 | | 19 | | | | | | | | | 7.70 | 0.300 | | 4 | 110470934 | 93301 074 | 26W27DAD# | 21161 1 | 968TRURO 2 | 2 (LAT 41 | 10 47N L | ONG 093 4 | 9 33W) | | | AUG 1989<br>21 | 15 | 0.60 | 219 | 7.0 | 32 | 0.45 | 27 | | 0.100 | 0.300 | | 412132 | 092575201 | 07618W | 29BCAC | | ION COUNTY | | r 41 21 3 | 2N LONG 0 | 92 57 52W | ט | | JUL 1989<br>26 | 18 | 5.1 | 202 | 28 | 49 | 0.45 | 12 | 312 | 1.10 | 0.100 | | 420 | 020092465 | 001 08317 | W13BA | MARS<br>07265 195 | HALL COUNT<br>5LE GRAND | | 2 00 20N | LONG 092 | 46 50W) | | | JUN 1989<br>01 | 24 | 1.2 | | 53 | 66 | 0.15 | 27 | 448 | 6.20 | <0.100 | | AUG<br>07 | | | 247 | | | | | | 5.90 | <0.100 | | | 061300050 | 2601 0011 | 01.10.75.40.4 | •• | COALBAON ( | ) /T AM /^ | 06 109 7 | ONG 000 5 | o aeriv | | | 42<br>JUN 1989 | 061309259 | 30U1 <b>U84</b> 1 | .owu/BACA | 19 | DAWTRION 5 | 42 (LAT 42 | 00 13N L | UNG U92 3 | a JOW) | | | 01<br>AUG | 11 | 0.80 | | 22 | 56 | 0.20 | 20 | 398 | 2.60 | <0.100 | | 07 | | | 304 | | | | | | 2.50 | <0.100 | | | | | | | 40 | | | | | • | |----------------|------------------|--------------------|----------------|----------------|--------------------------|----------------|----------------|-------------|---------------------|-------------------| | | PHOS-<br>PHOROUS | | MANGA- | | | METRI- | | METOLA- | | TRI- | | | ORTHO, | IRON, | NESE, | | | BUZIN | ALA- | CHLOR | | FLURA- | | | DIS-<br>SOLVED | DIS-<br>SOLVED | DIS-<br>SOLVED | ATRA- | CYAN-<br>AZINE | IN | CHLOR<br>TOTAL | IN<br>WHOLE | BUTY- | LIN<br>TOTAL | | DATE | (MG/L | (UG/L | (UG/L | ZINE,<br>TOTAL | TOTAL | WHOLE<br>WATER | RECOVER | WATER | LATE | RECOVER | | | AS P) | AS FE) | AS MN) | (UG/L) | | (00671) | (01046) | (01056) | | cide conce<br>(81757) | | | | l recove<br>(99901) | rable]<br>(39030) | | | (000,1) | (01040) | (01030) | (55555) | (01/3/) | (01400) | (,,,,,,,, | (05050) | (55501) | (00000) | | | | | | YOS | SUTH COUNT | PV | | | | | | 43 | 2247094052 | 2802 0992 | BW24ADCA | | 69LAKOTA 2 | | 22 47N LO | ONG 094 05 | 28W) | | | JUL 1989 | | | | | | | | | | | | 18 | <0.100 | 1200 | <20 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | | | | | | | | | | | | | 42002 | 509141460 | 1 08307W1 | 7BBBB | | NN COUNTY<br>EDAR RAPII | OS W3 (LAT | 42 00 25 | N LONG 09 | 11 41 46W | ) | | | | | | | | | | | | • | | MAY 1989<br>31 | 0.200 | 2800 | 1000 | 0.12 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | AUG | | | | | | | | | | | | 04 | 0.200 | | | 0.17 | 0.14 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | | | | | | | | | | | | | 42113 | 809147180 | 1 08508W0 | 9BAB 18 | 947 1966C | ENTER POIN | T 1 (LAT | 42 11 381 | N LONG 091 | . 47 18W) | | | JUN 1989 | | | | | | | | | | | | 23<br>AUG | <0.100 | 460 | 80 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 04 | 0.100 | | | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | | | | | | | | | | | | | 4214 | 2009125150 | 01 0860 <i>5</i> W | 22CCCC | 1910 | PRAIRIEBUE | RG 1 (LAT | 42 14 201 | N LONG 091 | 25 15W) | | | | | | | | | ( | | | , | | | AUG 1989<br>18 | 0.100 | 820 | <20 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 20 | 0.200 | • | -20 | | | | | -0.20 | | | | 411 | 644091110 | 701 07503 | J22DCBD | | ISA COUNTY<br>6GRANDVIEW | | 1 16 AAN | TONG 091 | 11 0761 | | | | 044001110 | , 01 0, 500 | 122DODD | 10/30 130 | OGRANDVIL | 1 1 (MELL - | 11 10 441 | DONG UUI | 11 0,117 | | | JUL 1989<br>25 | <0.100 | 130 | 80 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 23 | ~0.100 | 130 | 60 | ~0.10 | ~0.10 | ~0.10 | ~0.10 | ~0.10 | ~0.10 | ~0.10 | | 4.3 | 260809620 | 1502 1004 | ansenc | LY | ON COUNTY | . /T AT 49 | 26 00N 10 | ONG 096 20 | 1 663 | | | 43 | 200003020 | 1302 1004 | MOODC | | LESIER ( | ) (TWI 43 | ZO UOM LO | JNG 090 20 | 134) | | | AUG 1989<br>02 | -0 100 | 2200 | 1200 | 0.01 | 0.40 | -0.10 | -0.10 | -0.10 | -0.10 | -0.10 | | 02 | <0.100 | 2200 | 1300 | 0.24 | 0.40 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 1200 | 222251212 | | 000040 | 1005 | DOGK DADT | | /0 0C 00 | | | | | 4326 | 220961019 | U1 1UU45W | 33CBAB | 1925 | ROCK RAPII | OS Z (LAT | 43 26 221 | N LONG U96 | 10 19W) | | | MAY 1989 | | | | | | | | | | | | 25<br>JUL | 0.100 | <20 | 100 | 0.19 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 19 | <0.100 | | | 0.18 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | SEP<br>19 | <0.100 | | | 0.15 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | | -,100 | | | 0.25 | 0.20 | , 20 | | 0.20 | | | | 4 | 1104709349 | 93301 074 | 26W27D4D4 | 21161 1 | GESTRAP | 2 (TAT 41 | 10 47N T | NG 093 49 | 33W) | | | | 220170001 | 30001 074 | DOWNER DELETE | 21101 1 | ocornono . | , (***** 41 | 10 1/1/ 20 | 2.0 000 40 | | | | AUG 1989<br>21 | 0.100 | 10000 | 930 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 22 | 0.100 | 10000 | 930 | ~0.10 | ~0.10 | ~0.10 | ٦٥.10 | ٧٠.10 | -0.10 | -0.10 | | 412122 | 002575201 | 076100 | 202040 | | ION COUNTY | | . 41 21 24 | N TONG OF | 2 67 626 | ` | | 412132 | 092575201 | 07618W | Zabcyc | 19/172 | LLA RANEY | MELL (TV) | . 41 21 32 | IN LONG US | 12 31 32W | , | | JUL 1989 | -0.100 | | 5.0 | | | -0.10 | -0.10 | 0.00 | -0.10 | -0.10 | | 26 | <0.100 | 540 | 540 | 1.6 | 0.7 <b>7</b> | <0.10 | <0.10 | 0.91 | <0.10 | <0.10 | | | | <del>-</del> - | | | HALL COUNT | | | | | | | 420 | 0200924650 | UU1 U8317 | MISRY | U/Z65 195 | 5LE GRAND | Z (LAT 42 | : UU ZON I | JUNG 092 4 | (WUC o | | | JUN 1989 | | | | | | | | | .0 | -0.15 | | 01<br>AUG | 0.100 | <20 | <20 | 0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 07 | <0.100 | | | 1.1 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | | | | | | | | | | | | | 42 | 0613092593 | 3601 0841 | 8W07BACA | 19 | 69ALBION 2 | 2 (LAT 42 | 06 13N LC | ONG 092 59 | 36W) | | | JUN 1989 | | | | | | | | | | | | 01 | <0.100 | <20 | <20 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | AUG | ~0 100 | | | -0.10 | ~0 10 | -n 1n | <0.10 | <0.10 | <0.10 | <0.10 | | 07 | <0.100 | | | <0.10 | <0.10 | <0.10 | -0.10 | ~U. IU | ~U.IU | -U. IU | | GEO- PRIOR TEMPER- CON- PH TOTAL LOGIC FLOW TO SAM- ATURE DUCT- (STAND- (MG/L DATE TIME UNIT RATE PLING WATER ANCE ARD AS (G/M) (MIN) (DEG C) (US/CM) UNITS) CACO3) | MAGNE- CALCIUM SIUM, DIS- DIS- SOLVED SOLVED (MG/L (MG/L AS CA) AS MG) (00915) (00925) | |---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------| | MITCHELL COUNTY 431337092462801 09716W07DD ORCHARD 2 (LAT 43 13 37N LONG 092 46 | 5 28W) | | JUL 1989<br>24 1615 350SLRN 150 5 12.0 6.94 240 | 61 22 | | 432241092550802 09918W24CABA 1960SAINT ANSGAR 2 (LAT 43 22 41N LONG 092 | 55 08W) | | JUL 1989<br>25 0900 344CDVL 255 60 10.0 7.32 310 | 82 26 | | MONONA COUNTY 415518095510001 08243W09DDCD 1932MOORHEAD 1 (LAT 41 55 18N LONG 095 5) | 1 00W) | | AUG 1989<br>08 0830 111SDRV 200 30 14.0 870 7.30 430 | 110 37 | | 415558096044901 08245W09ADAD 1964BLENCOE 1 (LAT 41 55 58N LONG 096 04 | 4 49W) | | AUG 1989<br>07 1645 111ALVM 60 30 12.5 1180 7.20 590 | 160 46 | | | | | 415901095465601 08342W19CACC 1974SOLDIER 4 (LAT 41 59 01N LONG 095 46 AUG 1989 | 3 56W) | | 08 0930 112PLSC 100 30 13.0 1700 7.60 640 | 180 46 | | 420140096054001 08345W04CBDB 1964ONAWA 5 (LAT 42 01 40N LONG 096 05 | 40W) | | AUG 1989<br>08 1430 111ALVM 650 30 13.0 930 7.30 440 | 120 33 | | 420241095422001 08442W35CABB 1974UTE 3 (LAT 42 02 41N LONG 095 42 2 | (WOS | | MAY 1989<br>24 1000 111SDRV 150 30 13.0 910 7.35 440 | 120 35 | | JUL<br>18 0730 111SDRV 150 30 13.0 950 7.10<br>SEP | | | 20 1310 111SDRV 150 30 13.0 940 7.16 | | | 420735096085701 08446W01BABC 1974WHITING 3 (LAT 42 07 35N LONG 096 08 | 3 57W) | | AUG 1989<br>11 1245 111ALVM 150 30 12.0 1160 7.30 610 | 160 52 | | 420955095475601 08543W24BDBA 1973MAPLETON 5 (LAT 42 10 03N LONG 095 47 | 7 49W) | | AUG 1989<br>08 1115 111ALVM 400 30 12.0 790 7.40 400 | 110 30 | | O'BRIEN COUNTY 430013095385902 09541W35DBA 1978PAULLINA 5 (LAT 43 00 13N LONG 095 38 | 3 59W) | | AUG 1989<br>09 1015 111ALVM 380 30 10.5 820 7.30 400 | 110 30 | | 431045095413401 09741W33ACCC 1980SANBORN 4 (LAT 43 10 45N LONG 095 41 | L 34W) | | | | | AUG 1989<br>09 1200 112PLSC 250 30 10.0 870 7.20 460 | 130 33 | | | | | DATE | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | ALKA-<br>LINITY<br>LAB<br>(MG/L<br>AS<br>CACO3)<br>(90410) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)<br>(00945) | RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)<br>(00950) | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2)<br>(00955) | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L)<br>(70300) | NITRO-<br>GEN,<br>NO2+NO3<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00631) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | |-----------------------|---------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------| | 43 | 133709246 | 2801 0971 | 6W0 7DD | MIIC | ORCHARD | | 3 13 37N | LONG 092 | 46 28W) | | | JUL 1989<br>24 | 15 | 2.9 | | 4.5 | | 0.85 | 9.6 | 454 | <0.100 | 0.600 | | 1000 | | | | | | | | | | | | 43224<br>JUL 1989 | 109255080 | 2 09918W2 | 4CABA | 19603 | SAINT ANSG | AR 2 (LAT | 43 22 43 | IN LONG 09 | 2 33 U8W) | | | 25 | 9.6 | 1.1 | | 16 | 61 | 0.15 | 12 | 384 | 3.40 | <0.100 | | | 5518095510 | 001 08243 | W09DDCD | MOI<br>193 | NONA COUNTY<br>B 2MOORHEAD | Y<br>1 (LAT 4) | L 55 18N | LONG 095 | 51 00W) | | | AUG 1989<br>08 | 14 | 8.9 | 376 | 22 | 38 | 0.30 | 27 | | 7.90 | <0.100 | | 41 | L555809604 | 4901 0824 | 5W09ADAD | 19 | 964BLENCOE | 1 (LAT 41 | L 55 58N | LONG 096 | 04 49W) | | | AUG 1989 | | 7.0 | | | | | | | | 4 00 | | 07 | 37 | 7.8 | 558 | 5.0 | 150 | 0.30 | 35 | | <0.100 | 1.20 | | 41 | 1590109546 | 5601 0834 | 2W19CACC | 19 | 974SOLDIER | 4 (LAT 4) | L 59 01N | LONG 095 | 46 56W) | | | AUG 1989<br>08 | 160 | 10 | 254 | 7.5 | 680 | 0.30 | 31 | | <0.100 | 2.00 | | 4 | 201400960 | 54001 083 | 45W04CBDB | : | 1964 <b>ONAWA</b> : | 5 (LAT 42 | 01 40N I | ONG 096 0 | 5 40W) | | | AUG 1989<br>08 | 24 | 7.7 | 410 | 17 | 70 | 0.50 | 32 | | <0.100 | 0.700 | | <b>v</b> o | 27 | 7.7 | 419 | 17 | 76 | 0.50 | J2 | | -0.100 | 0.700 | | | 420241095 | 422001 08 | 442W35CABE | 3 | 1974UTE 3 | (LAT 42 ( | 02 41N LC | ONG 095 42 | 20W) | | | MAY 1989<br>24<br>JUL | 11 | 3.8 | 316 | 26 | 58 | 0.25 | 23 | 596 | 18.0 | <0.100 | | 18 | | | | | | | | | 16.0 | <0.100 | | SEP<br>20 | | | | | | | | | 16.0 | <0.100 | | 42 | 2073509608 | 5701 0844 | 6W01BABC | 19 | 974WHITING | 3 (LAT 42 | 2 07 35N | LONG 096 | 08 57W) | | | AUG 1989<br>11 | 3 <b>2</b> | 8.9 | 448 | 23 | 200 | 0.45 | 31 | | <0.100 | 0.800 | | 420 | 955095475 | 601 08543 | W24BDBA | 197 | 73MAPLETON | 5 (LAT 42 | 2 10 03N | LONG 095 | 47 49W) | | | AUG 1989 | 17 | 4.0 | 317 | 13 | 67 | 0.35 | 27 | | 7.10 | <0.100 | | | | | | 0 | BRIEN COU | NTY | | | | 3,233 | | | 013095385 | 902 09541 | W35DBA | 197 | 78PAULLINA | 5 (LAT 43 | 3 00 13N | LONG 095 | 38 59W) | | | AUG 1989<br>09 | 9.1 | 2.8 | 304 | 7.0 | 98 | 0.50 | 26 | | 0.800 | <0.100 | | 43 | 3104509541 | 3401 0974 | 1W33ACCC | 19 | 980SANBORN | 4 (LAT 43 | 3 10 45N | LONG 095 | 41 34W) | | | AUG 1989<br>09 | 14 | 3.8 | 355 | 12 | 100 | 0.60 | 28 | | 1.80 | <0.100 | | 431 | 1203095513 | 001 09742 | W19CCDC | 197 | 79SHELDON : | 10 (LAT 43 | 3 12 03N | LONG 095 | 51 30W) | | | AUG 1989 | | | | | 97 | 0.65 | | | 0.600 | 0.100 | | | | | GA | OUND-WAI | EK-QONLIII | DAIA | | | | | |-----------------|---------------------------------------------------------------------------|--------------------------------------------|------------------------------------------------------|----------|---------------------------------------|-------------------|----------|--------------|---------------------|-------| | DATE | PHOS-<br>PHOROUS<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | IRON,<br>DIS-<br>SOLVED<br>(UG/L<br>AS FE) | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(UG/L<br>AS MN) | | CYAN- AZINE TOTAL (UG/L) (cide concen | UG/L)<br>trations | | | | | | | | | | | | | | | | | | | 133709246 | <b>28</b> 01 0 <b>971</b> 6 | W07DD | MITC | HELL COUNTY<br>ORCHARD 2 | | 13 37N | LONG 092 4 | 6 <b>28W)</b> | | | JUL 1989<br>24 | <0.100 | <20 | <20 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 43224 | 109255080 | 2 09918W24 | CABA | 1960S | AINT ANSGAR | 2 (LAT | 43 22 4 | LN LONG 092 | 55 08W) | | | JUL 1989<br>25 | <0.100 | <20 | <20 | 0.12 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | .15 | E1900EE10 | 001 000/00 | 10 00 D CD | MONO | ONA COUNTY | | 55 10W | 10V4 005 5 | | | | | 218082210 | 001 08243W | 090000 | 1932 | ZMOORHEAD 1 | (LAT 41 | 55 18N | LONG 095 5 | 1 00W) | | | AUG 1989<br>08 | <0.100 | <20 | 20 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 41 | .555809604 | 4901 08245 | W09ADAD | 196 | 64BLENCOE 1 | (LAT 41 | 55 58N | LONG 096 04 | 4 49W) | | | AUG 1989<br>07 | <0.100 | 8000 | 510 | <0.10 | 0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 41 | .590109546 | 5601 08342 | W19CACC | 197 | 74SOLDIER 4 | (LAT 41 | 59 01N | LONG 095 46 | 5 56W) | | | AUG 1989 | | | | | | , | | | | | | 08 | <0.100 | 1100 | 180 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 4 | 201400960 | 54001 0834 | 5W04CBDB | 19 | 964ONAWA 5 | (LAT 42 | 01 40N I | ONG 096 05 | 40W) | | | AUG 1989<br>08 | 0.100 | 5900 | 370 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | | 420241095 | 422001 084 | 42W35CABB | 1 | 1974UTE 3 ( | LAT 42 0 | 2 41N LO | ONG 095 42 2 | 20 <b>W</b> ) | | | MAY 1989 | | | | | | | | | | | | 24<br>JUL | 0.200 | <20 | <20 | | 0.12 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 18<br>SEP | 0.100 | | | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 20 | <0.100 | | | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 42 | 073509608 | 5701 08446 | W01BABC | 197 | 4WHITING 3 | (LAT 42 | 07 35N | LONG 096 08 | 8 57W) | | | AUG 1989<br>11 | <0.100 | 8400 | 610 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 420 | 955095475 | 601 08543W | 24BDBA | 1973 | MAPLETON 5 | (LAT 42 | 10 03N | LONG 095 47 | 7 49W) | | | AUG 1989<br>08 | <0.100 | <20 | <20 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 420 | 012005295 | 002 005410 | 22 EDDA | | EN COUNTY | /T AT 42 | 00 12N | TONG 005 20 | 9 <b>50</b> W) | | | 430<br>AUG 1989 | | 902 09541W | SOUBA | 19/8 | SPAULLINA 3 | (LAI 43 | 00 T2W | LONG 095 38 | 5 3 <del>9W</del> ) | | | | | 60 | 380 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 43 | 104509541 | 3401 09741 | W33ACCC | 198 | 30SANBORN 4 | (LAT 43 | 10 45N | LONG 095 41 | 1 34W) | | | AUG 1989<br>09 | <0,100 | 120 | 260 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 431 | .203095513 | 001 0 <b>9742</b> W | 19CCDC | 1979 | SHELDON 10 | (LAT 43 | 12 03N | LONG 095 51 | 1 30W) | | | AUG 1989 | <0.100 | | | 0.37 | | | <0.10 | | <0.10 | <0.10 | | | | | | | | | | | | | | DATE | TIME | GEO-<br>LOGIC<br>UNIT | FLOW<br>RATE<br>(G/M)<br>(00058) | PUMP<br>OR FLOW<br>PERIOD<br>PRIOR<br>TO SAM-<br>PLING<br>(MIN)<br>(72004) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | PH<br>(STAND-<br>ARD<br>UNITS)<br>(00400) | HARD-<br>NESS<br>TOTAL<br>(MG/L<br>AS<br>CACO3)<br>(00900) | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915) | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925) | |------------------|---------|-----------------------|----------------------------------|----------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------| | 431 | 7030952 | 72401 0983 | 9W28ABBB | | OLA COUNTY<br>72MELVIN 2 | | 17 03N L | ONG 095 2 | 7 24W) | | | AUG 1989<br>09 | 1445 | 110QRNR | 150 | 30 | 10.5 | 685 | 7.40 | 360 | 100 | 26 | | 432 | 8460952 | 60201 1003 | 9W27DCDB | 12508 19 | 60HARRIS 2 | 2 (LAT 43 | 26 46N L | ONG 095 2 | 6 02W) | | | AUG 1989<br>10 | 0815 | 112PLSC | 35 | 30 | 11.0 | 2200 | 7.10 | 1300 | 350 | 110 | | 425 | 6110944 | 10501 0943 | 3W25ABA | | ALTO COUNT<br>47MALLARD | | 2 56 11N I | LONG 094 | 41 05W) | | | AUG 1989<br>01 | 1615 | 210CRCS | 125 | 30 | 13.0 | 1400 | 7.00 | 690 | 170 | 65 | | 424 | 2050051 | 45301 0014 | CU1 1 PRING | | OUTH COUNT | | 2 42 NEW 1 | ONC AGE | 14 5261) | | | 424.<br>MAY 1989 | 3030861 | .45301 0914 | OMITPPDD | 19911 19 | 67MERRILL | 3 (LAI 4 | 2 43 USM 1 | LUNG USO | 14 39W) | | | 26<br>JUL | 0900 | 110QRNR | 220 | 30 | 13.0 | 940 | 7.20 | 460 | 120 | 40 | | 20<br>SEP | 1505 | 110QRNR | 220 | 30 | 14.0 | 860 | 7.35 | | | | | 19 | 1400 | 110QRNR | 200 | 30 | 13.0 | 890 | 7.24 | | | | | | 2809636 | 2001 09249 | W27DAAA | 196 | 5Westfield | 1 (LAT | 42 45 28N | LONG 096 | 36 20W) | | | MAY 1989<br>25 | 1445 | 110QRNR | 35 | 20 | 13.0 | 1080 | 7.35 | 520 | 140 | 41 | | JUL<br>19 | 1515 | 110QRNR | 25 | 25 | 12.5 | 1090 | 7.20 | | | | | SEP<br>19 | 1245 | 110QRNR | 35 | 20 | 12.0 | 1080 | 7.22 | | | | | 42 | 4911096 | 033001 092 | 244W05AA | 1 | 953 <b>0YENS</b> 1 | L (LAT 42 | 49 11N L | ONG 096 0 | 3 30W) | | | AUG 1989<br>18 | 1100 | 217DKOT | 100 | 10 | 13.5 | 690 | 7.45 | 330 | 92 | 25 | | 424 | 9210955 | 81501 0924 | 3W06BABA | 19 | 56REMSEN | 3 (LAT 42 | 49 21N L | ONG 095 5 | 8 15W) | | | MAY 1989<br>25 | 1630 | 110QRNR | 75 | 30 | 9.5 | 970 | 7.50 | 470 | 130 | 35 | | JUL<br>20 | 0930 | 110QRNR | 75 | 30 | 11.0 | 925 | 7.35 | | | | | SEP<br>19 | 1600 | 110QRNR | 75 | 25 | 12.0 | 950 | 7.24 | | | | | 42 | 4948096 | 33 <b>290</b> 1 093 | 48W31BDDC | 1 | 959AKRON 4 | (LAT 42 | 49 48N L | ONG 096 3 | 3 29W) | | | MAY 1989<br>25 | 1335 | 112PLSC | 200 | 30 | 12.5 | 1220 | 7.20 | 580 | 160 | 45 | | JUL<br>19 | 1430 | 112PLSC | 225 | 30 | 12.5 | 1190 | 7.20 | | | | | SEP<br>19 | 1150 | 112PLSC | 200 | 30 | 13.0 | 1180 | 7.16 | | | | | 4133420 | 9343280 | 1 07825W15 | CAAC | | LK COUNTY<br>ST DES MO | INES 9 (L | AT 41 33 4 | 2n Long | 093 43 28 | W) | | MAY 1989<br>22 | 1200 | 111ALVM | | | 13.0 | 750 | 7.60 | | | | | JUL<br>25 | | 111ALVM | 180 | 180 | 13.5 | 768 | 7.40 | | | | | 414051 | 0931909 | 02 07921W0 | )5CAAA 09 | 808 1958M | ITCHELLVII | LLE 2 (LA | T 41 40 5 | IN LONG O | 93 19 09W | ) | | MAY 1989 | | 444 | | | 44.5 | | | | 00 | 20 | | 23<br>JUL | | 111ALVM | 250 | 10 | 12.0 | 662 | 7.30 | 330 | 86 | 29 | | 25 | 1445 | 111ALVM | 250 | 15 | 12.0 | 690 | 7.30 | | | | SOLIDS, NITRO- NITRO- | DATE | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | ALKA-<br>LINITY<br>LAB<br>(MG/L<br>AS<br>CACO3)<br>(90410) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)<br>(00945) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)<br>(00950) | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2)<br>(00955) | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L)<br>(70300) | GEN,<br>NO2+NO3<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00631) | GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | |----------------|---------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------| | 43 | 1703095272 | 2401 0983 | 9W28ABBB | | OLA COUNTY<br>72MELVIN | | 17 03N L | ONG 095 27 | 24W) | | | AUG 1989<br>09 | 5.1 | 2.2 | 243 | 11 | 100 | 0.35 | 27 | | <0.100 | <0.100 | | 43 | 2646095260 | 201 1003 | 9W27DCDB | 12508 19 | 60HARRIS | 2 (LAT 43 | 26 46N L | ONG 095 26 | 02W) | | | AUG 1989<br>10 | 41 | 12 | 326 | 1.5 | 1200 | 0.40 | 30 | | <0.100 | 1.50 | | 42 | 5611094410 | 501 0943 | 3W25ABA | | ALTO COUL | | . 56 11N | LONG 094 4 | 1 05W) | | | AUG 1989 | 70 | | 150 | | | | | 4070 | -0.00 | | | 01 | 76 | 4.3 | 452 | 5.5<br>pr vm | 340<br>OUTH COUN | 0.35<br>rv | 30 | 1070 | <0.100 | 2.20 | | | 4305096145 | 301 0914 | 6W11BBDD | | | | 2 43 05N | LONG 096 1 | (4 53W) | | | MAY 1989<br>26 | 16 | 4.1 | 342 | 26 | 84 | 0.30 | 24 | 534 | 10.0 | <0.100 | | JUL<br>20 | | | | | | | | | 7.40 | <0.100 | | SEP<br>19 | | | | | | | | | 8.80 | <0.100 | | 424 | 5280963620 | 01 09249 | W27DAAA | 196 | 5Westfieli | ) 1 (LAT 4 | 2 45 28N | LONG 096 | 36 20W) | | | MAY 1989 | | | | | | | | | | | | 25<br>JUL | 25 | 6.7 | 322 | 10 | 210 | 0.25 | 27 | 718 | 14.0 | <0.100 | | 19<br>SEP | | | | | | | | | 14.0 | <0.100 | | 19 | | | | | | | | | 15.0 | <0.100 | | 4 | 2491109603 | 3001 092 | 44W05AA | 1 | 9530YENS : | l (LAT 42 | 49 11N L | ONG 096 03 | 30W) | | | AUG 1989<br>18 | 13 | 4.5 | 292 | 2.5 | 61 | 0.30 | 46 | | <0.100 | 0.100 | | 42 | 4921095581 | 501 0924 | 3W06BABA | 19 | 56REMSEN | 3 (LAT 42 | 49 21N L | ONG 095 58 | 15W) | | | MAY 1989<br>25 | 21 | 2.5 | 298 | 26 | 160 | 0.40 | 24 | 622 | 7.50 | <0.100 | | JUL<br>20 | | | | | | | | | 6.90 | <0.100 | | SEP<br>19 | | | | | | | | | 6.40 | <0.100 | | | | | | | | | | | | | | | 2494809633 | 2901 093 | 48W31BDDC | 1 | 959AKRON 4 | (LAT 42 | 49 48N L | ONG 096 33 | 1 29W) | | | MAY 1989<br>25 | 23 | 7.6 | 368 | 24 | 240 | 0.15 | 28 | 806 | 9.70 | <0.100 | | JUL<br>19 | | | | | | | | | 9.80 | <0.100 | | SEP<br>19 | | | | | | | | | 9.10 | <0.100 | | 413342 | 093432801 | 07825W15 | CAAC | | LK COUNTY | INES 9 (LA | T 41 33 | 42N LONG 0 | 93 43 28 | W) | | MAY 1989 | | | | | | | | | | - | | 22<br>JUL | | | | | | | | | 0.800 | <0.100 | | 25 | | | | | | | | | 0.700 | <0.100 | | 41405 | 1093190902 | 07921W0 | 5CAAA 09 | 808 1958M | ITCHELLVII | LLE 2 (LAT | 41 40 5 | 1N LONG 09 | 3 19 09W | ) | | MAY 1989<br>23 | 10 | 0.90 | | 16 | 27 | 0.20 | 24 | 382 | 3.20 | <0.100 | | JUL<br>25 | | | | | | | | | 3.10 | <0.100 | | ۵ | | | | | | | | | 0.10 | -0.100 | | | | | • | HOUND WILL | mr dommii | | | | | 000 | |--------------------|---------------------------------------------------------------------------|--------------------------------------------|------------------------------------------------------|------------|------------------------------------------------------------|-----------|---------------|------------|------------------|--------------------------------------------------------------------------| | DATE | PHOS-<br>PHOROUS<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | IRON,<br>DIS-<br>SOLVED<br>(UG/L<br>AS FE) | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(UG/L<br>AS MN) | | CYAN-<br>AZINE<br>TOTAL<br>(UG/L)<br>cide conce<br>(81757) | | | | | TRI-<br>FLURA-<br>LIN<br>TOTAL<br>RECOVER<br>(UG/L)<br>rable]<br>(39030) | | | | | | | | | | | | | | 43 | 170309527 | 2401 0983 | 9W28ABBB | | ELOA COUNT<br>72MELVIN 2 | | 17 03N L | ONG 095 27 | 24W) | | | AUG 1989<br>09 | <0.100 | 1600 | 470 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 43 | 264609526 | 0201 1003 | 9W27DCDB | 12508 19 | 60HARRIS 2 | (LAT 43 | 26 46N L | ONG 095 26 | 02W) | | | AUG 1989<br>10 | <0.100 | 4900 | 760 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 42 | 561109441 | 0501 0943 | 3W25ABA | | ALTO COUN | | 2 56 11N 1 | LONG 094 4 | 1 05W) | | | AUG 1989<br>01 | <0.100 | 7600 | 40 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | | ,,30500E1. | 5301 0014 | EU1 1 D D D D | | MOUTH COUN | | 2 42 05% | ONG OGE 1 | . 63W) | | | MAY 1989 | 41090204 | 5301 0914 | OMIIDDUU | 19911 19 | 67MERRILL | 3 (LAI 4. | 2 43 USM 1 | LONG U90 1 | (4 33W) | | | 26<br>JUL | 0.100 | <20 | <20 | 1.7 | <0.10 | <0.10 | <0.10 | <0.20 | <0.10 | <0.10 | | 20<br>SEP | <0.100 | | | 0.98 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 19 | <0.100 | | | 1.1 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 424 | 528096362 | 001 09249 | W27DAAA | 196 | 5WESTFIELD | 1 (LAT | 42 45 28N | LONG 096 | 36 20W) | | | MAY 1989<br>25 | 0.100 | 120 | 100 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | JUL<br>19 | <0.100 | | | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | | SEP<br>19 | <0.100 | | | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | | | | | | | | | | | | | | 249110960 | 33001 092 | 44W05AA | 1 | 9530YENS 1 | L (LAT 42 | 49 11N L | ONG 096 03 | 30W) | | | AUG 1989<br>18 | 0.100 | 530 | 340 | <0.10 | <0.10 | <0.10 | <0.10 | <0.20 | <0.10 | <0.10 | | 42 | 492109558 | 1501 0924 | 3W06BABA | 19 | 56REMSEN 3 | (LAT 42 | 49 21N L | ONG 095 58 | 3 15W) | | | MAY 1989<br>25 | 0.100 | <20 | 100 | 1.3 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | JUL<br>20 | <0.100 | | | 0.54 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | SEP<br>19 | <0.100 | | | 0.48 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 4 | 249480963 | 32901 093 | 4 8W3 1BDDC | 1 | 959AKRON 4 | (LAT 42 | 49 48N L | ONG 096 33 | 3 29W) | | | MAY 1989<br>25 | 0.100 | <20 | 60 | 13 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | JUL<br>19 | <0.100 | | | 1.1 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | SEP<br>19 | <0.100 | | | 0.71 | <0.10 | <0.10 | <0.10 | 0.14 | <0.10 | <0.10 | | | | | a | | LK COUNTY | | .m. / 4 . 0.0 | | | ••• | | 413342<br>MAY 1989 | :093432801 | 07825W15 | CAAC | 1954WE | ST DES MO | INES 9 (L | AT 41 33 | 42N LONG ( | )93 <b>43</b> 28 | w) | | 22<br>JUL | 0.100 | | | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 25 | 0.100 | | | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0,10 | <0.10 | | 41405 | 109319090 | 2 07921W0 | 5CAAA 09 | 808 1958M | ITCHELLVII | LE 2 (LA | T 41 40 5 | IN LONG 09 | 3 19 <b>09</b> W | ) | | MAY 1989 | | | | | | | | | | -6 | | 23<br>JUL | 0.100 | 50 | <20 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 25 | <0.100 | | | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | DATE | TIME | GEO-<br>LOGIC<br>UNIT | FLOW<br>RATE<br>(G/M)<br>(00058) | PUMP<br>OR FLOW<br>PERIOD<br>PRIOR<br>TO SAM-<br>PLING<br>(MIN)<br>(72004) | | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | PH<br>(STAND-<br>ARD<br>UNITS)<br>(00400) | HARD-<br>NESS<br>TOTAL<br>(MG/L<br>AS<br>CACO3)<br>(00900) | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915) | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925) | |------------------|---------|-----------------------|----------------------------------|----------------------------------------------------------------------------|--------------------------|--------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------| | 413449 | 9092223 | 901 07813W | 08AACA | | HIEK COUNT<br>DEEP RIVER | | 1 34 49N | LONG 092 | 22 39W) | | | JUL 1989 | | 44-55-56 | | | | - | | | - | | | 25 | ∕0900 | 112PLSC | 30 | 180 | 12.0 | 1350 | 7.30 | 560 | 150 | 45 | | 4142 | 2240923 | 33201 0801 | 5W26DBDC | 19 | 79MALCOM 4 | (LAT 41 | 42 24N LC | NG 092 3 | 3 32W) | | | JUL 1989<br>25 | 1000 | 330MSSP | 93 | 120 | 13.5 | 1780 | 7.50 | 700 | 150 | 80 | | 4215 | 5010945 | 22801 0863 | 5W24BBD | | C COUNTY<br>52AUBURN 3 | (LAT 42 | 15 01N LO | NG 094 52 | 2 28W) | | | JUL 1989 | | | | | | | | | | | | 28 | 1200 | 217DKOT | 115 | 20 | 14.0 | 1500 | 7.30 | <b>6</b> 70 | 180 | 54 | | 42182 | 2609502 | 5101 08736 | W33BCAA | 197 | BLAKE VIEW | 3 (LAT 4 | 2 18 26N | LONG 095 | 02 51W) | | | MAY 1989<br>24 | 1445 | 112PLSC | 200 | 30 | 13.0 | 760 | 7.30 | 370 | 95 | 32 | | JUL<br>18 | 1450 | 112PLSC | 200 | 30 | 14.0 | 780 | 7.25 | | | | | SEP<br>18 | 1350 | 112PLSC | 200 | 30 | 13.5 | 760 | 7.24 | | | | | 4224 | 4709459 | 4101 08836 | W26AAAC | 196 | 9SAC CITY | 3 (LAT 42 | 24 47N I | ONG 094 : | 59 41W) | | | JUL 1989<br>28 | 1045 | 112PLSC | 515 | 60 | 14.0 | 860 | 7.20 | 440 | 120 | 35 | | 42: | 2644095 | 085501 088 | 3.7Wnqnnan | 1, | 973EARLY 2 | (TAT 42 | 26 AAN 1.0 | NG 095 0 | 3 55W) | | | MAY 1989 | 2044003 | .005501 000 | o, wo apprin | • | S/ODMALI Z | (2011 42 | 20 448 20 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | | 24<br>JUL | 1550 | 112PLSC | 82 | 30 | 11.0 | 640 | 7.50 | 310 | 82 | 26 | | 18<br>SEP | 1610 | 112PLSC | 82 | 30 | 10.0 | 680 | 7.45 | | | | | 18 | 1500 | 112PLSC | 82 | 25 | 10.0 | 670 | 7.45 | | | | | 41425 | 1090523 | 401 08001E | 20CC | | IT COUNTY<br>NEW LIBERT | Y 1 (LAT | 41 42 51N | LONG 090 | ) 52 34W) | | | JUL 1989<br>18 | 0900 | 350SLRN | 125 | 20 | 12.0 | 505 | 7.30 | 300 | 74 | 29 | | 414 | 422090 | 464701 080 | 02E18 | 1: | 916DIXON 1 | (LAT 41 | 44 22N LC | NG 090 40 | 5 47W) | | | JUL 1989<br>18 | 0800 | 112PLSC | 60 | 20 | 12.0 | 610 | 7.20 | 300 | 71 | 31 | | | | | | | LBY COUNTY | | | | | | | 4138<br>MAY 1989 | 3100951 | . <b>85401 079</b> 3 | 8W19BDDB | 19 | 81HARLAN 2 | 7 (LAT 41 | . 38 10N I | .ONG 095 1 | L8 54W) | | | 31<br>JUL | 0920 | 111ALVM | 72 | 30 | 13.0 | 700 | 7.25 | 340 | 100 | 23 | | 14 | 0945 | 111ALVM | 72 | 30 | 11.5 | 690 | 7.20 | | | | | 4143 | 3400951 | .60301 0803 | 8W21ADAA | 19 | 72KIRKMAN | 1 (LAT 41 | . 43 40N I | ONG 095 | 16 03W) | | | AUG 1989<br>17 | 0915 | 111ALVM | 5.0 | 30 | 16.0 | 780 | 7.20 | 410 | 100 | 38 | | 42594 | 609629 | 2901 09448 | WO3AAAB | | UX COUNTY<br>OHAWARDEN | 6 (LAT 42 | : 59 46N I | ONG 096 2 | 29 29W) | | | MAY 1989 | | | | | | | | | | | | 25<br>JUL | 1230 | 110QRCU | 170 | 30 | 12.5 | 1100<br>1070 | 7.20 | 510 | 140 | 40 | | 19<br>SEP | 1330 | 110QRCU | 120 | 30 | 13.0 | 1070 | 7.30 | | | | | 19 | 1045 | · | 170 | 30 | 13.0 | 1120 | 7.12 | | | | | DATE | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | ALKA-<br>LINITY<br>LAB<br>(MG/L<br>AS<br>CACO3)<br>(90410) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)<br>(00945) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)<br>(00950) | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2)<br>(00955) | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L)<br>(70300) | NITRO-<br>GEN,<br>NO2+NO3<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00631) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | |----------------|---------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------| | 412 | 490922239 | 01 070126 | 10044C4 | | SHIEK COUL | | 41 24 40N | 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 22 2041 | | | JUL 1989 | 1480822238 | 01 0/813# | USAACA | 1940 | DEEL KIAFI | C I (LAI | 41 34 49N | LONG 092 | 22 39W) | | | 25 | 21 | 2.7 | 313 | 15 | 260 | 0.25 | 24 | 710 | <0.100 | 2.60 | | 41 | 1422409233 | 3201 0801 | .5W26DBDC | 19 | 79MALCOM | (LAT 41 | 42 24N L | ONG 092 3 | 3 32W) | | | JUL 1989<br>25 | 96 | 6.5 | 508 | 2.0 | 400 | 0.50 | 13 | 108 | <0.100 | 11.0 | | 42 | 2150109452 | 2801 0863 | SW24BBD | | SAC COUNTY | | 15 01N L | ONG 094 52 | 2 28W) | | | JUL 1989 | | | | | | | | | | | | 28 | 71 | 5.0 | 398 | 3.5 | 400 | 0.45 | 24 | 1030 | <0.100 | 1.30 | | | 1826095025 | 101 08736 | W33BCAA | 197 | 8LAKE VIEV | 3 (LAT | 42 18 26N | LONG 095 | 02 51W) | | | MAY 1989<br>24 | 13 | 2.0 | 288 | 14 | 73 | 0.20 | 28 | 456 | 8.90 | <0.100 | | JUL<br>18 | | | | | | | | | 8.20 | <0.100 | | SEP<br>18 | | | | | | | | | 8.80 | <0.100 | | 422 | 2447094594 | 101 08836 | W26AAAC | 196 | 9SAC CITY | 3 (LAT 42 | 2 24 47N | LONG 094 | 59 41W) | | | JUL 1989<br>28 | 21 | 4.5 | 373 | 2.0 | 78 | 0.40 | 29 | 464 | <0.100 | 1.20 | | | 226440950 | 85501 088 | 37W09DDAD | 1 | 973EARLY 2 | 2 (LAT 42 | 26 44N L | ONG 095 08 | 3 55W) | | | MAY 1989 | | | | | | • | | | • | | | 24<br>JUL | 11 | 1.9 | 256 | 12 | 30 | 0.25 | 17 | 330 | 9.60 | <0.100 | | 18<br>SEP | | | | | | | | | 9.70 | <0.100 | | 18 | | | | | <b></b> | | | | 9.60 | <0.100 | | | 2510905234 | 01 08001E | 20CC | | TT COUNTY<br>NEW LIBER | TY 1 (LAT | 41 42 51 | N LONG 090 | 52 34W) | | | JUL 1989<br>18 | 9.5 | 1.0 | | 1.5 | 4.0 | 0,35 | 17 | 322 | <0.100 | <0.100 | | 4 | 144220904 | 647 <b>01 0</b> 80 | 02E18 | 1 | 916DIXON | L (LAT 41 | 44 22N L | ONG 090 46 | 5 47W) | | | JUL 1989 | 10 | 0.00 | | 10 | 10 | 0.20 | 22 | 262 | 3.30 | <0.100 | | 18 | 12 | 0.90 | | 12 | 18 | | 22 | 362 | 3.30 | <0.100 | | | 1381009518 | 5401 0793 | 8W19BDDB | | LBY COUNTY<br>81HARLAN 2 | | 1 38 10N | LONG 095 | L8 54W) | | | MAY 1989<br>31 | 10 | 2.5 | 264 | 19 | 90 | 0.25 | 16 | 424 | <0.100 | 0.300 | | JUL<br>14 | | | | | | | | | <0.100 | 0.400 | | <b>4</b> 1 | L434009516 | 0301 0803 | QW21ADAA | 10 | 72YTDYMAN | 1 /TAT A | 1 43 40M | LONG 095 1 | 16 U3M) | | | AUG 1989 | 1434009310 | 0301 0803 | OWZIADAA | 19 | ZKIKKIMI | 1 (LAI 4. | 1 43 408 | Long USS . | 10 00117 | | | 17 | 10 | 3.0 | 360 | 18 | 44 | 0.35 | 25 | | 2.70 | 0.500 | | 425 | 5946096292 | 901 09448 | BAAAE OW | | UX COUNTY<br>OHAWARDEN | 6 (LAT 4 | 2 59 46N | LONG 096 2 | 29 29W) | | | MAY 1989<br>25 | 27 | 7.9 | 294 | 24 | 210 | 0.20 | 27 | 752 | 8.90 | <0.100 | | JUL<br>19 | | | | | | | | | 6.70 | 0.100 | | SEP<br>19 | | | | | | | | | 7.20 | <0.100 | | - | | | | | | | | | | | | | PHOS-<br>PHOROUS<br>ORTHO, | IRON, | MANGA-<br>NESE, | 4 MTD 4 | av.w | METRI-<br>BUZIN | ALA- | METOLA-<br>CHLOR | | TRI-<br>FLURA- | |-----------------------|----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|--------------------------------|-------------------------------------|--------------------------------|-------------------------|-----------------------------------| | DATE | DIS-<br>SOLVED<br>(MG/L<br>AS P) | DIS-<br>SOLVED<br>(UG/L<br>AS FE) | DIS-<br>SOLVED<br>(UG/L<br>AS MN) | ATRA-<br>ZINE,<br>TOTAL<br>(UG/L) | CYAN-<br>AZINE<br>TOTAL<br>(UG/L) | IN<br>WHOLE<br>WATER<br>(UG/L) | CHLOR<br>TOTAL<br>RECOVER<br>(UG/L) | IN<br>WHOLE<br>WATER<br>(UG/L) | BUTY-<br>LATE<br>(UG/L) | LIN<br>TOTAL<br>RECOVER<br>(UG/L) | | | (00671) | (01046) | (01056) | [Pesti | | entration | s express | ed as tota<br>(39356) | | | | | | | | POWES | HIEK COUN | rv | | | | | | | 490922239 | 01 07813W | 08AACA | | | | 41 34 49N | LONG 092 | 22 39W) | | | JUL 1989<br>25 | 0.200 | 3600 | 180 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 41 | .422409233 | 3201 0801 | 5W26DBDC | 19 | 79MALCOM | 4 (LAT 41 | 42 24N L | ONG 092 3 | 3 3 <b>2W)</b> | | | JUL 1989<br>25 | 0.300 | 990 | 90 | <0.10 | <0.10 | <0.10 | <0.10 | <0.20 | <0.10 | <0.10 | | 42 | 150109452 | <b>2801</b> 0863 | 5W24BBD | | C COUNTY<br>52AUBURN | 3 (LAT 42 | 15 01N L | ONG 094 52 | 2 28W) | | | JUL 1989<br>28 | <0.100 | 1300 | 970 | <0.10 | <0.10 | <0.10 | 0.10 | <0.10 | <0.10 | <0.10 | | 421 | 826095025 | 101 08736 | W33BCAA | 197 | 8LAKE VIE | 3 (LAT | 42 18 26N | LONG 095 | 02 51W) | | | MAY 1989<br>24 | 0.100 | 80 | 40 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | JUL<br>18 | <0.100 | | | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | SEP<br>18 | <0.100 | | | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 422 | 447094594 | 101 08836 | W26AAAC | 196 | 9SAC CITY | 3 (LAT 4 | 2 24 47N | LONG 094 | 59 41W) | | | JUL 1989<br>28 | <0.100 | 2400 | 170 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 4 | 226440950 | 85501 088 | 37W09DDAD | 1 | 973EARLY | 2 (LAT 42 | 26 44N L | ONG 095 08 | 3 55W) | | | MAY 1989<br>24 | 0.100 | <20 | <20 | <0.10 | <0.10 | <0.10 | <0.10 | <0.20 | <0.10 | <0.10 | | JUL<br>18 | <0.100 | | | 0.17 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | SEP<br>18 | <0.100 | | | 0.17 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 4142 | 510905234 | 01 08001E | 20CC | | TT COUNTY<br>NEW LIBER | TY 1 (LAT | 41 42 51 | n Long 090 | ) 52 34W) | | | JUL 1989<br>18 | <0.100 | 590 | 140 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 4 | 1442209040 | 64701 080 | 02E18 | 1 | 916DIXON : | l (LAT 41 | 44 22N L | ONG 090 46 | 5 47W) | | | JUL 1989<br>18 | <0.100 | <20 | <20 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 41 | 381009518 | 5401 0793 | 8W19BDDB | | LBY COUNTY<br>81HARLAN | | 1 38 10N | LONG 095 1 | 18 54W) | | | MAY 1989<br>31 | <0.100 | 6900 | 1400 | 0,20 | 0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | JUL<br>14 | <0.100 | | | 0.24 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 41 | 4340095160 | 0301 0803 | BW21ADAA | 19 | 72KIRKMAN | 1 (LAT 4) | 1 43 40N | LONG 095 1 | (6 03 <b>W</b> ) | | | AUG 1989 | 0 100 | 620 | 220 | | | • | | | | -0 10 | | | 0.100 | 620 | 320 | | <0.10 UX COUNTY | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | | 9460962929 | 901 09448 | №3АААВ | | | 6 (LAT 4: | 2 59 46N | LONG 096 2 | 29 29W) | | | MAY 1989<br>25<br>JUL | 0.200 | <20 | <20 | 9.9 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 19<br>SEP | 0.100 | | | 9.2 | <0.10 | <0.10 | <0.10 | 0.14 | <0.10 | <0.10 | | 19 | 0.200 | | | 9.8 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | | | | ONO | JIID WELL | v downiii | DAIR | | | | 007 | |-----------------------|--------|-----------------------|----------------------------|------------------------|-------------------------------------------------|------------------|-------------------------------------------|------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------| | DATE | TIME | GEO-<br>LOGIC<br>UNIT | FLOW TO<br>RATE I<br>(G/M) | SAM-<br>PLING<br>(MIN) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | ANCE<br>(US/CM) | PH<br>(STAND-<br>ARD<br>UNITS)<br>(00400) | HARD-<br>NESS<br>TOTAL<br>(MG/L<br>AS<br>CACO3)<br>(00900) | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915) | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925) | | 4304590 | 960619 | 01 09545W0 | 1ABBC | | K COUNTY<br>OUX CENTE | R 5 (LAT | 43 04 591 | LONG 096 | 6 06 19W) | | | AUG 1989<br>03 | 1000 | 110QRNR | 180 | 30 | 10.5 | 970 | 7.20 | 510 | 130 | 44 | | 431228 | 096173 | 801 09746W | 21BCCC | 1977 <b>R</b> 0 | OCK VALLE | Y 6 (LAT | 43 12 28 | LONG 096 | 5 17 38W) | | | AUG 1989<br>03 | 0815 | 112PLSC | 150 | 45 | 18.0 | 990 | 7.50 | 520 | 140 | 42 | | 4158 | 520924 | 24901 0831 | 6W21DCAB | | A COUNTY<br>OMONTOUR | 2 (LAT 41 | 58 52N I | ONG 092 | 42 49W) | | | JUN 1989<br>01<br>AUG | 1430 | 112PLSC | | 15 | 12.0 | 605 | 7.11 | 300 | 85 | 21 | | 09 | 1130 | 112PLSC | | 5 | 11.0 | 575 | 6.53 | | | | | 421 | 135092 | 275002 085 | 14W10ABCD | 18 | 94TRAER 2 | LAT 42 | 11 35N LC | NG 092 27 | 7 50W) | | | AUG 1989<br>09 | 1000 | 344CDVL | | 20 | 11.0 | 1600 | 7.38 | 780 | 200 | 69 | | 4044 | 540943 | 72901 0693 | 3W27ADDD | | OR COUNTY<br>1CONWAY 1 | (LAT 40 | 44 54N LC | ONG 094 37 | 7 29W) | | | MAY 1989<br>31 | 1600 | 112PLSC | 6.0 | 30 | 12.5 | 760 | 6.60 | 330 | 96 | 23 | | JUL<br>17 | 1500 | 112PLSC | 12 | 30 | 15.0 | 730 | 6.60 | | | | | SEP<br>28 | 1600 | 112PLSC | 12 | 20 | 17.0 | 790 | 6.68 | | | | | 403844 | 091442 | 901 06808W | 3 <b>5</b> D <b>AB</b> B | | UREN COUN | TY<br>1 1 (LAT 4 | 0 38 44N | LONG 091 | 44 29W) | | | JUN 1989<br>02 | 1135 | 112PLSC | | 5 | 13.0 | 980 | 7.18 | 510 | 140 | 40 | | JUL<br>24 | 1140 | 112PLSC | 150 | 5 | 12.5 | 950 | 7.42 | | | | | 4039 | 260920 | 94902 0681 | 1W30AACB | 196 | 7MILTON 3 | (LAT 40 | 39 26N LC | NG 092 09 | 3 49W) | | | JUL 1989 | | 4 | | | | | | | ••• | | | 24 | 1310 | 112PLSC | 45 | 35 | 12.0 | 1290 | 7.42 | 540 | 140 | 47 | | | 709237 | 5101 07315 | W06CADD | 1970 | EDDYVILLE | 2 (LAT 4 | 1 09 07N | LONG 092 | 37 51W) | | | JUN 1989<br>02<br>JUL | 0735 | 112PLSC | 120 | 15 | 12.0 | 705 | 6.99 | 360 | 100 | 26 | | 26 | 1300 | 112PLSC | | 10 | 13.5 | 672 | 7.40 | | | | | 411806 | 093440 | 501 07525W | 16ADCA | | EN COUNTY<br>AINT MARY | S 2 (LAT | 41 18 068 | LONG 09 | 3 44 05W) | | | MAY 1989<br>23 | 1415 | 112PLSC | 55 | 15 | 11.0 | 400 | 7.30 | 180 | 47 | 15 | | JUL<br>26 | 0830 | 112PLSC | 21 | 15 | 15.5 | 408 | 7.20 | | | | | 4120130 | 914857 | 01 07608W3 | 1DDCC 0870: | | NGTON COU<br>ST CHESTE | | 41 20 131 | LONG 09 | 1 48 57W) | | | JUL 1989<br>24 | 0900 | 339WSVL | 120 | 10 | 12.0 | 790 | 7.30 | 360 | 75 | 42 | | 4128 | 560914 | 30601 0770 | 8W13AABB | 197: | 2KALONA 3 | (LAT 41 | 28 56N LC | NG 091 4: | 3 06W) | | | JUL 1989<br>25 | 1010 | 112PLSC | | | 12.5 | 600 | 7.02 | 300 | 69 | 32 | SOLIDS, NITRO- NITRO- | DATE | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | ALKA-<br>LINITY<br>LAB<br>(MG/L<br>AS<br>CACO3)<br>(90410) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)<br>(00945) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)<br>(00950) | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2)<br>(00955) | RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L)<br>(70300) | GEN,<br>NO2+NO3<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00631) | GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | |----------------|---------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------| | 43045 | 59096061 <b>9</b> 0 | 1 09545W0 | 1ABBC | | UX COUNTY<br>IOUX CENT | ER 5 (LAT | 43 04 59 | n Long 09 | 6 06 19W) | | | AUG 1989<br>03 | 20 | 2.7 | 301 | 22 | 200 | 0.50 | 19 | | 4.10 | 0.200 | | | 280961738 | 01 09746W | 21BCCC | 1977 | ROCK VALL | EY 6 (LAT | 43 12 28 | N LONG 09 | 6 17 38W) | | | AUG 1989<br>03 | 16 | 4.8 | 297 | 20 | 210 | 0,25 | 22 | | 8.80 | <0.100 | | 41 | .5852092424 | 4901 0831 | 6W21DCAB | | MA COUNTY<br>70MONTOUR | | 1 58 52N | LONG 092 | 42 49W) | | | JUN 1989<br>01 | 11 | 1.7 | | 15 | 46 | 0.20 | 19 | 282 | 6.20 | <0.100 | | AUG<br>09 | | | 228 | | | | | | 4.90 | <0.100 | | | | | | | | | | | | | | 4 | 211350922 | 75002 085 | 14W10ABCD | 1 | 894TRAER | 2 (LAT 42 | 11 35N L | ONG 092 2 | 7 50W) | | | AUG 1989<br>09 | 82 | 4.6 | | 5.0 | 680 | 0.75 | 14 | 1350 | <0.100 | 4.70 | | 4.0 | ********** | 2001 0602 | 20274000 | | LOR COUNT | | AA EAN T | ONG DOV 3 | 7 20643 | | | MAY 1989 | 14454094372 | 2901 0093 | 3W27ADDD | 18 | /ICONWAI | I (LAI 40 | 44 34N L | ONG 094 3 | / 29W) | | | 31<br>JUL | 26 | 1.4 | 184 | 26 | 170 | 0.15 | 24 | 494 | 0.500 | 0.800 | | 17<br>SEP | | | | | | | | | 0.300 | 0.800 | | 28 | | | | | | | | | 0.100 | 1.20 | | 4038 | 440914429 | 01 06808W | 35DABB | | UREN COUNT<br>FARMINGTO | | 40 38 44N | LONG 091 | 44 29W) | | | JUN 1989<br>02 | 18 | 1.4 | | 14 | 230 | 0.55 | 22 | 646 | 4.00 | <0.100 | | JUL<br>24 | | | 260 | | | | | | 3.80 | <0.100 | | | | | | | | | | | | | | | 3926092094 | 4902 0681 | 1W30AACB | 19 | 67MILTON | 3 (LAT 40 | 39 <b>26N</b> L | ONG 092 0 | 9 49W) | | | JUL 1989<br>24 | 77 | 5.3 | | 3.0 | 180 | 0.20 | 26 | 768 | <0.100 | 5.70 | | 410 | 907092375 | 101 07315 | W06CADD | 197 | 0EDDYVILL | E 2 (LAT 4 | 41 09 07N | LONG 092 | 37 51W) | | | JUN 1989<br>02 | 9.0 | 1.4 | | 16 | 110 | 0.50 | 16 | 399 | 2.40 | <0.100 | | JUL<br>26 | | | | | | | | | 2.50 | <0.100 | | | | | | WAR | REN COUNT | Y | | | | | | 4118 | 0609344050 | 01 07525W | 16ADCA | | | | 41 18 06 | N LONG 09: | 3 44 05W) | | | MAY 1989<br>23 | 10 | 0.30 | | 4.5 | 20 | 0.30 | 31 | 224 | 8.20 | <0.100 | | JUL<br>26 | | | | | | | | | 8.40 | <0.100 | | | | | | WASH | INGTON CO | JNTY | | | | | | | .309148570: | 1 07608W3 | 1DDCC 08 | 701 1957W | EST CHEST | ER 1 (LAT | 41 20 13 | N LONG 09: | 1 48 57W) | | | JUL 1989<br>24 | 54 | 2.9 | 384 | 2.0 | 67 | 0.30 | 12 | 464 | <0.100 | 2.00 | | 41 | .2856091430 | 0601 0770 | 8W13AABB | 19 | 72KALONA | 3 (LAT 41 | 28 56N I. | ONG 091 4: | 3 06W) | | | JUL 1989 | | | | 10 | | - , | | | , | | | 25 | 17 | 0.70 | | 35 | 81 | 0.25 | 21 | 362 | 0.100 | 0.200 | | DATE | PHOS-<br>PHOROUS<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | IRON,<br>DIS-<br>SOLVED<br>(UG/L<br>AS FE)<br>(01046) | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(UG/L<br>AS MN)<br>(01056) | ATRA-<br>ZINE,<br>TOTAL<br>(UG/L)<br>[Pesti<br>(39630) | CYAN-<br>AZINE<br>TOTAL<br>(UG/L)<br>cide conce<br>(81757) | METRI-<br>BUZIN<br>IN<br>WHOLE<br>WATER<br>(UG/L)<br>entrations<br>(81408) | ALA-<br>CHLOR<br>TOTAL<br>RECOVER<br>(UG/L)<br>S expresse<br>(77825) | | BUTY-<br>LATE<br>(UG/L)<br>al recove<br>(99901) | TRI-<br>FLURA-<br>LIN<br>TOTAL<br>RECOVER<br>(UG/L)<br>rable]<br>(39030) | |-----------------------|---------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------|-----------|-------------------------------------------------|--------------------------------------------------------------------------| | 43045 | 909606190 | 1 09545W0 | 1ABBC | | OUX COUNTY | | 43 04 591 | LONG 09 | 5 06 19W) | | | AUG 1989<br>03 | <0.100 | 2400 | 980 | 0.14 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 4312 | 280961738 | 01 09746W | 21BCCC | 1977 | ROCK VALLI | EY 6 (LAT | 43 12 281 | LONG 09 | 5 17 38W) | | | AUG 1989<br>03 | 0.100 | 600 | <20 | <0.10 | <0.10 | <0.10 | <0.20 | <0.10 | <0.10 | <0.10 | | 41 | 585209242 | 4901 0831 | 6W21DCAB | | MA COUNTY<br>70MONTOUR | 2 (LAT 41 | 58 52N I | ONG 092 | 42 49W) | | | JUN 1989<br>01<br>AUG | <0.100 | <20 | 30 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 09 | <0.100 | | | 0.12 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 4 | 211350922 | 75002 085 | 14W10ABCD | 1 | .894TRAER 2 | 2 (LAT 42 | 11 35N LC | ONG 092 2 | 7 50W) | | | AUG 1989<br>09 | <0.100 | 1700 | 100 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 40 | 445409437 | 2901 0 <b>6</b> 93 | 3W27ADDD | | LOR COUNTY | | 44 54N LC | ONG 094 3 | 7 29W) | | | MAY 1989<br>31 | <0.100 | 17000 | 2500 | 0.87 | <0.10 | <0.10 | 1.30 | <0.10 | <0.10 | <0.10 | | JUL<br>17 | 0.100 | | | 1.0 | <0.10 | <0.10 | 1.10 | <0.10 | <0.10 | <0.10 | | SEP<br>28 | <0.100 | | | 0.14 | <0.10 | <0.10 | 0.30 | <0.10 | <0.10 | <0.10 | | 4038 | 440914429 | 01 06808W | 35DAR# | | BUREN COUR | | MAA RE O | LONG 091 | 44 29W) | | | JUN 1989 | | | | | | | | 20110 101 | 20, | | | 02<br>JUL | <0.100 | 20 | 40 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 24 | <0.100 | | | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 40 | 392609209 | 4902 0681 | 1W30AACB | 19 | 67MILTON 3 | 3 (LAT 40 | 39 26N LC | NG 092 09 | 9 49W) | | | JUL 1989<br>24 | 0.400 | 310 | 40 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 410 | 907092375 | 101 07315 | W06CADD | 197 | OEDDYVILLI | 2 (LAT 4 | 1 09 07N | LONG 092 | 37 51W) | | | JUN 1989<br>02 | <0.100 | 60 | 100 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | JUL<br>26 | <0.100 | | | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 4118 | 060934405 | 01 07525W | 16ADCA | | REN COUNTY | | 41 18 06N | LONG 09 | 3 44 05W) | | | MAY 1989<br>23 | 0.200 | <20 | <20 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | JUL<br>26 | 0.100 | | | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | | 200 | | | | NGTON COUR | | 5,20 | | J. 24 | - · · · · | | | 309148570 | 1 07608W3 | 1DDCC 08 | | EST CHESTI | | 41 20 131 | LONG 09: | L 48 57W) | | | JUL 1989<br>24 | <0.100 | 120 | <20 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 41 | 285609143 | 0601 0770 | 8W13AABB | 19 | 72KALONA | 3 (LAT 41 | 28 56N LC | ONG 091 4 | 3 06W) | | | JUL 1989<br>25 | 0.100 | 100 | 200 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | DATE | TIME | GEO-<br>LOGIC<br>UNIT | FLOW<br>RATE<br>(G/M)<br>(00058) | PUMP<br>OR FLOW<br>PERIOD<br>PRIOR<br>TO SAM-<br>PLING<br>(MIN)<br>(72004) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | PH<br>(STAND-<br>ARD<br>UNITS)<br>(00400) | HARD-<br>NESS<br>TOTAL<br>(MG/L<br>AS<br>CACO3)<br>(00900) | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915) | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925) | | |--------------------------------------------------------------------------------------------|---------|-----------------------|----------------------------------|----------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------|--| | WEBSTER COUNTY 423512094202201 09030W25BBAA 1956CLARE 1 (LAT 42 35 12N LONG 094 20 22W) | | | | | | | | | | | | | AUG 1989<br>07 | 1615 | 210CRCS | 45 | 60 | 12.0 | 1000 | 7.00 | 460 | 120 | 38 | | | 43155 | 6093375 | i401 09824W | 26DDCC 0 | | BAGO COUN<br>FOREST CI | | 43 15 56 | N LONG 09 | 3 37 54W) | | | | AUG 1989<br>03 | 1115 | 344CDVL | 850 | 60 | 10.0 | 730 | 7.50 | 380 | 98 | 32 | | | | | | | woon | BIDY COIN | tv | | | | | | | WOODBURY COUNTY 421405095433001 08642W27BCDA 1939DANBURY 3 (LAT 42 14 05N LONG 095 43 30W) | | | | | | | | | | | | | MAY 1989<br>26 | 1335 | 111ALVM | 180 | 30 | 12.0 | 850 | 7.20 | 420 | 110 | 35 | | | JUL<br>18 | 0945 | 111ALVM | 180 | 30 | 12.0 | 870 | 7.30 | | | | | | SEP<br>20 | 1130 | 111ALVM | 180 | 30 | 14.0 | 880 | 7.17 | | | | | | 422 | 7590954 | 02502 0884 | 2W01ADCC | 19 | 59CUSHING | 2 (LAT 4 | 2 27 59N 1 | LONG 095 | 40 25W) | | | | MAY 1989<br>26 | 1200 | 111ALVM | 90 | 30 | 11.5 | 760 | 7.40 | 360 | 99 | 27 | | | JUL<br>20 | 1200 | 111ALVM | 90 | 30 | 13.5 | 750 | 7.35 | | | | | | SEP 20 | 1000 | 111ALVM | 90 | 30 | 12.0 | 800 | 7.25 | | | | | | 422848096104301 08945W32DBDA 1971LAWTON 4 (LAT 42 28 48N LONG 096 10 43W) | | | | | | | | | | | | | AUG 1989<br>11 | 1020 | 217DKOT | 95 | 30 | 13.0 | 600 | 7.35 | 300 | 81 | 23 | | | 423 | 2420955 | 21501 0894 | 3W12BADB | 19 | 20PIERSON | 1 (LAT 4 | 2 32 42N 1 | LONG 095 | 52 15W) | | | | MAY 1989<br>26 | 1025 | 111ALVM | 90 | 20 | 10.0 | 820 | 7.20 | 380 | 100 | 31 | | | JUL<br>20 | 1045 | 111ALVM | 90 | 30 | 10.5 | 780 | 7.30 | | | | | | SEP<br>20 | 0900 | 111ALVM | 90 | 20 | 10.0 | 800 | 7.25 | | | | | | 42 | 41350Q3 | 362801 091 | 23W1 8DBC4 | | GHT COUNT | | 41 35N IO | NG 003 36 | 2861 | | | | | 4103080 | 502001 091 | 23W10DDCA | | 94JOALI I | (LAI 42 | 41 33N LO | NG 035 50 | 2047 | | | | JUL 1989<br>31 | 1400 | 112PLSC | 80 | 15 | 12.5 | 700 | 7.50 | 360 | 94 | 30 | | | 424 | 4150935 | 00101 <b>092</b> 2 | 5W31DADA | 19 | 46HOLMES | 1 (LAT 42 | 44 15N L | ONG 093 5 | 0 01W) | | | | AUG 1989<br>02 | 0945 | 330MSSP | | 20 | 18.5 | 760 | 7.20 | 380 | 100 | 32 | | | 42 | 4422093 | 324001 092 | 23W34ACC | 02929 1 | 947ROWAN | l (LAT 42 | 44 22N L | ONG 093 3 | 2 40W) | | | | JUL 1989<br>31 | 1255 | 339KDRK | 60 | 20 | 12.0 | 700 | 7.50 | 340 | 91 | 27 | | | 425 | 0580933 | 63901 0932 | 3W19CDCC | 09241 19 | 58BELMOND | 2 (LAT 4 | 2 50 58N 1 | LONG 093 : | 36 39W) | | | | JUL 1989<br>31 | 1150 | 33 <b>9HMPN</b> | 500 | 60 | 14.0 | 680 | 7.40 | 340 | 89 | 28 | | | DATE | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | ALKA-<br>LINITY<br>LAB<br>(MG/L<br>AS<br>CACO3)<br>(90410) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)<br>(00945) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)<br>(00950) | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2)<br>(00955) | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L)<br>(70300) | NITRO-<br>GEN,<br>NO2+NO3<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00631) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | | |--------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|--| | 4 | 235120942 | 02201 090 | 30W25BBAA | | TER COUNTY<br>956CLARE | | 35 12N L | ONG 094 2 | 0 22W) | | | | AUG 1989<br>07 | 50 | 5.1 | 390 | 18 | 180 | 0.75 | 13 | 656 | <0.100 | 0.300 | | | | 560933754 | 01 09824W | 26DDCC 0 | | BAGO COUNT<br>FOREST CIT | | 43 15 56 | N LONG 09 | 3 37 54W) | | | | AUG 1989<br>03 | 16 | 3.2 | 368 | 1.5 | 44 | 0.35 | 22 | 428 | <0.100 | 0.800 | | | WOODBURY COUNTY 421405095433001 08642W27BCDA 1939DANBURY 3 (LAT 42 14 05N LONG 095 43 30W) | | | | | | | | | | | | | 421405095433001 08642W27BCDA 1939DANBURY 3 (LAT 42 14 05N LONG 095 43 30W) MAY 1989 | | | | | | | | | | | | | 26<br>JUL | 11 | 3.5 | 326 | 19 | 51 | 0.25 | 26 | 500 | 14.0 | <0.100 | | | 18<br>SEP | | | | | | | | | 14.0 | <0.100 | | | 20 | | | | | | | | | 15.0 | <0.100 | | | 42 | 275909540 | 2502 0884 | 2W01ADCC | 19 | 59CUSHING | 2 (LAT 4 | 2 27 59N | LONG 095 | 40 25W) | | | | MAY 1989 | 10 | 0.00 | 070 | 1.5 | <b>C</b> ( | 0.40 | 01 | 456 | 13.0 | <0.100 | | | 26<br>JUL | 12 | 0.90 | 270 | 15 | 64 | 0.40 | 21 | 436 | | <0.100 | | | 20<br>SEP | <b></b> | | | | <u></u> | | | | 12.0 | <0.100 | | | 20 | | | | | | | | | 11.0 | <b>~0.100</b> | | | 422848096104301 08945W32DBDA 1971LAWTON 4 (LAT 42 28 48N LONG 096 10 43W) | | | | | | | | | | | | | AUG 1989<br>11 | 12 | 4.0 | 314 | 2.0 | 6.8 | 0.35 | 24 | | <0.100 | <0.100 | | | 42 | 2324209552 | 1501 0894 | 3W12BADB | 19 | 20PIERSON | 1 (LAT 4 | 2 32 42N | LONG 095 | 52 15W) | | | | MAY 1989<br>26 | 16 | 1.6 | 298 | 14 | 68 | 0.40 | 24 | 510 | 14.0 | <0.100 | | | JUL<br>20 | | | | | | | | | 14.0 | <0.100 | | | SEP<br>20 | | | | | | | | | 16.0 | <0.100 | | | | | | | WRI | GHT COUNT | Y | | | | | | | | 241350933 | 62801 091 | 23W18DBCA | . 1 | .945GALT 1 | (LAT 42 | 41 35N LC | NG 093 36 | 28W) | | | | JUL 1989<br>31 | 7.5 | 3.7 | 354 | 3.5 | 16 | 0.30 | 26 | 328 | <0.100 | 0.300 | | | 42 | 441509350 | 0101 0922 | 5W31DADA | 19 | 46HOLMES | 1 (LAT 42 | 44 15N I | ONG 093 5 | 0 01W) | | | | AUG 1989<br>02 | 30 | 3.9 | 380 | 4.5 | 60 | 0.25 | 23 | 472 | 0.100 | 0.300 | | | 4 | 244220933 | 24001 092 | 23W34ACC | 02929 1 | 947ROWAN | 1 (LAT 42 | 44 22N I | ONG 093 3 | 2 40W) | | | | JUL 1989<br>31 | 16 | 1.8 | 372 | 3.0 | 7.1 | 0.40 | 13 | 252 | <0.100 | 0.800 | | | 42 | 250580 <b>9</b> 336 | 3901 0932 | 3W19CDCC | 09241 19 | 58BELMOND | 2 (LAT 4 | 2 50 58N | LONG 093 | 36 39W) | | | | JUL 1989<br>31 | 16 | 1.5 | 346 | 5.5 | 26 | 0.30 | 17 | 358 | <0.100 | 1.00 | | | | | | | | | | | | , | | | | DATE | PHOS-<br>PHOROUS<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | IRON,<br>DIS-<br>SOLVED<br>(UG/L<br>AS FE)<br>(01046) | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(UG/L<br>AS MN)<br>(01056) | ATRA-<br>ZINE,<br>TOTAL<br>(UG/L)<br>(Pesti<br>(39630) | CYAN-<br>AZINE<br>TOTAL<br>(UG/L)<br>cide conce<br>(81757) | (UG/L)<br>entrations | ALA-<br>CHLOR<br>TOTAL<br>RECOVER<br>(UG/L)<br>(express<br>(77825) | METOLA-<br>CHLOR<br>IN<br>WHOLE<br>WATER<br>(UG/L)<br>ed as tota<br>(39356) | BUTY-<br>LATE<br>(UG/L)<br>(1 recove<br>(99901) | TRI-<br>FLURA-<br>LIN<br>TOTAL<br>RECOVER<br>(UG/L)<br>rable]<br>(39030) | |---------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------|----------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------| | ı | 235120942 | 02201 090 | 30 <b>W25BBAA</b> | | STER COUN | | 35 12N L | ONG 094 20 | 22W) | | | AUG 1989<br>07 | <sup>'</sup> <0.100 | 670 | 280 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 4315 | 5560933754 | 01 09824W | 26DDCC 0 | | EBAGO COUI<br>FOREST CI | | 43 15 56 | N LONG 093 | 37 54W) | | | AUG 1989<br>03 | <0.100 | 1200 | 60 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 43 | 140509543 | 3001 0864 | 2W2 7RCDA | | BURY COUNT | | 14 05N | LONG 095 4 | 3 30W) | | | MAY 1989 | , , , , , , , , , , , , , , , , , , , | | J., 20011 | 10 | CODIMIDORI | 0 (211 42 | 14 051 | <b>10.10</b> 103 4 | 0 00, | | | 26<br>JUL | 0.200 | <20 | <20 | <0.10 | <0.10 | <0.10 | <0.10 | <0.20 | <0.10 | <0.10 | | 18<br>SEP | 0.100 | | ~ * | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 20 | 0.100 | | | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | | 275909540 | 2502 0884 | 2W01ADCC | 19 | 59CUSHING | 2 (LAT 42 | 27 59N | LONG 095 4 | 0 25W) | | | MAY 1989<br>26 | <0.100 | <20 | <20 | <0.10 | <0.10 | <0.10 | <0.10 | <0.20 | <0.10 | <0.10 | | JUL<br>20<br>SEP | 1.40 | | | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 20 | 0.400 | | | 0.13 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 422848096104301 08945W32DBDA 1971LAWTON 4 (LAT 42 28 48N LONG 096 10 43W) | | | | | | | | | | | | AUG 1989<br>11 | <0.100 | 250 | 310 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 42 | 324209552 | 1501 0894 | SW12BADB | 19 | 20PIERSON | 1 (LAT 42 | 32 42N | LONG 095 5 | 2 15W) | | | MAY 1989 | 0 100 | <20 | -00 | -0.00 | -0.10 | -0.10 | -0.10 | -0.10 | -0.10 | -0.10 | | 26<br>JUL<br>20 | 0.100 | | <20<br> | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 20<br>SEP<br>20 | <0.100 | | | <0.10 | <0.10 | <0.10 | <0.10 | <0.10<br><0.10 | <0.10 | <0.10<br><0.10 | | 20 | <0.100 | | | <0.10<br>wor | <0.10<br>GHT COUNTY | <0.10 | <0.10 | ~0.10 | <0.10 | <0.10 | | 4 | 241350933 | 62801 091 | 23W18DBCA | | | | 1 35N LO | NG 093 36 | 28W) | | | JUL 1989<br>31 | <0.100 | 750 | 170 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 42 | 441509350 | 0101 0922 | 5W31DADA | 19 | 46HOLMES : | L (LAT 42 | 44 15N L | ONG 093 50 | 01W) | | | AUG 1989<br>02 | <0.100 | 30 | 500 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 4 | 244220933 | 24001 092 | 23W34ACC | 02929 1 | 947ROWAN : | L (LAT 42 | 44 22N L | ONG 093 32 | 40W) | | | JUL 1989<br>31 | 0.200 | 1800 | 60 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | 42 | 505809336 | 3901 0932 | 3W19CDCC | 09241 19 | 58BELMOND | 2 (LAT 42 | 50 58N | LONG 093 3 | 6 39W) | | | JUL 1989<br>31 | 0.100 | 1300 | 120 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | #### PRECIPITATION WATER-QUALITY DATA #### MCNAY RESEARCH STATION NEAR CHARITON, IOWA LOCATION.--Lat 40°57'47", long 93°23'34", in SW1/4 NE1/4 sec. 9, T.71 N., R.23 W., Lucas County, Hydrologic Unit 10280201, 3.1 mi east and 2.0 mi north of Derby, Iowa, 3.4 mi west and 2.8 mi south of Chariton, Iowa. OWNER. -- U.S. Geological Survey. PERIOD OF RECORD. -- September 1984 to current year. INSTRUMENTATION.--Wet/dry precipitation collector, weighing-bucket type recording rain gage with alter wind shield and event recorder. National Weather Service standard 8-inch rain and snow gage (back-up only). REMARKS.--Samples marked with an asterik (\*) were dry or contained little water. Fifty (50) ml of dilution water was added to the sample bucket to dissolve dry precipitate and then analyzed. EXTREMES FOR PERIOD OF RECORD.--Maximum field pH, 7.07, April 19 to April 26, 1988; minimum field pH, 3.84, February 12 to February 19, 1985. EXTREMES FOR CURRENT YEAR.--Maximum field pH, 6.29, April 11 to April 18, 1989; minimum field pH, 4.17, August 15 to August 22, 1989. #### WET DEPOSITION DATA | DATE | PH<br>(STAND<br>ARD<br>UNITS)<br>(00400 | ANCE<br>(US/CM) | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915) | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00618) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)<br>(00945) | PHOS-<br>PHOROUS<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>. AS P)<br>(00671) | |---------------------|-----------------------------------------|-----------------|---------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------| | OCT<br>04-11 | | | | | | | | | | | | | OCT<br>11-18 | | | | | | | | | | | | | OCT<br>18-25 | 5.11 | 13.7 | 0.772 | 0.050 | 0.028 | 0.062 | 0.202 | 0.413 | 0.12 | 1.98 | <0.007 | | *OCT 25-<br>NOV 01 | | | 0.009 | <0.003 | <0.003 | 0.003 | <0.016 | <0.007 | 0.04 | <0.03 | 0.020 | | NOV<br>01-08 | 5.06 | 15.9 | 0.595 | 0.034 | 0.037 | 0.099 | 0.692 | 0.535 | 0.13 | 1.63 | <0.007 | | NOV<br>08-15<br>NOV | 4.41 | 26.3 | 0.397 | 0.026 | 0.021 | 0.061 | 0.350 | 0.373 | 0.09 | 2.66 | <0.007 | | 15-22<br>NOV | 5.06 | 7.0 | 0.117 | 0.015 | 0.005 | 0.104 | 0.047 | 0.102 | 0.12 | 0.78 | <0.007 | | 22-29<br>NOV 29- | 4.82 | 14.9 | 0.363 | 0.025 | 0.015 | 0.045 | 0.373 | 0.253 | 0.06 | 1.82 | <0.007 | | DEC 06 | | | | | | | | | | | | | 06-13<br>DEC | | | | | | | | | | | | | 13-20<br>DEC | 5.91 | 25.6 | 3.550 | 0.224 | 0.256 | 0.337 | 0.717 | 0.708 | 0.33 | 3.69 | <0.007 | | 20-27<br>DEC 27 | 5.62<br>1988- | 16.3 | 0.315 | 0.027 | 0.022 | 0.092 | 0.233 | 0.428 | 0.15 | 1.51 | <0.007 | | JAN 03<br>JAN | | | | | | | | | | | | | 03-10<br>JAN | 4.39 | 27.2 | 0.244 | 0.018 | 0.029 | 0.053 | 0.482 | 0.408 | 0.07 | 2.97 | <0.007 | | 10-17<br>JAN | | | 0.883 | 0.074 | 0.063 | 0.502 | 1.680 | 0.892 | 0.30 | 5.55 | <0.007 | | 17-24<br>JAN | | | | | | | | | | | | | 24-31<br>*JAN 31- | 4.80 | 8.8 | 0.121 | 0.006 | <0.003 | 0.028 | 0.124 | 0.186 | 0.04 | 0.75 | <0.007 | | FEB 07<br>FEB | | | 0.230 | 0.025 | <0.015 | 0.445 | <0.078 | <0.033 | 0.20 | <0.15 | <0.033 | | 07-14<br>FEB | 5.06 | 5.0 | 0.041 | 0.006 | <0.003 | 0.019 | <0.016 | <0.007 | 0.04 | 0.19 | 0.013 | | 14-21<br>FEB | 4.42 | 20.4 | 0.175 | 0.012 | <0.003 | 0.056 | 0.101 | 0.693 | 0.08 | 0.75 | <0.016 | | 21-28<br>FEB 28- | | | | | | | | | | | | | MAR 07<br>MAR | 4.32 | 35.9 | 0.872 | 0.102 | 0.034 | 0.185 | 0.661 | 0.779 | 0.33 | 4.85 | <0.007 | | 07-14<br>MAR | | | | | | | | | | | | | 19-23<br>MAR | | | | | | | | | | | | | 23-28<br>*MAR 28- | 5.44 | | 0.227 | 0.016 | 0.011 | 0.220 | 0.249 | 0.266 | 0.09 | 0.61 | <0.007 | | APR 04<br>APR | | | 0.087 | 0.006 | 0.005 | 0.030 | <0.016 | 0.018 | 0.04 | 0.11 | <0.007 | | 04-11<br>APR | 5.53 | | 0.302 | 0.023 | 0.016 | 0.108 | 0.949 | 0.382 | 0.09 | 1.63 | <0.007 | | 11-18<br>*APR | 6. <b>2</b> 9 | | 1.275 | 0.123 | 0.039 | 0.153 | 1.463 | 0.551 | 0.14 | 2.24 | <0.007 | | 18-25 | | | 0.286 | 0.016 | 0.015 | 0.058 | <0.016 | <0.007 | 0.04 | 0.19 | <0.007 | ### PRECIPITATION WATER-QUALITY DATA. -- Continued. # MCNAY RESEARCH STATION NEAR CHARITON, IOWA # WET DEPOSITION DATA | DATE | PH<br>(STAND-<br>ARD<br>UNITS)<br>(00400) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915) | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00618) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)<br>(00945) | PHOS-<br>PHOROUS<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | |--------------------------|-------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------| | APR 25-<br>MAY 02 | 5.23 | 9.8 | 0.322 | 0.024 | 0.024 | 0.064 | 0.140 | 0.262 | 0.08 | 1.49 | <0.007 | | MAY<br>02-09 | 5.56 | 10.7 | 0.705 | 0.057 | 0.031 | 0.030 | 0.490 | 0.440 | 0.07 | 1.47 | <0.007 | | *MAY<br>09-16 | | | | | | | | | | | - | | MAY | | | 0.011 | <0.003 | <0.003 | 0.032 | 0.031 | 0.011 | 0.03 | 0.05 | <0.007 | | 16-23<br>May | 4.66 | 15.9 | 0.263 | 0.035 | 0.073 | 0.069 | 0.303 | 0.260 | 0.12 | 1.97 | <0.007 | | 23-30 | 5.12 | 5,5 | 0.181 | 0.019 | 0.028 | 0.077 | 0.140 | 0.113 | 0.11 | 0.69 | <0.007 | | MAY 30-<br>JUN 06<br>JUN | 5.17 | 11.5 | 0.505 | 0.060 | 0.048 | 0.157 | 0.537 | 0.422 | 0.18 | 1.63 | <0.007 | | 06-13<br>JUN | 4.55 | 18.4 | 0.208 | 0.026 | 0.098 | 0.026 | 0.443 | 0.271 | 0.08 | 2.26 | <0.007 | | 13-20<br>JUN | 5.31 | 21.1 | 1.294 | 0.079 | 0.067 | 0.057 | 1.120 | 0.704 | 0.17 | 3.78 | <0.007 | | 20-27 | 5.10 | 18.1 | 0.768 | 0.081 | 0.116 | 0.123 | 0.731 | 0.522 | 0.26 | 2.81 | <0.007 | | *JUN 27-<br>JUL 04 | | | 1.251 | 0.051 | 0.244 | 0.122 | 0.521 | 0.198 | 0.22 | 0.58 | 0.127 | | *JUL<br>04-11 | | | 4.451 | 0.390 | 0.417 | 0.526 | <0.140 | 0.544 | 1.18 | 2.54 | <0.059 | | JUL | | | | | | | | | | | | | 11-18<br>JUL | 4.85 | 9.7 | 0.212 | 0.022 | 0.029 | 0.036 | 0.226 | 0.204 | 0.09 | 1.08 | <0.007 | | 18-25<br>JUL 25- | 4.61 | 18.0 | 0.350 | 0.029 | 0.015 | 0.015 | 0.381 | 0.326 | 0.07 | 2.15 | <0.007 | | AUG 01<br>*AUG | 4.72 | 16.0 | 0.503 | 0.029 | 0.020 | 0.046 | 0.389 | 0.588 | 0.12 | 1.40 | <0.007 | | 01-08 | | | 0.148 | <0.013 | 0.423 | 0.187 | <0.070 | <0.029 | 0.52 | 1.74 | <0.028 | | AUG<br>08-15 | 4.52 | 33.5 | 1.500 | 0.082 | 0.053 | 0.074 | 0.871 | 0.482 | 0.14 | 5.73 | <0.007 | | AUG<br>15-22 | 4.17 | 44.5 | 0.575 | | | | | | | | | | AUG | | | | 0.046 | 0.059 | 0.102 | 0.840 | 0.777 | 0.21 | 5.26 | <0.007 | | 22-29<br>AUG 29- | 4.77 | 10.3 | 0.146 | 0.011 | 0.009 | 0.041 | 0.179 | 0.244 | 0.07 | 0.75 | <0.007 | | SEP 05<br>SEP | 4.46 | 18.0 | 0.167 | 0.016 | 0.010 | 0.050 | 0.202 | 0.324 | 0.10 | 1.68 | <0.007 | | 05-12<br>SEP | 4.84 | 7.7 | 0.073 | 0.005 | 0.005 | 0.027 | 0.117 | 0.151 | 0.07 | 0.65 | <0.007 | | 12-19<br>SEP | 5.03 | 6.5 | 0.348 | 0.040 | <0.003 | 0.208 | 0.070 | 0.124 | 0.16 | 0.74 | 0.016 | | 19-26 | | | | | | | | | | | | | SEP 26-<br>OCT 03 | | | | | | | | | | | | #### PRECIPITATION WATER-QUALITY DATA #### BIG SPRING FISH HATCHERY NEAR ELKADER, IOWA LOCATION.--Lat 42°54'35", long 91°28'11", in SE1/4 SE1/4 sec. 31, T.94 N., R.5 W., Clayton County, Hydrologic Unit 07060004, 3.0 mi north and 2.8 mi west of Elkader, Iowa. OWNER. -- U.S. Geological Survey. PERIOD OF RECORD. -- August 1984 to current year. INSTRUMENTATION.--Wet/dry precipitation collector, weighing-bucket type recording rain gage with alter wind shield and event recorder and National Weather Service standard 8-inch rain and snow gage (back-up only). REMARKS.--Samples marked with an asterik (\*) were dry or contained little water. Fifty (50) ml of dilution water was added to the sample bucket to dissolve dry precipitate and then analyzed. EXTREMES FOR PERIOD OF RECORD.--Maximum field pH, 6.98, May 5 to May 12, 1987; minimum field pH, 3.83, July 30 to August 6, 1985. EXTREMES FOR CURRENT YEAR.--Maximu field pH, 6.87 May 30 to June 6, 1989; minimum field pH, 3.98, March 14 to March 21, 1989. #### WET DEPOSITION DATA | DATE | | PH<br>(STAND-<br>ARD<br>UNITS)<br>(00400) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915) | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00618) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)<br>(00945) | PHOS-<br>PHOROUS<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | |--------------------------|------|-------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------| | OCT | | | | | | | | | | | | | | 04-11<br>OCT | | | | | | | | | | | | | | 11-18<br>OCT | | | | 0.439 | 0.076 | 0.033 | 0.043 | 0.265 | 0.249 | 0.06 | 1.14 | <0.007 | | 18-25 | | | | 0.431 | 0.048 | 0.054 | 0.051 | 0.638 | 0.515 | 0.14 | 2.79 | <0.007 | | OCT 25-<br>NOV 01<br>NOV | | | | | | | | | | | | | | 01-08<br>NOV | | | | 0.329 | 0.047 | 0.028 | 0.072 | 0.724 | 0.497 | 0.10 | 1.59 | <0.007 | | 08-15 | | | | 2.694 | 1.000 | 3.420 | 0.080 | 0.086 | 0.329 | 0.52 | 1.95 | <0.007 | | NOV<br>15-22 | | | | 0.310 | 0.081 | 0.021 | 0.045 | 0.093 | 0.109 | 0.06 | 0.85 | <0.007 | | NOV<br>22-29 | | | | 0.639 | 0.108 | 0.032 | 0.043 | 0.918 | 0.786 | 0.13 | 2.71 | <0.007 | | NOV 29-<br>DEC 05 | | | 16.3 | 1.825 | 0.200 | 0.051 | 0.178 | 0.513 | 0.766 | 0.31 | 1.33 | 0.018 | | DEC<br>06-13 | | | | | | | | | | | | | | DEC | | | | | | | | | | | | | | 13-20<br>DEC | | 5.87 | 25.1 | 2.262 | 0.177 | 0.158 | 0.168 | 0.840 | 0.071 | 0.21 | 3.69 | <0.007 | | 20-27<br>DEC 27 1 | 988- | | | 0.294 | 0.048 | 0.029 | 0.115 | 0.584 | 0.548 | 0.25 | 3.12 | <0.007 | | JAN 03<br>JAN | | | | | | | | | | | | | | 03-10<br>JAN | | 4.62 | 15.4 | 0.129 | 0.014 | 0.017 | 0.021 | 0.303 | 0.244 | 0.06 | 1.75 | <0.007 | | 10-17 | | 4.10 | 43.5 | 0.190 | 0.025 | 0.083 | 0.103 | 0.809 | 0.750 | 0.36 | 4.37 | <0.007 | | JAN<br>17-24 | | | | | | | | | | | | | | JAN<br>24-31 | | 4.46 | 25.8 | 0.146 | 0.020 | 0.011 | 0.066 | 0.856 | 0.648 | 0.14 | 3.00 | <0.007 | | *JAN 31-<br>FEB 07 | | | | 0.969 | 0.121 | 0.179 | 0.674 | <0.078 | 0.226 | 0.48 | 0.63 | <0.032 | | FEB<br>07-14 | | 5.29 | 3.5 | 0.145 | 0.021 | 0.010 | 0.068 | <0.016 | <0.007 | 0.05 | 0.17 | <0.007 | | FEB | | | | | | | | | | | | | | 14-21<br>*FEB | | 5.44 | 7.3 | 0.421 | 0.072 | 0.080 | 0.125 | 0.226 | 0.393 | 0.24 | 0.49 | <0.007 | | 21-28<br>FEB 28- | | | | 2.289 | 0.169 | 0.259 | 0.359 | 0.778 | 0.375 | 0.39 | 2.32 | <0.020 | | MAR 07<br>MAR | | 4.25 | 35.6 | 0.626 | 0.084 | 0.011 | 0.122 | 0.397 | 0.766 | 0.21 | 3.39 | <0.007 | | 07-14<br>MAR | | | | 1.302 | 0.207 | 0.728 | 0.861 | 4.614 | 3.170 | 1.41 | 14.28 | 0.039 | | 14-21 | | 3.98 | 79.5 | 0.413 | 0.049 | 0.060 | 0.188 | 3.299 | 1.523 | 0.20 | 10.85 | <0.007 | | MAR<br>21-28 | | 5.58 | 10.9 | 0.490 | 0.076 | 0.132 | 0.222 | 0.513 | 0.224 | 0.19 | 1.20 | <0.007 | | MAR 28-<br>APR 04<br>APR | | 6.11 | 37.4 | 0.875 | 0.179 | 0.049 | 0.097 | 1.774 | 0.531 | 0.16 | 3.36 | <0.007 | | 04-11 | | 6.45 | 28.8 | 3.950 | 0.320 | 0.594 | 0.654 | 1.019 | 0.686 | 0.86 | 2.79 | <0.007 | | APR<br>11-18 | | 6.78 | 18.2 | 3.560 | 0.366 | 0.181 | 0.248 | 1.151 | 0.730 | 0.31 | 3.14 | <0.007 | | APR<br>18-25 | | 6.65 | 31.3 | 0.982 | 0.119 | 0.060 | 0.083 | 1.307 | 0.653 | 0.13 | 3.38 | <0.007 | # PRECIPITATION WATER-QUALITY DATA.--Continued BIG SPRINGS FISH HATCHERY NEAR ELKADER, IOWA WET DEPOSITION DATA | DATE | PH<br>(STAND-<br>ARD<br>UNITS)<br>(00400) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915) | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,<br>NITRATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00618) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)<br>(00945) | PHOS-<br>PHOROUS<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | |-------------------|-------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------| | APR 25-<br>MAY 02 | 5.81 | 18.6 | 0.824 | 0.091 | 0.051 | 0.092 | 1.027 | 0.619 | 0.14 | 2.86 | <0.007 | | MAY<br>02-09 | 5.15 | 16.7 | 0,291 | 0.068 | 0.030 | 0.052 | 0.739 | 0.380 | 0.07 | 2.25 | <0.007 | | *MAY | | | | | | | | | | | | | 09-16<br>May | | | 0.109 | 0.019 | 0.010 | 0.029 | 0.070 | 0.033 | 0.07 | 0.19 | <0.007 | | 16-23<br>MAY | 5.04 | 18.8 | 0.480 | 0.155 | 0.177 | 0.116 | 0.584 | 0.391 | 0.15 | 3.52 | <0.007 | | 23-30 | 5.98 | 15.6 | 0.938 | 0.121 | 0.176 | 0.227 | 0.506 | 0.420 | 0.25 | 2.07 | <0.007 | | MAY 30-<br>JUN 06 | 6.87 | 38.4 | 4.270 | 0.617 | 0.165 | 0.110 | 0.700 | 1.066 | 0.21 | 1.92 | <0.007 | | JUN<br>06-13 | 4.87 | 13.1 | 0.150 | 0.031 | 0.031 | 0.021 | 0.630 | 0.329 | 0.06 | 1.70 | <0.007 | | *JUN | | | | | | | | | | | | | 13-20<br>JUN | | | 0.013 | <0.003 | 0.003 | 0.012 | 0.109 | 0.007 | 0.03 | <0.03 | <0.007 | | 20-27<br>*JUN 27- | 5.81 | 9.8 | 0.514 | 0.099 | 0.034 | 0.035 | 0.576 | 0.275 | 0.07 | 1.61 | <0.007 | | JUL 04 | | | 0.034 | 0.004 | 0.006 | 0.055 | 0.202 | 0.011 | 0.11 | 0.04 | 0.010 | | *JUL<br>04-11 | | | 4.938 | 0.255 | 0.165 | 0.232 | 0.755 | 0.981 | 0.52 | 2.70 | <0.049 | | JUL<br>11-18 | 5,92 | 15.5 | 1.187 | 0.244 | 0.043 | 0.054 | 0.506 | 0.324 | 0,12 | 2.31 | <0.007 | | JUL<br>18-25 | 4.49 | 29.7 | 0,273 | 0.086 | 0.027 | 0.014 | 0,630 | 0.517 | 0.08 | 4.12 | <0.007 | | JUL 25- | | | | | | | | | | | | | AUG 01<br>AUG | 5.63 | 14.7 | 1.132 | 0.305 | 0.030 | 0.039 | 0.296 | 0.599 | 0.15 | 2.44 | <0.007 | | 01-08<br>*AUG | 6.08 | 15.6 | 0.638 | 0.072 | 0.031 | 0.094 | 0.716 | 0.389 | 0.11 | 1.19 | <0.007 | | 08-15<br>AUG | | | 6.126 | 0.688 | 0.223 | 0.162 | 1.891 | 2.171 | 0.61 | 17.88 | 0.154 | | 15-22 | 4.33 | 27.9 | 0.250 | 0.070 | 0.022 | 0.026 | 0.685 | 0.517 | 0.09 | 4.03 | <0.007 | | AUG<br>22-29 | 6.04 | 9.4 | 0.428 | 0.074 | 0.019 | 0.033 | 0.622 | 0.293 | 0.08 | 1.23 | <0.007 | | AUG 29-<br>SEP 05 | 4.70 | 10.8 | 0.184 | 0.019 | 0.015 | 0.029 | 0.358 | 0.218 | 0.07 | 1.42 | <0.007 | | SEP<br>05-12 | 4.73 | 12.2 | 0.111 | 0.018 | 0.023 | 0.036 | 0.288 | 0.246 | 0.10 | 1.45 | <0.007 | | SEP | | | | | | | | | | | | | 12-19<br>SEP | 6.56 | 10.7 | 1.670 | 0.195 | 0.003 | 0.115 | <0.016 | 0.129 | 0.15 | 1.14 | <0.007 | | 19-26<br>SEP 26- | 4.64 | 16.2 | 0.201 | 0.027 | 0.032 | 0.040 | 0.381 | 0.191 | 0.08 | 2.02 | <0.007 | | OCT 03 | | | | | | | | | | | | INDEX 397 | | Page | • | Page | |-------------------------------------------------------------------------------|----------------------|---------------------------------------------------------------------------------|-------------------------------| | | Page | | Lage | | Acre-foot, definition of | 48<br>48 | Discontinued stations, gagingwater-quality | 59<br>60 | | Artesian, definition of | 48 | Dissolved, definition of | 49<br>49 | | Bacteria, definition of<br>Beaver Creek (tributary to Iowa River) at | 48 | Downstream order system Drainage area, definition of | 27, 30<br>49 | | New Hartford Beaver Creek (tributary to Des Moines River) | 107, 251 | Drainage basin, definition of | 50 | | near Grimes Bed material, definition of | 148, 254<br>48 | East Branch Iowa River near Klemme<br>East Fork Des Moines River at Dakota City | 78<br>139, 253 | | Big Bear Creek at LadoraBig Cedar Creek near Varina | 90, 249<br>150, 254 | East Fork Hardin Creek near Churdan<br>East Fork One Hundred and Two River near | 154 <b>, 2</b> 54 | | Big Sioux River at Akron<br>Big Sioux River basin, crest-stage partial- | 177 | Bedford East Nishnabotna River, at Red Oak | 223, 261<br>211, 260 | | record stations in | 239 | near AtlanticElk Creek near Decatur City | 210, 260<br>224-226 | | Big Springs Fish Hatchery near Elkader, | 176, 177 | English River at Kalona | 98, 250 | | Precipitation Water Quality, data for Black Hawk Creek at Hudson | 395, 396<br>110, 251 | English Creek nr Knoxville Example of site numbers for wells | 171, 256<br>31 | | Black Hawk Lake at Lake View<br>Boone River near Webster City | 152<br>141, 253 | Floyd River, at Alton | 184, 257 | | Bottom material, definition of | 48<br>259 | at James | 186, 257<br>185, 2 <b>5</b> 7 | | Boyer River at Logan<br>Boyer River basin, crest-stage partial- | 197, 259 | Floyd River basin, crest-stage partial-<br>record stations in | 240 | | record stations ingaging-station records in | 240<br>197 | gaging-station records in Fourmile Creek (tributary to Des Moines River) | 184-186 | | Cedar Creek (tributary to Des Moines River) | | at Des Moines Fox River basin, crest-stage partial- | 164, 255 | | near Bussey | 173, 256 | record stations in | 239 | | near Oakland Mills | 129, 253<br>245, 246 | Gage height (G.H.), definition of Gaging station, definition of | 50<br>50 | | Cedar River Basin, discharge measurements in.<br>Cedar River, at Cedar Rapids | 245, 246<br>112, 252 | Grand River Basin gaging-station records in | 224-228 | | at Cedar Falls | 108, 109 | Ground-water, by county, level data<br>Ground-water, by county, quality data | 263-353<br>354-392 | | at Janesville | 100, 250<br>102, 251 | Ground-water levels, records of | 43, 44 | | Little Cedar, near Ioniaat Waterloo | 101, 250<br>111, 252 | data collection and computation data presentation | 43, 44 | | near Conesville | 113, 252<br>103, 251 | Ground-water quality, records ofdata presentation | 45, 46<br>45 | | Chariton River, near Charitonnear Moulton | 229, 262<br>233, 262 | explanation of descriptive headings | 46 | | near RathbunSouth Fork, near Promise City | 232, 262<br>230, 262 | Hardin Creek, East Fork, near Churdan Hardness, definition of | 154, 254<br>50 | | Chariton River basin, crest-stage partial-<br>record stations in | 241 | Hydrologic bench-mark network, definition of. Hydrologic conditions, summary of | 50<br>3-25 | | gaging-station records in<br>Clear Creek near Coralville | 229-233<br>94, 249 | graphs ofground-water | 8<br>17-21 | | Clear Lake at Clear Lake | 105<br>49 | ground-water-qualityprecipitation and surface-water | 21-25<br>3-7 | | Control, definition of | 49<br>49 | surface-water-qualitysuspended-sediment | 12-16<br>7-12 | | CooperationCoralville | 2<br>92 | Hydrologic unit, definition of | 50 | | Crest-stage stations, maximum stage and discharge, made at partial-record | | Indian Creek near MingoIntroduction | 126, 252<br>1 | | stations in | 234-241<br>77, 248 | Iowa River, at Iowa Cityat Marengo | 95, 250<br>91, 249 | | Crow Creek basin gaging-stations in | 77, 240 | at Marshalltownat Wapello | 80-85<br>114-119 | | Cubic feet per second per square mile, definition of | 49 | East Branch, near Klemmenear Lone Tree | 78<br>99, 250 | | Cubic foot per second, definition of Cubic foot per second day | 49<br>48 | near Rowan | 79, 248 | | Definition of terms | 48-56 | record stations ingaging-station records in | 236, 237<br>78-119 | | Des Moines River, at Estherville East Fork, at Dakota City | 137, 253<br>139, 253 | Land-surface datum, definition of | 50 | | at Fort Dodge | 140, 253 | Lake Panorama at Panora | 156<br>170 | | at Humboldtat Keosauqua | 138, 253<br>175, 257 | Lakes and Reservoirs: | 152 | | at Ottumwabelow Raccoon River, at Des Moines | 174, 256<br>163, 255 | Black Hawk Lake at Lake View | 105<br>92 | | near Runnellsnear Saylorville | 168, 256<br>144-147 | Coralville Lake near Coralville Panorama, Lake, at Panora | 156 | | near Stratfordnear Tracy | 142, 254<br>172, 256 | Rathbun Lake near RathbunRed Rock, Lake, near Pella | 231<br>170 | | Des Moines River basin, crest-stage partial-<br>record stations in | 238, 239 | Saylorville Lake near Saylorville West Okoboji Lake at Lakeside | 143 | | gaging-station records in Discharge, definition of | 137-175<br>49 | Laboratory near Milford | . 190 | | | | | | 398 INDEX | | Page | | Page | |--------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------|----------------------| | Latitude-longitude system | 30 | Particle size, definition of | 51 | | Little Cedar River near Ionia | 101, 250 | Particle size classification, defintion of | 51, 52 | | Little Maquoketa River basin, crest-stage | | Perry Creek at 38th Street, Sioux City | 183, 257 | | partial-record stations in | 234<br>193, 259 | Perry Creek basin, crest-stage partial-<br>record stations in | 239 | | at Linn Grove | 192, 258 | gaging-station records in | 183 | | near Turin | 195, 259 | Pesticides, definition of | 52 | | Little Sioux River basin, crest-stage | | Picocurie (PC,pCi), definition of | 52 | | partial-record stations in | 240<br>190-195 | Platte River near DiagonalPlatte River basin, crest-stage partial- | 222, 261 | | gaging-station records in | 190 193 | record stations in | 241 | | Map of Iowa, gaging stations | 28 | gaging-station records in | 222, 233 | | active crest-stage gaging station | 29 | Precipitation water-quality data | 393-396 | | water-quality stations | 11<br>18 | Publications on techniques of water-resources investigations | 57,58 | | ground water observation wells ground water quality | 24 | THAGSCIP GOTONS | 2.,00 | | Maple River at Mapleton | 194, 259 | Radiochemical program, definition of | 52 | | Maquoketa River near Maquoketa | 72, 248 | Raccoon River at Van Meter | 159-161<br>96 | | Maquoketa River basin, crest-stage partial-record stations in | 235 | South Branch, at Iowa City | 93 | | gaging-station records in | 71, 72 | Rathbun Lake near Rathbun | 231 | | McNay Research Station near Chariton, | | Records, explanation of | 27-46 | | Precipitation Water-Quality, data for | 393, 394 | Recoverable from bottom material, | 52 | | Measuring point, definition of | 50<br>50 | definition of | 52 | | Micrograms per liter (UG/L,ug/L), | 50 | Return period, definition of | 52 | | definition of | 50 | Richland Creek near Haven | 87, 249 | | Middle Raccoon River, at Panora | 157, 255 | Roberts Creek basin, discharge | 242-244 | | near Bayard Middle River near Indianola | 155, 255<br>166, 255 | measurements in | 69, 247 | | Milligrams per liter (MG/L,mg/l), | 100, 255 | Rock River near Rock Valley | 176, 257 | | definition of | 50 | Runoff, in inches, definition of | 52 | | Miscellaneous sites, special study and | 242-246 | Calla Carala mana Elbanan | 88, 249 | | Mississippi River Basin, gaging stations in | 61-175 | Salt Creek near ElberonSaylorville Lake near Saylorville | 143 | | Mississippi River, Main Stem | | Sediment, definition of | 52, 53 | | at Clinton | 73, 248 | 7-day, 10-year low flow (7 Q), definition of. | 53 | | at Keokuk | 136 | Shell Rock River at Shell Rock | 106, 251<br>67, 247 | | at McGregor | 62-65 | Silver Creek near LuanaSkunk River at Augusta | 130-135 | | gaging stations in | 176-233 | Skunk River basin, crest-stage partial- | | | Missouri River Main Stem178-182, 187, 1 | | record stations in | 238 | | Missouri River, at Decatur, Nebraska | 187, 258 | gaging-station records in | 120-135<br>53 | | at Nebraska City, Nebraskaat Omaha, Nebraska | 203-207<br>198-202 | Sodium adsorption ratio, definition of Soldier River at Pisgah | 196, 259 | | at Rulo, Nebraska | 216, 261 | Soldier River basin, crest-stage partial- | - | | at Sioux City | 178-182 | record stations in | 240 | | Monona-Harrison ditch near Turin | 189, 258 | gaging-station records in | 196<br>53 | | partial-record stations in | 240 | South Branch Ralston Creek at Iowa City | 96 | | gaging-station records in | 188, 189 | South Fork Chariton River near Promise City | 230, 262 | | Mosquito Creek basin, crest-stage partial- | | South Raccoon River at Redfield | 158, 255 | | record stations in | 240 | South River near AckworthSouth Skunk River, near Ames | 167, 256<br>120, 252 | | National geodetic vertical datum (NGVD), | | at Colfax | 122-125 | | definition of | 51 | near Oskaloosa | 127, 252 | | National stream-quality accounting network, | | Special networks and programs | 26<br>26 | | (NASQAN) definition of National trends network, definition of | 51<br>51 | Hydrologic Benchmark Network National Stream Quality Accounting Network | 26<br>26 | | data presentation | 393-396 | National Trends Network | 26 | | Nishnabotna River above Hamburg | 212-214 | Radiochemical Program | 26 | | Nishnabotna River basin, crest-stage | 240 243 | Tritium Network | 26<br>242-246 | | partial-record stations ingaging-station records in | 240, 241<br>208-214 | Specific conductance, definition of | 54 | | Nodaway River at Clarinda | 217-221 | Squaw Creek at Ames | 121, 252 | | Nodaway River basin, crest-stage partial- | | Stage-discharge relation, definition of | 54 | | record stations in | 241 | Stage and water-discharge, records of | 32-37<br>36, 37 | | gaging-station records in North Fork Maquoketa River at Fulton | 217-221<br>71, 247 | accuracy of the records | 32, 33 | | North Raccoon River, near Jefferson | 153, 254 | data presentation | 34-36 | | near Newell | 149, 254 | identifying estimated daily discharge | 36 | | North Piver near Norwalk | 151, 254<br>165, 255 | other records available | 37<br>27-30 | | North River near Norwalk | 165, 255<br>128, 253 | Streamflow, definition of | 54 | | Numbering system for wells | 31 | Surface area, definition of | 54 | | | | Surface water quality, records of | 37-42 | | Ocheyedan River near Spencer | 191, 258 | arrangement of records | 38<br>37, 38 | | Old Mans Creek near Iowa City One Hundred and Two River, East Fork, | 97, 250 | data presentation | 40, 41 | | near Bedford | 223, 261 | laboratory measurements | 40 | | | | on site measurements and sample collection | 38 | | Parameter code, definition of | 51<br>51 | remark codessediment | 42<br>39, 40 | | Partial-record station, definition of Partial-record station and miscellaneous | 31 | water temperature and specific conductance | 39 | | discharges at | 234-241 | • | | | | Page | | | D | |--------------------------------------------------------------------------|------------------------------------|------------------------------------------------|--------------|-----------------------------| | Surficial bed material, definition of | 54 | | | Page | | Suspended, definition of | 54 | Des Moines County | 284, | 363-365 | | Suspended recoverable, definition of | 54 | Dubuque County | | 363-36 <b>5</b> | | Suspended total, definition of | 55 | Emmett County | | 285 | | Tarkia Divon at Stanton | 215 260 | Flord County | | 363-365<br>363-365 | | Tarkio River at Stanton | 215, 260 | Floyd County<br>Franklin County | | 363-365 | | record stations in | 241 | Fremont County | | 366-368 | | gaging-station records in | 215 | Greene County285 | -290, | | | Terms, definition of | 48-56 | Grundy County | 290, | 366-368 | | Thermograph, definition of | 55<br>227, 261 | Guthrie County291 Hancock County | -295, | 366-368<br>366-368 | | Timber Creek near Marshalltown | 227, 261<br>86, 249 | Hardin County | | 366-368 | | Time-weighted average, definition of | 55 | Harrison County295 | -303, | 366-368 | | Tons per acre-foot, definition of | 55 | Henry County | | 303, 304 | | Tons per day, definition of | 55 | Howard County | 205 | 366-371 | | Total, definition of Total discharge, definition of | 55<br>55 | Humboldt County | | 369-371<br>369-3 <b>7</b> 1 | | Total recoverable, definition of | 56 | Iowa County306 | | | | Tritium network, definition of | 56 | Jackson County308, | 309. | 372-374 | | Turkey River, at Garber | 70, 247 | Jasper County | 310, | 372-377 | | at Spillville | 66, 247 | Johnson County | 316 | 311-316<br>372-3 <b>74</b> | | Turkey River basin, crest-stage partial-<br>record stations in | 234 | Keokuk County | 510, | 372-374 | | gaging-station records in | 66-70 | Kossuth County | | 372-377 | | | | Lee County | | 317 | | Unnamed Creek near Luana | 68, 247 | Linn County | -326, | 375-377 | | Upper Iowa River, near Dorchester<br>Upper Iowa River basin, crest-stage | 61, 247 | Louisa County326 | -328. | | | partial-record stations in | 234 | Madison County | | 328 | | gaging-station records in | 61 | Marion County329 | ,330, | 375-377 | | Walnut Charle at Dag Maines | 160 066 | Marshall County | 330, | 375-377<br>378-380 | | Walnut Creek at Des Moines | 162, 255<br>89 | Mitchell County | -334. | | | Wapsipinicon River, at Independence | 75, 248 | Montgomery County | • | 335 | | near De Witt | 76, 248 | Muscatine County | | 335 | | near Elma | 74, 248 | O'Brien County336,<br>Osceola County337 | | | | Wapsipinicon River basin, crest-stage partial records in | 235 | Page County | 333, | 339 | | gaging-station records in | 74-76 | Palo Alto | | 381-383 | | Water-quality, miscellaneous analyses | 247-262 | Plymouth County | 340, | 381-383 | | Water-data report (WDR), definition of | 56<br>56 | Polk County Pottawattamie County | | 381-383<br>341, 34 <b>2</b> | | Water-supply papers (WSP), definition of WATSTORE data, access to | 47 | Poweshiek County | | 384-386 | | Water year, definition of | 56 | Sac County | | 384-386 | | Weighted average, definition of | 56 | Scott County | | 384-386 | | Weldon River near Leon | 228, 261 | Shelby County344 Sioux County | -346,<br>347 | 384-389 | | Wells, ground water, levels and quality of water data, by county: | | Story County | 047, | 347 | | Adair County | 354-356 | Tama County | | 387-389 | | Audubon County | | Taylor County | | 387-389 | | Benton CountyBlack Hawk County | 265-268<br>354-356 | Van Buren County | | 387-389<br>387-389 | | Bremer County | 354-356 | Washington County348 | -350. | | | Buchanan County | 354-359 | Webster County350, | | 39 <b>0-392</b> | | Buena Vista County268, 26 | | Winnebago | 0.50 | 390-392 | | Butler County | 357-359<br>357-359 | Woodbury County352, | 353, | 390-392<br>390-392 | | Calhoun County | | Wright County | | 185, 257 | | Cass County | 2. 357-359 | West Fork Cedar River at Finchford | | 103, 251 | | Cerro Gordo County | 273, 274 | West Fork ditch at Hornick | • • | 188, 258 | | Cherokee County | | West Nishnabotna River, at Hancock at Randolph | • • | 208, 259<br>209, 260 | | Chickasaw County | 357-36 <b>2</b><br>360-36 <b>2</b> | West Okoboji Lake at Lakeside | • • | 200, 200 | | Clayton County | | Laboratory near Milford | | 190 | | Clinton County | 360-362 | Wexford Creek basin, crest-stage | | 224 | | Crawford County280-28 | 3, 360-36 <b>5</b><br>363-365 | partial-record stations in | | 234<br>169, 226 | | Dallas County | 3, 363-365 | Winnebago River at Mason City | | 104, 251 | | | | WSP, definition of | | 56 | | | | | | | | | • | | | |--|---|---|--| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - | | | | | | | | | | | | # FACTORS FOR CONVERTING INCH-POUND UNITS TO INTERNATIONAL SYSTEM UNITS (SI) The following factors may be used to convert the inch-pound units published herein to the International System of Units (SI). | Multiply inch-pound units | Ву | To obtain SI units | |--------------------------------------------|------------------------|--------------------------------------------------| | | Length | | | inches (in) | 2.54x10 <sup>1</sup> | millimeters (mm) | | | 2.54x10 <sup>-2</sup> | meters (m) | | feet (ft) | 3.048x10 <sup>-1</sup> | meters (m) | | miles (mi) | 1.609x10° | kilometers (km) | | | Area | | | acres | 4.047x10 <sup>3</sup> | square meters (m <sup>2</sup> ) | | | 4.047x10 <sup>-1</sup> | square hectometers (hm²) | | | $4.047 \times 10^{-3}$ | square kilometers (km <sup>2</sup> ) | | square miles (mi <sup>2</sup> ) | 2.590x10° | square kilometers (km <sup>2</sup> ) | | | Volume | | | gallons (gal) | 3.785x10° | liters (L) | | | 3.785x10° | cubic decimeters (dm <sup>3</sup> ) | | | 3.785x10 <sup>-3</sup> | cubic meters $(m^3)$ 325,719 | | million gallons | $3.785 \times 10^{3}$ | cubic meters (m <sup>3</sup> ) | | | 3.785x10 <sup>-3</sup> | cubic hectometers (hm³) | | cubic feet (ft <sup>3</sup> ) | 2.832x101 | cubic decimeters (dm <sup>3</sup> ) | | | 2.832x10 <sup>-2</sup> | cubic meters (m <sup>3</sup> ) | | cfs-days | $2.447 \times 10^{3}$ | cubic meters (m <sup>3</sup> ) | | | 2.447x10 <sup>-3</sup> | cubic hectometers (hm³) | | acre-feet (acre-ft) | 1.233x10 <sup>3</sup> | cubic meters (m <sup>3</sup> ) | | | 1.233x10 <sup>-3</sup> | cubic hectometers (hm³) | | | 1.233x10 <sup>-6</sup> | cubic kilometers (km³) | | | Flow | | | cubic feet per second (ft <sup>3</sup> /s) | 2.832x101 | liters per second (L/s) | | | 2.832x101 | cubic decimeters per second (dm <sup>3</sup> /s) | | | 2.832x10 <sup>-2</sup> | cubic meters per second (m³/s) | | gallons per minute (gal/min) | 6.309x10 <sup>-2</sup> | liters per second (L/s) | | | 6.309x10 <sup>-2</sup> | cubic decimeters per second (dm <sup>3</sup> /s) | | | 6.309x10 <sup>-5</sup> | cubic meters per second (m³/s) | | million gallons per day | 4.381x10 <sup>1</sup> | cubic decimeters per second (dm³/s) | | | 4.381x10 <sup>-2</sup> | cubic meters per second (m³/s) | | | Mass | | | tons (short) | 9.072x10 <sup>-1</sup> | megagrams (Mg) or metric tons | POSTAGE AND FEES PAID U.S. DEPARTMENT OF THE INTERIO INT 413 U.S. DEPARTMENT OF THE INTERIOR Geological Survey P.O. Box 1230 Iowa City, IA 52244 OFFICIAL BUSINESS PENALTY FOR PRIVATE USE \$300 SPECIAL 4TH CLASS BOOK RATE